The present invention relates to a method and an arrangement in a freely controllable electrically activated valve actuator for controlling and regulating the gas flow in two- or four-stroke engines.
Freely controllable valves allow increased efficiency and substantially lower emissions, i.e. cleaner exhaust gas. Valve actuators can also be pneumatically or hydraulically activated.
The object of the invention is to provide a new actuator technology. An electrically controlled electromechanical valve actuator which is simple in its construction, energy efficient and which is capable of quickly opening and closing an engine valve in the cylinder head of an engine. This object is achieved by the invention by means of the features specified in the patent claims.
The technology involves using a solenoid and an engine valve spring which in a conventional manner keeps the valve closed and using a here called “hammer effect” when the engine valve is to be opened.
A known problem when using solenoids for opening engine valves is that they need to be strong to overcome the force of the mechanical spring, the engine valve spring, which keeps the valve closed. One disadvantage with high strength is that the moving iron core, the plunger, which shall overcome the closing force of the engine valve spring, becomes large and heavy. The weight of the iron core and the valve spring together with the force of the valve spring prevent the possibility for a short duration, i.e. a short time from that the valve is closed until it is fully open and then closed again. The present invention is characterized in that the mass of the iron core is mostly not involved during the duration. Since the iron core is mostly not part of the movement of the engine valve, a significantly short duration is made possible. The technology makes use of the weight of the iron core and turns this known disadvantage into an advantage, the “hammer effect”.
The invention will now be described with reference to shown embodiments, where
In a first embodiment of a method for electrically controlling a valve actuator in a two-stroke or four-stroke combustion engine where the actuator comprises a solenoid (A), a plunger (5) and a spring (6), wherein the engine has at least one cylinder (1) with at least one freely controllable engine valve with a valve disc (10) with corresponding valve stem (11) and a valve spring (4) where a distance (7) is provided between the lower end of the plunger and the upper end of the valve stem, and where air is supplied or exhausts are evacuated from, a combustion chamber (3) past a lower part of the valve stem with the valve disc via at least one channel (2) in the cylinder, wherein the valve actuator is activatable to open the engine valve, wherein the method is characterized in that the opening of the engine valve is initiated after activation of the solenoid, wherein the following acceleration of the plunger brings its lower end to strike the upper end of the valve stem for initial opening of the valve.
In a second embodiment, a method according to the first embodiment is provided, further characterized in that the movement of the plunger continues until the movement is interrupted when the plunger reaches its stop in the solenoid, and that the opening movement of the engine valve continues until valve spring force brings the movement to stop, whereby the engine valve starts its return towards the valve seat.
In a third embodiment, a method according to the second embodiment is provided, further characterized in that the upper end of the valve shaft reaches the lower end of the plunger before the engine valve reaches the valve seat, whereby a braking of the closing movement arises.
In a fourth embodiment, a method according to the third embodiment is provided, further characterized in that, just before the engine valve reaches the valve seat, the solenoid is activated during a short adapted time to brake the movement of the engine valve such that the valve disc lands in the valve seat with a suitable speed, for instance a sufficiently high speed to keep the valve seat free from soot, while at the same time sufficiently low speed not to cause too much wear on the valve disc and the valve seat.
In a first embodiment of a device for electrically controlling a valve actuator in a two-stroke or four-stroke combustion engine and for carrying out the method according to the first embodiment of the method, the device is characterized in that the engine valve is configured to initially open after activation of the solenoid, whereby the following acceleration of the plunger brings its lower end to strike the upper end of the valve stem for initial opening of the valve.
In a second embodiment, a device according to the first embodiment is provided, further characterized in that a short mechanical spring (4) is arranged in a space in an outer mechanical spring (9), wherein the spring (4) has a substantially higher spring constant compared to the spring (9).
In a third embodiment, a device according to the first embodiment is provided, further characterized in that the spring (4) is substantially stiffer and has a substantially higher spring constant compared to the spring (9).
In a fourth embodiment, a device according to the second or third embodiment is provided, further characterized in that a spring washer (8) is arranged to strike the spring (4) for receiving the kinetic energy of the engine valve to the spring (4) for braking and turning of the movement into a closing movement.
The invention is not limited to the described embodiments, but modifications can be made within the scope of the following claims. Above described embodiments may furthermore be combined in any way.
Number | Date | Country | Kind |
---|---|---|---|
1800146-1 | Jul 2018 | SE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/SE2019/050713 | 7/29/2019 | WO | 00 |