Electrical transmission line diametrical retention mechanism

Information

  • Patent Grant
  • 6981546
  • Patent Number
    6,981,546
  • Date Filed
    Monday, June 9, 2003
    21 years ago
  • Date Issued
    Tuesday, January 3, 2006
    19 years ago
Abstract
The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within downhole components. The invention allows a transmission line to be attached to the internal diameter of drilling components that have a substantially uniform drilling diameter. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to withstand the tension and compression of drill pipe during routine drilling cycles.
Description
BACKGROUND

The present invention relates to the field of retention mechanisms of electrical transmission lines, particularly retention mechanisms for coaxial cables. The preferred mechanisms are particularly well suited for use in difficult environments wherein it is desirable to retain a transmission line without the normal means available such as brackets, screws and such. One such application is in data transmission systems for downhole environments, such as along a drill string used in oil and gas exploration or along the casings and other equipment used in oil and gas production.


The goal of accessing data from a drill string has been expressed for more than half a century. As exploration and drilling technology has improved, this goal has become more important in the industry for successful oil gas, and geothermal well exploration and production. For example, to take advantage, of the several advances in the design of various tools and techniques for oil and gas exploration, it would be beneficial to have real time data such as temperature, pressure, inclination, salinity, etc. Several attempts have beau made to devise a successful system for accessing such drill string data. One such system is disclosed In co-pending U.S. Application Ser. No. 09/909,469 (also published as PCT Application WO 02/06716), now U.S. Pat. No. 6,717,501. which is assigned to the same assignee as the present invention. The disclosure of this U.S. Application Ser. No. 09/909,469, now U.S. Pat. No. 6,717,501, is incorporated herein by reference, Another such system is disclosed in co-pending U.S. application Ser. No. 10/358,099 the title of which is DATA TRANSMISSION SYSTEM FOR A DOWNHOLE COMPONENT filed on Feb. 3, 2003. The disclosure of this U.S. Application Ser. No. 10/358,099; now U.S. Patent Publication No. US20040149471A1, is herein incorporated by reference.


SUMMARY

Briefly stated, the invention is a system for retaining an electrical transmission line through a string of downhole components.


In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string. Each component has a first and second end, with a first communication element located at the first end and a second communication element located at the second end. Each communication element includes a first contact and a second contact. The system also includes a coaxial cable running between the first and second communication elements, the coaxial cable having a conductive tube and a conductive core within it. The system also includes a first and second connector for connecting the first and second communication elements respectively to the coaxial cable. Each connector includes a conductive sleeve, lying concentrically within the conductive tube, which fits around and makes electrical contact with the conductive core. The conductive sleeve is electrically isolated from the conductive tube. The conductive sleeve of the first connector is in electrical contact with the first contact of the first communication element, the conductive sleeve of the second connector is in electrical contact with the first contact of the second communication element, and the conductive tube is in electrical contact with both the second contact of the first communication element and the second contact of the second communication element.


In accordance with another aspect of the invention, the drill components are sections of drill pipe, each having a central bore, and the first and second communication elements are located in a first and second recess respectively at each end of the drill pipe. The system further includes a first passage passing between the first recess and the central bore and a second passage passing between the second recess and the central bore. The first and second connectors are located in the first and second passages respectively. Preferably, each section of drill pipe has a portion with an increased wall thickness at both the box end and the pin end with a resultant smaller diameter of the central bore at the box end and pin end, and the first and second passages run through the portions with an increased wall thickness and generally parallel to the longitudinal axis of the drill pipe. The box end and pin end is also sometimes referred to as the box end tool joint and pin end tool joint.


In accordance with another aspect of the invention, the components are sections of drill pipe, drill collars, jars, and similar components that would be typically found in a drill string. This invention is particularly useful when such drill components have a substantially uniform internal diameter. A through passage in the increased wall of a pin end and box end tool joint as described above is not always possible with different size pipes and other types of drill components. Another retention mechanism other than that described above must be employed. One such retention mechanism is overlapping slots which are particularly useful to affix the coaxial cable to the inside wall of the pipe. The overlapping slots replace the need for a passageway connecting the first and second recess to the central bore or internal diameter of the drill component. A system of overlapping slots is placed near each box end and pin end tool joint.


In accordance with another aspect of the invention, the system includes a first and second expansion plug, each of which includes a central passage and each of which is press-fit within the conductive tube so as to maintain the increased outside diameter of the conductive tube within the larger diameter portions of the first and second passages respectively. The system also preferably includes a first and second retaining plug, each of which includes ridges on its outer surface to retain the expansion plugs in place.


The expansion plugs could alternatively be internal diametrical expansion mandrels with a central passage, the expansion mandrel having a front and back end. The back end of the expansion mandrel has an outer diameter that is greater than an outer diameter of the front end of the expansion mandrel. The retention plugs could alternatively be expansion mandrels with the back end having external circumferentially grooved barbs, also known as a barbed expansion mandrel, that dig into the conductive tube internal diameter. These expansion mandrels become electrical transmission line retainers when displaced within an electrical transmission line. The central passage of the expansion mandrels or retainers could also be electrically insulated allowing bare wire to pass through without causing an electrical short.


In accordance with another aspect of the invention, the method includes expanding the outside diameter of the conductive tube by inserting an expansion plug or mandrel into each end. The first and second communication elements each include an inductive coil having at least one loop of wire. In each communication element, a first end of the wire is in electrical contact with the conductive tube and a second end of the wire is in electrical contact with the conductive sleeve. The method further includes inserting a water-tight seal between the second end of the wire and the inside of the conductive tube.


In accordance with another aspect of the invention, the method includes affixing the conductive tube to the inside diameter of the drill component. After the above mentioned expansion mandrel is inserted into the conductive tube, the conductive tube is then inserted in one end of the overlapping slots in the drill component and stretched far enough to place the other end of the conductive tube in the opposite end of the drill component.


The present invention, together with attendant objects and advantages, will be best understood with reference to the detailed description below in connection with the attached drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is cross-sectional view of a drill component exhibiting the overlapping slots.



FIG. 2 is a cross-sectional view of a drill component showing the electrical transmission line in place.



FIG. 3 is an enlarged cross sectional view or the pin end of a drill component as depicted in FIG. 1.



FIG. 4 is an enlarged cross-sectional view showing the pin end of FIG. 1 and the shoulder.



FIG. 5 is an enlarged view of the pin end of a drill component as depicted in FIG. 1 showing more than one slot.



FIG. 6 is an enlarged cross-section of a pin end of a drill component further showing the created shoulder and undercut.



FIG. 7 is an enlarged cross-section of a pin end of a drill component showing multiple slots.





DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS

It should be noted that, as used herein, the term “downhole” is intended to have a relatively broad meaning, including such environments as drilling in oil and gas, gas and geothermal exploration, the systems of casings and other equipment used in oil, gas and geothermal production.


It should also be noted that the term “transmission” as used in connection with the phrase data transmission or the like, is intended to have a relatively broad meaning, referring to the passage of signals in at least one direction from one point to another.


Referring to the drawings, FIG. 1 is a cross-sectional view of a drill component exhibiting the overlapping slots of the present invention. The most preferred application of the retention mechanism is in the data transmission system in sections of drill pipe, which make up a drill string used in oil and gas or geothermal exploration.


The depicted section 20 of FIG. 1 includes a pin end 21 and a box end 22. Between the pin end 21 and box end 22 is the body of the section. A typical length of the body is between 30 and 90 feet. Drill strings in oil and gas production can extend as long as 20,000 feet, which means that as many as 700 sections of drill pipe and downhole tools can be used in the drill string.


There are several designs for the pin and box end of drill pipe. This invention is particularly useful for pin and box end designs that have a uniform diameter with the rest of the pipe component. Pipe component 20 has a uniform central bore or internal diameter 23. Smaller pipe sizes and many other drilling components such as drill collars, heavy weight drill pipe, and jars may have a uniform internal diameter depending on the size of drill pipe used. FIG. 1 also includes the overlapping slots made of a first slot 10 and a second slot 11. The first slot 10 is smaller than the second slot 11.


As shown in FIG. 2, an electrical transmission line or coaxial cable, of which conductive tube 24 is shown, can be placed within the internal diameter or central bore 23 of pipe component 20. The electrical transmission line can be a coaxial cable including a conductive tube and conductive core with in it. Each end of the coaxial cable is placed near the end of each box end 22 and pin end 21.



FIG. 3 is a more detailed close up of the coaxial cable in the pin end 21, of which the conductive tube 24 is shown. The coaxial cable, of which the conductive tube 24 is shown, will have a first outer diameter 31 and a second outer diameter 30 which is larger than the first outer diameter 31. The first slot 10 is smaller than the slot 11. Slots 10 and 11 are made to overlap which are depicted more clearly in the other figures. The outer diameter 31 is smaller than the second slot 11. The second slot 11 is at least as wide as the second outer diameter 30.


As shown in FIG. 4 we see a cross-sectional view of the pin end 21 form drill component 20 as depicted in FIG. 1. Without the electrical transmission line or coaxial cable, of which conductive tube 24 is shown, in place, it is easier to see how the overlapping slots work. The first slot 10 intersects the second slot 11 such that an overlap of the slots occurs. The smaller width of slot 10 over laps the larger slot 11 such that an undercut 12 and shoulder 13 are created. The larger slot 11 is placed underneath the smaller slot 10 at the intersection of the two slots where the overlap exists. Slots 10 and 11 are formed such that both slots and the undercut 12 and shoulder 13 form complimentary recesses to the first and second outer diameters 30 and 31 of conductive tube 24 as depicted in FIG. 3. In still another embodiment of the invention, the conductive tube 24 could be press fit into the complimentary recesses formed by the overlapping slots 10 and 11. Furthermore the slots do not necessarily have to line up with each other; the slots could be offset by a desired amount depending on the type of electrical conductor being employed.


In another embodiment of the invention, more than two slots can be used. The invention can also include more than two shoulders as depicted in FIG. 5 which is an enlarged view of the pin end 21 of drill component 20 as shown in FIG. 1. A first slot 10 and second slot 11 forms the undercut 12 and shoulder 13. Another shoulder 14 is placed beyond slot 10. This can be created by having third slot placed below slot 10. Indeed, a plurality of slots can be implemented to increase the retention strength depending on the application as needed. Each subsequent slot should have an increasing width. Corresponding changes in the outer diameter of the conductive tube 24 would also need to be made such that the plurality of slots will form shoulders and undercuts that form complimentary recesses with each corresponding outer diameter of the conductive tube.



FIG. 6 is an enlarged cross-section of a pin end 21 of a drill component 20 depicting in greater detail the created shoulder 13 and undercut 12. The length of overlap between first slot 10 and second slot 11 is within the elastic deformation range of the conductive tube. The conductive tube 24 is stretched in order to install it within the drill component and the overlapping slot. However, it cannot be stretched beyond the point where plastic deformation occurs. This aspect of the invention and the installation process will be discussed in greater detail below.


The distinctness of the overlapping slots and resulting undercuts and shoulders are best seen in FIG. 7 which is an enlarged cross-section of the pin end 21 as depicted in FIG. 1. The slot 10 has a smaller width than slot 11 as shown in FIG. 7. The slot 11 goes under slot 10 at the point of intersection causing an overlap of the slots. Additionally, an undercut 12 is formed which holds the conductive tube 24 in place to a specified depth The relative height of each slot could be modified by raising or lowering the undercut to a desired depth for the electrical transmission line to be placed at. The shoulder 13 holds the larger outer diameter 30 of conductive tube 24 in place. Another shoulder 14 depicts the possibility of more than one shoulder used to retain the conductive tube of an electrical transmission line or coaxial cable providing the conductive tube has a corresponding outer diameter.


In the above descriptions and drawings only the pin end 21 of pipe component 20 has explicitly shown the retention mechanism of overlapping slots. Naturally, the same depiction could be made with the box end 22 of drill component 20 showing substantially the same overlapping slots with resulting undercut 12 and shoulder 13.


A conductive tube 24 is placed within the slots 10 and 11. Preferably, the conductive tube 24 runs almost the entire length of the drill component 20, beginning in the pin end 21, at overlapping slots 10 and 11, passing through interior of the body or internal diameter 23 of the pipe component 20, continuing through the box end 22, and ending near the box end 22 in slots 10 and 11. The conductive tube 71 is preferably held in tension after it is inserted in the drill pipe 20 and remains in tension during downhole use. This prevents the conductive tube 71 from moving relative to the undercut 12 and shoulder 13 during downhole use. The conductive tube is preferably made of metal, more preferably a strong metal, most preferably steel. By “strong metal” it is meant that the metal is relatively resistant to deformation in its normal use state. The metal is preferably stainless steel, most preferably 316 or 316L stainless steel. A preferred supplier of stainless steel is Plymouth Tube, Salisbury, Md.


In a preferred embodiment of the invention, the conductive tube is held in place in each end by means of the overlapping slots 11 and 12. The conductive tube 24 has a first outer diameter 31 and a second outer diameter 30 as shown in FIG. 3. One end of the conductive tube 24 is placed in the overlapping slots 11 and 12 in drill component 20 by placing the larger outer diameter 30 in the larger slot 11. The conductive tube 24 is then pulled such that the outer diameter 31 and 30 slide under the undercut 12 and the outer diameter 13 rests in slot 10 and outer diameter 30 rests in slot 11. Subsequently the larger outer diameter 30 abuts against the shoulder 13; thus the conductive tube is held in place.


To complete the installation process in the opposite end of the drill component 20, be it pin end 21 or box end 22, the conductive tube 24 is stretched along the internal diameter 23 of drill component 20. As the conductive tube 24 is stretched it increases in tension. The conductive tube is stretched far enough so that the larger outer diameter 30 will fit in the larger slot 11. When this point is reached the conductive tube tension is relaxed causing the larger outer diameter 30 and smaller outer diameter 31 to slide under the undercut 12. The conductive tube 24 will stop sliding when the larger outer diameter 30 abuts against the shoulder 13. The conductive tube 24 should still be in tension so that each end of the conductive tube will remain place under the undercut 12 and abutting against the shoulder 13. It is therefore necessary that the length of stretch needed to place the larger diameter 30 in larger slot 11 while in tension does not exceed the elastic deformation range of the conductive tube. If during the installation process the elastic deformation range is exceeded, the conductive tube 24 will lose its ability to rebound back to a shorter length. Thus the tube will not be in tension and will not stay attached to the drill component 20. In a preferred embodiment, the conductive tube is in tension within the drill component. The preferred amount of tension is between 300 and 1200 pounds-force. In another embodiment, the conductive tube could be press fit into the smaller slot during the installation process described above.


In an alternative embodiment, the conductive tube may be insulated from the pipe in order to prevent possible galvanic corrosion. At present, the preferred material with which to insulate the conductive tube 71 is PEEK®.


Many types of data sources are important to management of a drilling operation. These include parameters such as hole temperature and pressure, salinity and pH of the drilling mud, magnetic declination and horizontal declination of the bottom-hole assembly, seismic look-ahead information about the surrounding formation, electrical resistivity of the formation, pore pressure of the formation, gamma ray characterization of the formation, and so forth. The high data rate provided by the present invention provides the opportunity for better use of this type of data and for the development of gathering and use of other types of data not presently available.


It is therefore intended that the foregoing detailed description be regarded as illustrative rather than limiting, and that it be understood that it is the following claims, including all equivalents, that are intended to define the spirit and scope of this invention.

Claims
  • 1. An electrical transmission line retention mechanism in a pipe component having ends, comprising: a first slot formed in the pipe component intermediate its ends and exposed at an internal diameter of the pipe component; a second slot, wider than the first slot, formed in the pipe component and aligned with and overlapping the first slot; and the second slot also exposed at the internal diameter and terminating at one of the ends of the pipe component; wherein the first and second slots also adapted to affix an electrical transmission line along the internal diameter of the pipe component.
  • 2. A retention mechanism of claim 1 wherein the mechanism comprise more than two slots.
  • 3. The retention mechanism of claim 2 wherein the more than two slots have increasing widths.
  • 4. The retention mechanism of claim 1 wherein an undercut is formed by the first and second slots.
  • 5. The retention mechanism of claim 1 wherein a shoulder is formed by the first and second slots.
  • 6. The retention mechanism of claim 1 wherein the slot overlap is offset.
  • 7. The retention mechanism of claim 1 wherein the end may be selected from the group consisting of a box end and a pin end.
  • 8. The retention mechanism of claim 1 wherein the conductive tube is press-fit into the slots.
  • 9. A system for mechanically retaining an electrical transmission line in a pipe component having ends, comprising: a coaxial cable, the coaxial cable comprising a conductive tube and a conductive core within it, the conductive tube having a first and a second outer diameter, the second outer diameter being larger than the first outer diameter; a first slot formed in the pipe component intermediate its ends and exposed at an internal diameter of the pipe component; a second slot, wider than the first slot, formed in the pipe component and aligned with and overlapping the first slot; the second slot also exposed at the internal diameter and terminating at one of the ends of the pipe component; and the conductive tube is disposed within the slits with the first and second slots forming complementary recesses with the first and second diameters of the conductive tube; wherein the conductive tube is in electrical communication with the internal diameter of the pipe component.
  • 10. The system of claim 9 wherein the conductive tube has an elasticity such that the conductive tube is in tension.
  • 11. The system of claim 9 wherein the slot overlap length is within the elastic deformation range of the conductive tube.
  • 12. The system of claim 9 wherein the system comprises more than two slots.
  • 13. The system of claim 12 wherein the more than two slots have increasing widths.
  • 14. The system of claim 9 wherein the end may be selected from the group consisting of a box end or a pin end.
  • 15. The system in claim 9 wherein the conductive tube is press-fit into the slots.
  • 16. A system for mechanically retaining an electrical transmission line for use in a rotary dull string, the drill string comprising individual drill components, each drill component containing the electrical transmission line, the system comprising; a drill component with a substantially uniform internal diameter with a pin end and a box end; a coaxial cable, the coaxial cable comprising a conductive tube and a conductive core within it, the conductive tube having a first and a second outer diameter, the second outer diameter being larger than the first outer diameter; a first slot formed in the pipe component intermediate its ends and exposed at an internal diameter of the pipe component; a second slot, wider than the first slot, formed in the pipe component and aligned with and overlapping the first slot; the second slot also exposed at the internal diameter and terminating at one of the ends of the pipe component; the first and second slot forming an undercut; and the conductive tube is disposed within the slots with the first and second slots forming complementary recesses with the first and second diameters of the conductive tube; wherein the conductive tube is in electrical communication with the internal diameter of the drill component.
  • 17. The system of claim 16 wherein the system comprises more than two slots.
  • 18. The system of claim 16 wherein the more than two slots have increasing widths.
  • 19. The system of claim 18 wherein the conductive tube has an elasticity such that the conductive tube is in tension.
  • 20. The system of claim 16 wherein the slot overlap length is within the elastic deformation range of the conductive tube.
  • 21. The system in claim 16 wherein the tube is tension between 300 and 1200 foot pound-force.
  • 22. The system in claim 16 wherein the conductive tube is press-fit into the slots.
FEDERAL SPONSORSHIP

This invention was made with government support under Contract No. DE-FC26-01NT41229 awarded by the U.S. Department of Energy. The government has certain rights in the invention.

US Referenced Citations (116)
Number Name Date Kind
749633 Seeley Jan 1904 A
2178931 Crites et al. Nov 1939 A
2197392 Hawthorn Apr 1940 A
2249769 Leonardon Jul 1941 A
2301783 Lee Nov 1942 A
2354887 Silverman et al. Aug 1944 A
2379800 Hare Jul 1945 A
2414719 Cloud Jan 1947 A
2531120 Feaster Nov 1950 A
2633414 Boivinet Mar 1953 A
2659773 Barney Nov 1953 A
2662123 Koenig, Jr. Dec 1953 A
2748358 Johnston May 1956 A
2974303 Dixon Mar 1961 A
2982360 Morton et al. May 1961 A
3079549 Martin Feb 1963 A
3090031 Lord May 1963 A
3170137 Brandt Feb 1965 A
3186222 Martin Jun 1965 A
3194886 Mason Jul 1965 A
3209323 Grossman, Jr. Sep 1965 A
3227973 Gray Jan 1966 A
3253245 Brandt May 1966 A
3518608 Papadopoulos Jun 1970 A
3696332 Dickson, Jr. et al. Oct 1972 A
3793632 Still Feb 1974 A
3807502 Heilhecker et al. Apr 1974 A
3879097 Oertle Apr 1975 A
3930220 Shawhan Dec 1975 A
3957118 Barry et al. May 1976 A
3989330 Cullen et al. Nov 1976 A
4012092 Godbey Mar 1977 A
4087781 Grossi et al. May 1978 A
4095865 Denison et al. Jun 1978 A
4121193 Denison Oct 1978 A
4126848 Denison Nov 1978 A
4215426 Klatt Jul 1980 A
4220381 Van der Graaf Sep 1980 A
4348672 Givler Sep 1982 A
4445734 Cunningham May 1984 A
4496203 Meadows Jan 1985 A
4537457 Davis, Jr. et al. Aug 1985 A
4578675 MacLeod Mar 1986 A
4605268 Meador Aug 1986 A
4660910 Sharp et al. Apr 1987 A
4683944 Curlett Aug 1987 A
4698631 Kelly, Jr. et al. Oct 1987 A
4722402 Weldon Feb 1988 A
4785247 Meador et al. Nov 1988 A
4788544 Howard Nov 1988 A
4806115 Chevalier et al. Feb 1989 A
4806928 Veneruso Feb 1989 A
4884071 Howard Nov 1989 A
4901069 Veneruso Feb 1990 A
4914433 Galle Apr 1990 A
4924949 Curlett May 1990 A
4971147 Thomeer Nov 1990 A
5008664 More et al. Apr 1991 A
5052941 Hernandez-Marti et al. Oct 1991 A
5148408 Matthews Sep 1992 A
5248857 Ollivier Sep 1993 A
5255739 Neuroth et al. Oct 1993 A
5278550 Rhein-Knudsen et al. Jan 1994 A
5302138 Shields Apr 1994 A
5311661 Zifferer May 1994 A
5332049 Tew Jul 1994 A
5334801 Mohn Aug 1994 A
5371496 Tanamachi Dec 1994 A
5454605 Mott Oct 1995 A
5455573 Delatorre Oct 1995 A
5505502 Smith et al. Apr 1996 A
5517843 Winship May 1996 A
5521592 Veneruso May 1996 A
5568448 Tanigushi et al. Oct 1996 A
5650983 Kondo et al. Jul 1997 A
5691712 Meek et al. Nov 1997 A
5743301 Winship Apr 1998 A
RE35790 Pustanyk et al. May 1998 E
5810401 Mosing et al. Sep 1998 A
5833490 Bouldin Nov 1998 A
5853199 Wilson Dec 1998 A
5856710 Baughman et al. Jan 1999 A
5898408 Du Apr 1999 A
5908212 Smith et al. Jun 1999 A
5924499 Birchak et al. Jul 1999 A
5942990 Smith et al. Aug 1999 A
5955966 Jeffryes et al. Sep 1999 A
5959547 Tubel et al. Sep 1999 A
5971072 Huber et al. Oct 1999 A
6030004 Schnock et al. Feb 2000 A
6041872 Holcomb Mar 2000 A
6045165 Sugino et al. Apr 2000 A
6046685 Tubel Apr 2000 A
6057784 Schaaf et al. May 2000 A
6104707 Abraham Aug 2000 A
6108268 Moss Aug 2000 A
6123561 Turner et al. Sep 2000 A
6141763 Smith et al. Oct 2000 A
6173334 Matsuzaki et al. Jan 2001 B1
6177882 Ringgenberg et al. Jan 2001 B1
6188223 van Steenwyk et al. Feb 2001 B1
6196335 Rodney Mar 2001 B1
6209632 Holbert et al. Apr 2001 B1
6220362 Roth et al. Apr 2001 B1
6223826 Chau et al. May 2001 B1
6367565 Hall Apr 2002 B1
6392317 Hall et al. May 2002 B1
6405795 Holbert et al. Jun 2002 B2
6641434 Boyle et al. Nov 2003 B2
6655464 Chau et al. Dec 2003 B2
6670880 Hall et al. Dec 2003 B1
6717501 Hall et al. Apr 2004 B2
20020135179 Boyle et al. Sep 2002 A1
20020193004 Boyle et al. Dec 2002 A1
20030070842 Bailey et al. Apr 2003 A1
20030213598 Hughes Nov 2003 A1
Foreign Referenced Citations (4)
Number Date Country
0399987 Nov 1990 EP
WO8801096 Feb 1988 WO
WO9014497 Nov 1990 WO
WO0206716 Jan 2002 WO
Related Publications (1)
Number Date Country
20040244964 A1 Dec 2004 US