The present invention relates to an electrically actuated booster for use in an automotive brake mechanism or the like.
There have heretofore been electrically actuated boosters that boost a pedal input with a electrically-operated actuator and output the boosted pedal input to a master cylinder. Among such electrically actuated boosters are those disclosed in Patent Documents 1 to 3.
Patent Document 1 discloses an electrically actuated booster having an assist member (electromagnetic device) provided to assist the transmission of force from an input rod to a master cylinder. The electrically actuated booster further has a relative displacement sensor that detects a relative displacement between the input rod and the assist member. In the electrically actuated booster, the displacement of the assist member is controlled so that the input rod and the assist member are displaced together as one unit, i.e. the relative displacement detected by the relative displacement sensor is kept zero.
Patent Document 2 discloses an electrically actuated booster in which an input rod that receives a pedal input and an assist member (piston shaft) are connected so that when the input rod is pressed, a controller applies force generated by an electric motor to the assist member, thereby displacing the assist member together with the input rod as one unit, and thus boosting the pedal input and outputting the boosted pedal input to a master cylinder.
Patent Document 3 discloses an electrically actuated booster having an input rod that receives a pedal input and an assist member (main piston) operating in association with the input rod. One end of the assist member faces a pressure chamber of a master cylinder. When the input rod is pressed, a controller applies force generated by an electric motor to the assist member, thereby displacing the assist member, and thus boosting the pedal input and outputting the boosted pedal input to the master cylinder.
In the electrically actuated boosters disclosed in Patent Documents 1 to 3, however, the assist member is controlled so that the relative displacement between the input member and the assist member is kept constant at all times. The boosters cannot control the displacement of the assist member in such a manner as to change the relative displacement relationship between the input member and the assist member. In addition, the boosters are not arranged to detect an absolute displacement of the input member and to perform displacement control such that the relative displacement relationship between the input member and the assist member is freely changed according to the absolute displacement of the input member.
More specifically, in the booster disclosed in Patent Document 1, the displacement is controlled so that the relative displacement between the input member and the assist member is kept zero at all times, and the relative displacement relationship between the input member and the assist member cannot be variably controlled. Further, the booster disclosed in Patent Document 1 does not detect the absolute displacement of the input member and does not include a technique to perform displacement control such that the relative displacement relationship between the input member and the assist member is freely changed according to the absolute displacement of the input member.
In the booster disclosed in Patent Document 2, the input member and the assist member are arranged to move together as one unit. Therefore, the relative displacement relationship between the input member and the assist member cannot be varied, as a matter of course. Further, the booster disclosed in Patent Document 2 does not detect the absolute displacement of the input member and does not include a technique to perform displacement control such that the relative displacement relationship between the input member and the assist member is freely changed according to the absolute displacement of the input member.
In the booster disclosed in Patent Document 3, the input member and the assist member are displaceable relative to each other. However, detection of the relative displacement between the two members is not taken into consideration at all. Accordingly, the relative displacement relationship between the input member and the assist member cannot be variably controlled. Further, the booster disclosed in Patent Document 3 does not detect the absolute displacement of the input member and does not include a technique to perform displacement control such that the relative displacement relationship between the input member and the assist member is freely changed according to the absolute displacement of the input member.
The present invention has been made in view of the above-described circumstances. Accordingly, an object of the present invention is to provide an electrically actuated booster capable of obtaining various desired brake characteristics and improving brake feeling by performing displacement control such that the relative displacement relationship between the input member and the assist member is variable according to the absolute displacement (including estimated absolute displacement) of the input member.
The invention set forth in claim 1 is an electrically actuated booster having an input member that moves forward and backward in response to an operation of a brake pedal, an assist member arranged to be movable relative to the input member, and a electrically-operated actuator that causes the assist member to move forward and backward, wherein a boosted brake fluid pressure is generated in a master cylinder by an assist thrust applied to the assist member according to movement of the input member caused by the brake pedal. The electrically actuated booster is characterized by including input absolute displacement detecting means that detects an absolute displacement of the input member, and either one of relative displacement detecting means that detects a relative displacement between the input member and the assist member and assist absolute displacement detecting means that detects an absolute displacement of the assist member. Further, the electrically actuated booster is provided with control means that sets a target displacement that makes variable the relative displacement relationship between the input member and the assist member according to a detection signal from the input absolute displacement detecting means and that controls the electrically-operated actuator so that the relative displacement relationship between the input member and the assist member becomes equal to the target displacement on the basis of a signal from the relative displacement detecting means or the assist absolute displacement detecting means.
According to the invention set forth in claim 2, the electrically actuated booster of claim 1 is characterized in that a brake fluid pressure is generated in the master cylinder by an input thrust applied to the input member from the brake pedal and an assist thrust applied to the assist member from the electrically-operated actuator, and even when the input member and the assist member are displaced relative to each other, a part of a reaction caused by the brake fluid pressure is transmitted to the input member, and another part of the reaction is transmitted to the assist member.
According to the invention set forth in claim 3, the electrically actuated booster of claim 1 or 2 is characterized in that urging means is provided between the input member and the assist member to urge the input member relative to the assist member toward a neutral position of relative displacement therebetween.
According to the invention set forth in claim 4, the electrically actuated booster of any of claims 1 to 3 is characterized in that the control means controls the electrically-operated actuator so that, as the input member moves in a direction for increasing the brake fluid pressure, the absolute displacement of the assist member becomes larger or smaller than the absolute displacement of the input member.
According to the invention set forth in claim 5, the electrically actuated booster of any of claims 1 to 3 is characterized in that the control means controls the electrically-operated actuator on the basis of the signal from the input absolute displacement detecting means such that when the absolute displacement of the input member is detected to have moved from an initial position by a predetermined amount, the assist member is started to be displaced so that the absolute displacement of the assist member becomes equal to or larger than the absolute displacement of the input member.
According to the invention set forth in claim 6, the electrically actuated booster of any of claims 1 to 3 is characterized in that when the absolute displacement of the input member detected by the input absolute displacement detecting means has become a predetermined amount, the control means controls the electrically-operated actuator so that the absolute displacement of the assist member becomes larger than the absolute displacement of the input member.
According to the invention set forth in claim 7, the electrically actuated booster of any of claims 1 to 3 is characterized in that when the control means judges from the absolute displacement of the input member detected by the input absolute displacement detecting means that the speed of movement of the input member has reached a predetermined speed, the control means controls the electrically-operated actuator so that the absolute displacement of the assist member becomes larger than the absolute displacement of the input member.
According to the invention set forth in claim 8, the electrically actuated booster of any of claims 1 to 3 is characterized in that when the control means judges from the absolute displacement of the input member detected by the input absolute displacement detecting means that movement of the input member in a direction for increasing the brake fluid pressure has stopped, the control means sets a target displacement so that the assist member is displaced relative to the input member by a predetermined amount in the direction for increasing the brake fluid pressure, and controls the electrically-operated actuator on the basis of the target displacement.
According to the invention set forth in claim 9, the electrically actuated booster of any of claims 1 to 3 is characterized in that the control means is connected to an acceleration sensor that detects an operation of an accelerator pedal or connected to a throttle sensor that detects opening and closing of an engine throttle, and when the acceleration sensor detects cancellation of the operation of the accelerator pedal or when the throttle sensor detects that the engine throttle has been closed, the control means controls the electrically-operated actuator so that the assist member is displaced relative to the input member in a direction for increasing the brake fluid pressure to reduce an ineffective stroke of the master cylinder.
According to the invention set forth in claim 10, the electrically actuated booster of any of claims 1 to 3 is characterized in that when a braking operation by a regenerative braking system is performed, the control means controls the electrically-operated actuator so that the assist member is displaced relative to the input member in a direction for reducing the brake fluid pressure.
According to the invention set forth in claim 11, the electrically actuated booster of any of claims 1 to 3 is characterized in that the input absolute displacement detecting means is a displacement sensor that detects an absolute displacement of the input member relative to the fixed part.
According to the invention set forth in claim 12, the electrically actuated booster of any of claims 1 to 3 is characterized in that the input absolute displacement detecting means detects an absolute displacement of the input member by computing a detection signal from any one of a brake pedal depressing force sensor that detects a depressing force applied to the brake pedal, an electric current sensor that detects an amount of electric current supplied to an electric motor constituting the electrically-operated actuator, and a fluid pressure sensor that detects a fluid pressure generated by a piston in the master cylinder.
According to the inventions set forth in claims 1 to 12, it is possible to obtain various brake characteristics, for example, brake assist control characteristics, by performing displacement control such that the relative displacement relationship between the input member and the assist member is variable according to a detection signal from the input absolute displacement detecting means. In view of the fact that the change in fluid pressure with the stroke is, in general, smaller in a low fluid pressure region than in a high fluid pressure region, the displacement control in which the stroke is controlled has the advantage that braking in the low fluid pressure region, which is frequently used for brakes, can be performed with high accuracy.
According to the invention set forth in claim 2, the input member is adapted to receive a part of the reaction caused by the brake fluid pressure. Therefore, the fluid pressure generated according to the stroke of the input member can be increased or reduced by changing the relative displacement relationship between the input member and the assist member, and the brake pedal depressing force relative to the stroke of the input member can be changed according to the increase or reduction in the fluid pressure. Thus, the relationship between the stroke of the input member on the one hand and on the other the brake fluid pressure and the brake pedal depressing force can be adjusted as desired.
According to the invention set forth in claim 3, urging means is provided to urge the input member relative to the assist member toward the neutral position of the relative displacement therebetween. Therefore, the boost ratio can be varied by changing the relative displacement relationship between the input member and the assist member.
50, 50A, 50B, 50C . . . electrically actuated booster, 52 . . . booster piston (assist member), 58 . . . input piston (input member), 85 (85A, 85B) . . . spring (urging means), 86 . . . potentiometer (input absolute displacement detecting means), 91 . . . resolver (assist absolute displacement detecting means), 92, 92A, 92C . . . controller (control means), 100 . . . relative displacement sensor (relative displacement detecting means).
An electrically actuated booster according to a first embodiment of the present invention will be explained below with reference to
In
The housing 54 comprises a first tubular member 56 secured to the front surface of the compartment wall 3 through a ring-shaped mounting member 55, and a second tubular member 57 coaxially connected to the first tubular member 56. The tandem master cylinder 2 is connected to the forward end of the second tubular member 57. A support plate 63 is mounted on the first tubular member 56. An electric motor 64 constituting the electrically-operated actuator 53 is secured to the support plate 63. It should be noted that the mounting member 55 has an inner peripheral boss portion 55a secured to the compartment wall 3 so as to be positioned in an opening 3a of the compartment wall 3. In this embodiment, the electric motor 64 is a DC brushless motor.
The tandem master cylinder 2 has a cylinder body 10, one end of which is closed, and a reservoir 11. A secondary piston 12 is slidably provided in the inner part of the cylinder body 10. The secondary piston 12 makes a pair with the piston assembly 51 serving as the primary piston. The interior of the cylinder body 10 is divided by the piston assembly 51 and the secondary piston 12 to define two pressure chambers 13 and 14. In response to the forward movement of the two pistons (i.e. the piston assembly 51 and the secondary piston 12), brake fluid sealed in the pressure chambers 13 and 14 is supplied under pressure to the wheel cylinders of the associated systems.
The wall of the cylinder body 10 is provided with relief ports 15 respectively communicating the pressure chambers 13 and 14 with the reservoir 11. In addition, seal members 16 are provided on the inner surface of the cylinder body 10 forward of the relief ports 15, respectively. In response to the forward movement of the two pistons (i.e. the piston assembly 51 and the secondary piston 12), the pair of seal members 16 come in sliding contact with the respective outer peripheral surfaces (rearward of later-described through-holes 18) of the booster piston 52 of the piston assembly 51 and the secondary piston 12 associated with the seal members 16, thereby closing the pressure chambers 13 and 14 to the associated relief ports 15. It should be noted that the pressure chambers 13 and 14 are provided therein with return springs 17 that respectively urge rearward the booster piston 52 of the piston assembly 51 and the secondary piston 12. The respective forward ends of the booster piston 52 and the secondary piston 12 are provided with through-holes 18 that are communicable with the relief ports 15 in the master cylinder 2 when the electrically actuated booster is in its initial position (shown in the figure) during non-braking operation.
The piston assembly 51 has an input piston (input member) 58 fitted in the booster piston 52 so as to be movable relative thereto. The input piston 58 has a large-diameter portion 58a at the rear end thereof. A pedal-side shaft 9 extending from a brake pedal 8 is connected to the large-diameter portion 58a. Thus, the input piston 58 moves forward and backward in response to the operation of the brake pedal 8 (i.e. pedal operation). In this case, the pedal-side shaft 9 is connected to the large-diameter portion 58a in such a way that the distal end of the pedal-side shaft 9 is fitted in a spherical recess 58b provided on the large-diameter portion 58a, thereby allowing pivoting of the pedal-side shaft 9.
The booster piston 52 constituting the piston assembly 51 has a partition 59 therein at a longitudinally intermediate position thereof. The input piston 58 extends through the partition 59. The booster piston 52 has its forward end inserted in the pressure chamber (primary chamber) 13 in the master cylinder 2. The forward end of the input piston 58 is positioned inside the booster piston 52 in the pressure chamber 13. The interface between the booster piston 52 and the input piston 58 is sealed by a seal member 60 disposed forward of the partition 59 of the booster piston 52′, and the interface between the booster piston 52 and a guide 10a of the cylinder body 10 of the master cylinder 2 is sealed by the above-described seal member 16, thereby preventing the brake fluid in the pressure chamber 13 from leaking to the outside of the master cylinder 2. The respective forward ends of the booster piston 52 and the secondary piston 12 are provided with through-holes 18 that are communicable with the relief ports 15 in the master cylinder 2 when the electrically actuated booster is in its initial position (shown in the figure) during non-braking operation.
The electrically-operated actuator 53 substantially comprises an electric motor 64 secured to a support plate 63 integral with the first tubular member 56 of the housing 54, a ball screw mechanism (rotation-rectilinear motion conversion mechanism) 65 provided in the first tubular member 56 in such a manner as to surround the input piston 58, and a rotation transmission mechanism 66 that transmits the rotation of the electric motor 64 to the ball screw mechanism 65 after reducing the speed thereof.
The ball screw mechanism 65 comprises a nut member (rotating member) 68 rotatably supported by the first tubular member 56 through a bearing (angular contact bearing) 67, and a hollow screw shaft (rectilinear motion member) 70 engaged with the nut member 68 through balls (reference numeral omitted). The rear end portion of the screw shaft 70 is nonrotatably but slidably supported by a ring guide 71 secured to the mounting member 55 of the housing 54. Thus, the screw shaft 70 moves rectilinearly in response to the rotation of the nut member 68.
Meanwhile, the rotation transmission mechanism 66 comprises a first pulley 72 mounted on an output shaft 64a of the electric motor 64, a second pulley 74 nonrotatably fitted to the nut member 68 through a key 73, and a belt (timing belt) 75 passed over the two pulleys 72 and 74. The second pulley 74 is larger in diameter than the first pulley 72. Thus, the rotation of the electric motor 64 is transmitted to the nut member 68 of the ball screw mechanism 65 after the speed thereof has been reduced. The bearing 67 is pre-loaded by a nut 76 screwed onto the nut member 68 through the second pulley 74 and a collar 77. It should be noted that the rotation transmission mechanism 66 is not necessarily limited to the above-described mechanism comprising pulleys and a belt but may be a reduction gear mechanism or the like.
A flange member 78 is fitted and secured to the forward end of the hollow screw shaft 70 constituting the ball screw mechanism 65, and a tubular guide 79 is fitted and secured to the rear end of the screw shaft 70. The flange member 78 and the tubular guide 79 have their inner diameters set so that they function as guides that slidably guide the input piston 58. The flange member 78 is adapted to abut against the rear end of the booster piston 52 in response to the forward movement of the screw shaft 70 in the leftward direction as viewed in
An annular space 82 is defined between the input piston 58 and the booster piston 52. A pair of springs (urging means) 85 (85A and 85B) are provided in the annular space 82. The pair of springs 85 (85A and 85B) are each retained at one end thereof by a flange portion 83 provided on the input piston 58. The other end of the spring 85A is retained by the partition 59 of the booster piston 52. The other end of the spring 85B is retained by a retaining ring 84 fitted to the rear end of the booster piston 52. The pair of springs 85 serve to urge the input piston 58 relative to the booster piston 52 toward a neutral position of relative displacement therebetween and to retain the input piston 58 and the booster piston 52 at the neutral position of the relative movement when the brake is in an inoperative state. When the input piston 58 and the booster piston 52 have been displaced relative to each other from the neutral position in either direction, the pair of springs 85 urge the input piston 58 to return to the neutral position relative to the booster piston 52.
In the first embodiment, a potentiometer 86 (displacement sensor) is provided in the compartment as an example of input absolute displacement detecting means that detects an absolute displacement of the input piston 58 with respect to the vehicle body (hereinafter occasionally referred to as “input absolute displacement detected value A”). The potentiometer 86 comprises a body part 87 incorporating a resistor, and a sensor rod 88 extending from the body part 87 toward the brake pedal 8 in parallel to the input piston 58. The potentiometer 86 is mounted on a bracket 89 secured to the boss portion 55a of the mounting member 55 of the housing 54 such that the potentiometer 86 extends parallel to the input piston 58. The sensor rod 88 is constantly urged in its extension direction by a spring incorporated in the body part 87. The sensor rod 88 has its distal end abutting against a bracket 90 secured to the rear end of the input piston 58.
Between the input piston 58 and the screw shaft 70 is interposed a relative displacement sensor 100 (relative displacement detecting means) that detects a relative displacement between the input piston 58 and the booster piston 52 (hereinafter occasionally referred to as “relative displacement detected value B”), thereby detecting a relative displacement between the input piston 58 and the screw shaft 70 (and hence the booster piston 52). The relative displacement sensor 100 physically detects a relative displacement between the input piston 58 and the booster piston 52 and outputs the detected data to a controller 92.
The controller 92 (control means) is connected to the potentiometer 86, the relative displacement sensor 100 and a drive unit (not shown) of the electric motor 64.
The controller 92 is further connected with an acceleration sensor (not shown) that detects an operation of an accelerator pedal (not shown), or a throttle sensor (not shown) that detects opening and closing of an engine throttle (not shown). When the acceleration sensor detects cancellation of the operation of the accelerator pedal, or when the throttle sensor detects that the engine throttle has been closed, the controller 92 controls the electrically-operated actuator 53 so that the booster piston 52 is displaced relative to the input piston 58 in the direction for increasing the brake fluid pressure to reduce the ineffective stroke of the master cylinder 2 (ineffective stroke reducing control).
The controller 92 has, as shown in
As shown in
The differentiating circuit 102 differentiates an absolute displacement detected by the potentiometer 86 to obtain a speed V (hereinafter occasionally referred to as “speed signal V”). The target displacement setting unit 103 receives the input of the speed signal V from the differentiating circuit 102 and the detection signal (input absolute displacement detected value A) from the potentiometer 86 to set a target displacement C (relative displacement) and inputs the target displacement C to the subtracting circuit 104.
The subtracting circuit 104 subtracts the relative displacement (relative displacement detected value B) detected by the relative displacement sensor 100 from the target displacement C output from the target displacement setting unit 103 (C−B) to obtain a deviation.
The control unit 105 receives the input of the deviation obtained by the subtracting circuit 104 and obtains an electric current to be supplied to the electric motor 64 to control the drive unit of the electric motor 64.
In this embodiment, the controller 92 controls, as shown in
That is, the controller 92 sets a target displacement C that makes variable the relative displacement relationship between the input piston 58 and the booster piston 52 according to the detection signal (input stroke; corresponding to the input absolute displacement detected value A) from the potentiometer 86 and controls the electric motor 64 so that the relative displacement relationship (relative displacement detected value B) between the input piston 58 and the booster piston 52 becomes equal to the target displacement C on the basis of the detection signal (relative displacement detected value B) from the relative displacement sensor 100.
The target displacement C is set as stated hereinbelow by using the previously-obtained target displacement calculation characteristic data shown in part (b) of
The controller 92 can perform constant boost control, variable boost control, jump in control, brake assist control, build-up control, regenerative cooperative control, deboost control and ineffective stroke reducing control by executing the above-mentioned program.
The constant boost control is a control method wherein the input piston 58 and the booster piston 52 are displaced as one unit (displaced with zero relative displacement so that the booster piston 52 is always at the above-described neutral position relative to the input piston 58) in the same way as stated above in the section entitled “Background Art”. With the constant boost control method, assist stroke characteristics represented by the solid line in part (a) of
The characteristics of the constant boost control represented by the characteristic data shown in part (a) of
The above-described constant boost control is similar to that stated in the section entitled “Background Art”. The following is an explanation of various controls wherein the relative displacement relationship between the input piston 58 and the booster piston 52 is made variable, which is the characteristic feature of the invention of this application, i.e. variable boost control, jump in control, brake assist control, build-up control, regenerative cooperative control, and deboost control. It should be noted that the broke lines in parts (a), (b) and (c) of
First, the variable boost control is a control method in which, as shown by the solid line in part (a) of
The variable boost control may include controlling the electrically-operated actuator 53 so that the absolute displacement of the booster piston 52 becomes smaller than the absolute displacement of the input piston 58 as the input piston 58 moves in the direction for increasing the brake fluid pressure, in addition to the above-described control (i.e. controlling the electrically-operated actuator 53 so that the absolute displacement of the booster piston 52 becomes larger than the absolute displacement of the input piston 58 as the input piston 58 moves in the direction for increasing the brake fluid pressure).
The target displacement calculation characteristic data shown in part (b) of
As shown in part (b) of
The jump in control is a control method wherein the electrically-operated actuator 53 is controlled such that when the potentiometer 86 detects that the absolute displacement of the input piston 58 has moved from the initial position by a predetermined amount ns2, the booster piston 52 is started to be displaced so that the displacement of the booster piston 52 becomes equal to the displacement of the input piston 58 (i.e. the booster piston 52 is displaced with a zero relative displacement so that the input piston 58 assumes the neutral position relative to the booster piston 52), or so that the displacement of the booster piston 52 becomes larger than the displacement of the input piston 58. To implement the above-described control method in this embodiment, as shown in part (a) of
The above-described jump in control enables the vehicle driver to receive the feeling that the brake is working properly from a reaction on the brake pedal 8 caused by an increase in fluid pressure in the early stage of depressing the brake pedal 8. Hence, it is possible to give a favorable brake feeling to the driver.
In the brake assist control, as shown in part (a) of
The solid lines in
The build-up control is, as shown in
To implement the build-up control in this embodiment, as shown in part (a) of
The above-described build-up control enables the vehicle driver to receive the feeling that the brake is working properly from a reaction on the brake pedal caused by an increase in fluid pressure when he or she stops depressing the brake pedal. Hence, it is possible to give a favorable brake feeling to the driver.
The regenerative cooperative control is a control method wherein the fluid pressure generated in the master cylinder 2 is reduced by an amount corresponding to a braking (regenerative braking) force generated during regeneration of a power motor of a hybrid automobile. As shown in part (a) of
As shown in part (b) of
The above-described regenerative cooperative control enables a fluid pressure to be generated in the master cylinder 2 according to the regenerative braking force and hence can give a comfortable brake feeling to the driver.
The deboost control is a control method wherein, as shown in part (a) of
The controller 92 executes the program according to the detection signal from the potentiometer 86 and the detection signal from the relative displacement sensor 100. In the course of executing the program, the controller 92 selectively uses the characteristic data shown in part (b) of
As has been stated above, the displacement (forward and backward movement) of the booster piston 52 is added to the displacement of the input piston 58 to adjust the fluid pressure in the master cylinder. The fluid pressure adjustment is performed with the pressure equilibrium relationship represented by Equation (1).
Each element in the pressure equilibrium equation (1) is, as shown also in
The relative displacement ΔX is defined as ΔX=Xi−Xb, where Xi is the displacement of the input piston 58, and Xb is the displacement of the booster piston 52. Accordingly, ΔX is zero at the neutral position of the relative movement, and has a positive sign in the direction in which the booster piston 52 moves backward relative to the input piston 58 and a negative sign in the direction opposite to the above. It should be noted that in the pressure equilibrium equation (1) sliding resistance of seals is ignored. In the pressure equilibrium equation (1), the booster thrust Fb can be estimated from the current value of the electric motor 64.
Pb=(Fi−K×ΔX)/Ai=(Fb+K×ΔX)/Ab (1)
Meanwhile, the boost ratio α is given by the following Equation (2). Accordingly, if Pb in the pressure equilibrium equation (1) is substituted into Equation (2), the boost ratio α is given by the following Equation (3).
α=Pb×(Ab+Ai)/Fi (2)
α=(1−K×ΔX/Fi)×(Ab/Ai+1) (3)
In this case, to perform the constant boost control, which is the background art of the present invention, the rotation of the electric motor 64 is controlled (feedback control) so that the relative displacement ΔX becomes zero on the basis of the detection result of the potentiometer 86. Consequently, the boost ratio α is given by α=Ab/Ai+1 and thus uniquely determined by the pressure-receiving area Ab of the booster piston 52 and the pressure-receiving area Ai of the input piston 58 (
In contrast to the above, if the relative displacement ΔX is set at a negative predetermined value and the rotation of the electric motor 64 is controlled so that the relative displacement ΔX becomes equal to the above-described predetermined value, i.e. so that as the input piston 58 moves in the direction for increasing the brake fluid pressure, the absolute displacement of the booster piston 52 becomes larger than the absolute displacement of the input piston 58, the boost ratio α becomes (1−K×ΔX/Fi) times as large. In other words, the boost ratio becomes variable, and the electrically-operated actuator 53 functions as a boost source. Thus, it becomes possible to reduce the brake pedal depressing force to a considerable extent.
The controller 92 executes the flowcharts of
The controller 92 executes at a predetermined cycle a basic flow including steps S1 to S4 shown in
At step S1 in
At step S3 subsequent to step S2, the controller reads a relative displacement detected value B detected by the relative displacement sensor 100.
At step S4 subsequent to step S3, the electric motor 64 and the transmission mechanism are controlled so that the relative displacement detected value B becomes equal to the target displacement C (B=C or C−B=0).
Control is performed by carrying out each step as stated above. In the variable boost control, the jump in control and the input stroke response type brake assist control, the target displacement C is calculated depending on the input stroke. Therefore, control can be performed by executing the above-described basic flow. In the input speed response type brake assist control and the build-up control, the target displacement C is calculated depending on the input speed and time in addition to the input stroke. In the regenerative cooperative control, the target displacement C is calculated depending on the regenerative braking force. For these control methods, control cannot be performed simply by executing the basic flow, in which the target displacement C is calculated depending on only the input stroke. Therefore, the flowcharts shown in
The flowchart of
Step S101 is executed subsequently to step S1, as shown in
If “NO” is the answer at step S101, it is judged (step S103) whether or not there is a Build-Up flag that is generated by a Build-Up flag generation flow shown in
If “NO” is the answer at step S103, it is judged (step S105) whether or not there is a Regenerative Cooperative flag that is generated by a Regenerative Cooperative flag generation flow shown in
If “NO” is the answer at step S105, a target displacement C4 is calculated (step S107) by using the target displacement calculation characteristic data for [Variable Boost Control] shown in part (b) of
Although in this embodiment the target displacement calculation characteristic data for [Variable Boost Control] shown in part (b) of
The Input Speed BA flag generation flow shown in
In the Input Speed BA flag generation flow, as shown in
Next, it is checked whether or not the Input Speed BA flag is off (step S202). If “YES” is the answer at step S202, an input speed V is calculated by the operation of the differentiating circuit 102 (step S203).
Subsequently, it is judged whether or not the input speed V is greater than a predetermined value V0 (step S204). If “YES” is the answer at step S204, it is judged that the vehicle driver wishes a sudden braking operation. Then, the Input Speed BA flag is turned on (step S205), and the process returns to repeat this flow. If “NO” is the answer at step S204, the process returns to repeat this flow.
If “NO” is the answer at step S202, it is judged whether or not the brake assist control that is in operation is now unnecessary from whether or not a brake assist control cancellation condition has been met (e.g. a predetermined condition that the input piston 58 has been moved backward, which can be judged from the input absolute displacement detected value A, or the vehicle speed has reached substantially zero) (step S207).
If “YES” is the answer at step S207, the brake assist control is unnecessary. Therefore, the Input Speed BA flag is turned off (step S208), and the process returns to repeat this flow. If “NO” is the answer at step S207, the process returns to repeat this flow in order to continue the brake assist control.
In the Build-Up flag generation flow, as shown in
Next, an input speed V is calculated by the operation of the differentiating circuit 102 (step S302).
Subsequently, it is judged whether or not the input speed V (may be not only a positive value but also a negative value) is a value near zero (step S303). If “YES” is the answer at step S303, time counting start or continuation processing using a timer is executed (step S304).
Next, it is judged (step S305) on the basis of the time counted by the timer whether or not a predetermined time t0 [see part (d) of
If “YES” is the answer at step S305, the Build-Up flag is turned on (step S306), and the process returns to repeat this flow.
If “NO” is the answer at step S305, the time is counted up (step S307), and the process returns to enable the time counting to be continued.
If “NO” is the answer at step S303, the Build-Up flag is turned off (step S308), and the timer is cleared (step S309), and the process returns.
In the above-described control process, an input speed V is calculated at step S302, and whether or not the input speed V is a value near zero is judged at step S303 as a condition for turning on the Build-Up flag. In addition to this, it is also possible to judge whether or not the amount of movement of the input piston 58 is within a predetermined stroke width ns4 shown in part (d) of
In the Regenerative Cooperative flag generation flow, as shown in
If “NO” is the answer at step S401, the Regenerative Cooperative flag is turned off (step S403), and the process returns.
When the Regenerative Cooperative flag is on, step S106 in
The regenerative cooperative control shown in
Next, the ineffective stroke reducing control flow for eliminating the ineffective stroke of the master cylinder 2 will be explained with reference to
In the ineffective stroke reducing control flow, first, it is judged whether or not an accelerating operation is being conducted from whether or not there is an input of a detection signal relating to the operation of the accelerator pedal (step S501). If “NO” is the answer at step S501, i.e. acceleration is off, the target displacement C is set to a value C5 (step S502). If “YES” is the answer at step S501, i.e. acceleration is on, the target displacement C is set to a value zero (step S503). It should be noted that the value C5 is a relative displacement corresponding to the ineffective stroke of the master cylinder 2.
Subsequently to step S502 or S503, an input absolute displacement detected value A detected by the potentiometer 86 is read (step S504).
At step S505 subsequent to step S504, a relative displacement detected value B detected by the relative displacement sensor 100 is read.
Next, at step S506, the electric motor 64 is controlled so that the relative displacement detected value B becomes equal to the target displacement C, and the process returns.
In the master cylinder 2 of this embodiment, no brake fluid pressure is generated in the master cylinder 2 until the through-hole 26 has passed over the inner seal member 16 of the master cylinder 2 as a result of the forward movement of the booster piston 52, i.e. until the relief port 15 is closed. Hence, the cylinder stroke is ineffective during the initial period of booster operation. In this embodiment, however, the ineffective stroke reducing control shown in
In the foregoing explanation, the controller performs constant boost control, variable boost control, jump in control, brake assist control, build-up control, regenerative cooperative control, deboost control, and ineffective stroke reducing control. It should be noted that the controller may perform other control process. It is also possible to perform a part of the above-described control processes, including displacement control in which the relative displacement relationship between the input piston 58 and the booster piston 52 is made variable, such as the variable boost control, the brake assist control, etc.
The electrically actuated booster 1 arranged as stated above can obtain various brake characteristics, for example, brake assist control characteristics, by performing displacement control such that the relative displacement relationship between the input piston 58 and the booster piston 52 is variable according to a detection signal from the potentiometer 86. In view of the fact that the change in fluid pressure with the stroke is, in general, smaller in a low fluid pressure region than in a high fluid pressure region, the displacement control in which the stroke is controlled has the advantage that braking in the low fluid pressure region, which is frequently used for brakes, can be performed with high accuracy.
Further, because the input piston 58 is adapted to receive a part of a reaction caused by the brake fluid pressure, the following advantage can be obtained. That is, the fluid pressure generated according to the stroke of the input piston 58 can be increased or reduced by changing the relative positional relationship between the input piston 58 and the booster piston 52, and the brake pedal depressing force relative to the stroke of the input piston 58 can be changed according to the increase or reduction in fluid pressure. Thus, the relationship between the stroke of the input piston 58 on the one hand and on the other the fluid pressure and the brake pedal depressing force can be adjusted as desired.
In addition, a desired boost ratio is obtained by controlling the electrically-operated actuator 53 on the basis of a signal from the relative displacement sensor 100 so that the relative displacement between the booster piston 52 and the input piston 58 becomes equal to an arbitrary predetermined value. Accordingly, it becomes unnecessary to use a costly brake pedal depressing force sensor as required in the conventional technique. Thus, the cost can be reduced correspondingly. Further, it is possible to obtain a boost ratio larger or smaller than a boost ratio determined by the pressure-receiving area ratio between the booster piston 52 and the input piston 58 by controlling the electrically-operated actuator 53 so that the relative displacement between the booster piston 52 and the input piston 58 becomes equal to an arbitrary predetermined value. Hence, braking force based on the desired boost ratio can be obtained.
Next, an electrically actuated booster 50A according to a second embodiment of the present invention will be explained on the basis of
The electrically actuated booster 50A according to the second embodiment differs from the electrically actuated booster 1 according to the first embodiment as follows. In the electrically actuated booster 50A, as shown in
The relative displacement detecting circuit is provided in the controller 92A to detect a relative displacement [hereinafter occasionally referred to as “relative displacement detected value (D−A)”] between the booster piston 52 and the input piston 58 on the basis of an absolute displacement (hereinafter occasionally referred to as “assist absolute displacement detected value D”) of the booster piston 52 relative to the vehicle body and a detection signal (input absolute displacement detected value A) from the potentiometer 86. The absolute displacement of the booster piston 52 is computed from the rotational displacement of the electric motor 64 detected by a resolver (assist absolute displacement detecting means) 91 provided to control the rotation of the electric motor 64. It should be noted that a potentiometer (displacement sensor) that detects the absolute displacement of the booster piston 52 may be used as the assist absolute displacement detecting means in place of the resolver 91 to obtain the absolute displacement of the booster piston 52.
The basic flow shown in
It should be noted that control based on the flowcharts of
The second embodiment offers the same advantageous effects as those in the foregoing first embodiment.
The input piston 326 is secured at one end thereof to a pedal-side input shaft 20. The other end of the input piston 326 and the other end of the booster piston 329 are inserted in a fluid pressure chamber 327 formed in one end portion of a primary piston 421 of the master cylinder 2 to seal a fluid therein. The input piston 326 is slidably disposed in the booster piston 329 driven by the electric motor 64 and the nut member 68. Both the input piston 326 and the booster piston 329 are sealed with seal members (not shown). Reference numeral 320 in
In the electrically actuated booster 50B shown in
Xout=Xi(=Xb) (4)
Fout=Fi(Ai+Ab)/Ai (5)
where:
Xi is the input stroke;
Xout is the output stroke of the primary piston 321;
Fout is the output of the primary piston 321; and
Fi is the input of the pedal-side input shaft 20.
Hence, the boost ratio α, which is the ratio of the output Fout to the input Fi, may be given by the following Equation (6) from the above Equation (5).
α=Fout/Fi=(Ai+Ab)/Ai (6)
As will be clear from Equation (6), the boost ratio α in this modification is a constant value at all times.
The operation of the electrically actuated booster 50B shown in
The operation is as follows. A relative displacement (D−A) between the pedal-side input shaft 20 (the input piston 326) and the booster piston 329 is obtained from the difference between the detection signals from the potentiometer 86 and the resolver 91, and control is performed so that the displacement of the booster piston 329 is larger than the displacement of the pedal-side input shaft 20 on the basis of a deviation of the relative displacement (D−A) from a predetermined target displacement. Thus, a favorable assist function can be realized.
It should be noted that in this modification no springs 85 are provided between the input piston 326 and the booster piston 329 to urge the input piston 326 toward the neutral position. However, if such springs 85 are provided, the control process shown in
In the first and second embodiments shown in
In
The spring constant of the springs 85 (85A and 85B) is represented by K, the output of the screw shaft 70 by FbO and the brake pedal depressing force by FiO.
It should be noted that the relative displacement ΔX=Xi−Xb is already known because the first embodiment has the relative displacement sensor 100 and the second embodiment has the relative displacement detecting circuit in the controller 92A.
(A1) Regarding the fact that the input absolute displacement can be estimated (obtained) by using the fluid pressure sensor as the input absolute displacement detecting means:
The stroke Xi of the input piston 58 and the stroke Xb of the booster piston 52 cause a relative displacement of Xi−Xb=ΔX (known), and a fluid quantity change (volume change) ΔV given by Equation (7) occurs in the pressure chamber 2A correspondingly to the relative displacement.
Equation (7) may be changed to obtain Equation (8).
ΔV=Xb·Ab+Xi·Ai
=(Xi−ΔX)Ab+Xi·Ai
=Xi(Ab+Ai)−ΔX·Ab (7)
Xi=(ΔV+ΔX·Ab)/(Ab+Ai) (8)
Meanwhile, the relationship between the fluid quantity (volume) V in the pressure chamber 2A and the fluid pressure Pb in the pressure chamber 2A may be represented by a multiple-order curve [Pb=f(V)] as shown in the graph of
Accordingly, if the fluid pressure sensor calculates a fluid pressure Pb, a fluid quantity change (volume change) ΔV can be obtained from the above-described Pb−ΔV corresponding relationship [Pb=f(ΔV)]. By substituting the fluid quantity change ΔV and the relative displacement ΔX, which is known, into Equation (8), the stroke Xi of the input piston 58 can be calculated. It should be noted that the characteristics gradually change with aging such as wear of disk brake pads. In this regard, the multiple-order curve showing the Pb−ΔV characteristics in
(B1) Regarding the fact that the input absolute displacement can be estimated (obtained) by using the brake pedal depressing force sensor as the input absolute displacement detecting means:
The stroke Xi of the input piston 58 and the stroke Xas of the booster piston 52 cause a relative displacement of Xi−Xb=ΔX (known). On this occasion, the fluid pressure Pb in the pressure chamber 2A is given by Equation (9).
Pb=Fi/Ai
=(FiO−K·ΔX)/Ai (9)
On the basis of Equation (9) and the above-described Pb−ΔV corresponding relationship [Pb=f(ΔV)], the fluid quantity change (volume change) ΔV can be obtained from the brake pedal depressing force FiO detected by the brake pedal depressing force sensor.
Therefore, by applying the fluid quantity change ΔV thus obtained to Equation (8) in the same way as the above (Al), the stroke Xi of the input piston 58 can be calculated. In other words, the stroke Xi of the input piston 58 can be calculated from the data (depressing force FiO) detected by the brake pedal depressing force sensor.
(C1) Regarding the fact that the input absolute displacement can be estimated (obtained) by using the current sensor as the input absolute displacement detecting means:
The stroke Xi of the input piston 58 and the stroke Xb of the booster piston 52 cause a relative displacement of Xi−Xb=ΔX (known). On this occasion, the fluid pressure Pb in the pressure chamber 2A is given by Equation (10).
Pb=Fb/Ab
=(FbO+K·ΔX)/Ab (10)
On the basis of Equation (10) and the above-described Pb−ΔV corresponding relationship [Pb=f(ΔV)], the fluid quantity change (volume change) ΔV can be obtained from the booster thrust Fb, i.e. the electric current supplied to the motor 64, which is the source of generating the booster thrust Fb. The electric current is detected with the current sensor.
Therefore, by applying the fluid quantity change ΔV thus obtained to Equation (8) in the same way as the above (A1), the stroke Xi of the input piston 58 can be calculated. In other words, the stroke Xi of the input piston 58 can be calculated from the data (current value) detected by the current sensor.
Next, an electrically actuated booster 50C according to a third embodiment of the present invention will be explained on the basis of
The electrically actuated booster 50C according to the third embodiment differs from the first embodiment mainly in the following points: (i) The controller 92 of the first embodiment uses data detected by the relative displacement sensor 100 for feedback control; and (ii) to set a target displacement C, the controller 92 uses characteristic data in part (b) of
In
The electrically actuated booster 50C according to the third embodiment of the present invention is similar to the electrically actuated booster 50 according to the first embodiment in the following points: A target displacement (assist target displacement E) that makes variable the relative displacement relationship between the input piston 58 and the booster piston 52 is set according to the detection signal from the potentiometer 86 (claim 1); and the electric motor 64 is controlled so that the relative displacement relationship between the input piston 58 (input member) and the booster piston 52 (assist member) becomes equal to the target displacement (assist target displacement E)(claim 1). These points correspond to what is claimed in claim 1.
The control system of the electrically actuated booster 50C, including the controller 92C, is arranged as shown in
At step S701 in
At step S703 subsequent to step S702, an assist absolute displacement detected value D detected by the resolver 91 is read.
At step S704 subsequent to step S703, the controller controls the electric motor 64 (the electrically-operated actuator 53) so that the assist absolute displacement detected value D becomes equal to the assist target displacement E (D=E or E−D=0).
In the first and second embodiments, the relative displacement is subjected to feedback control, whereas, in the third embodiment, the absolute displacement of the booster piston 52 is feedback-controlled.
The flowchart of
Steps S801 to S807 correspond to steps S101 to S107 shown in
If “NO” is the answer at step S801, it is judged (step S803) whether or not there is a Build-Up flag that is generated by the Build-Up flag generation flow shown in
If “YES” is the answer at step S803, a target displacement E2 is calculated (step S804) by using the target displacement calculation characteristic data for [Build-Up Control] shown in part (a) of
If “NO” is the answer at step S803, it is judged (step S805) whether or not there is a Regenerative Cooperative flag that is generated by the Regenerative Cooperative flag generation flow shown in
If “NO” is the answer at step S805, a target displacement E4 is calculated (step S807) by using the target displacement calculation characteristic data for [Variable Boost Control] shown in part (a) of
The third embodiment also offers the same advantageous effects as those in the foregoing first embodiment.
In the electrically actuated booster 50C according to the third embodiment shown in
(A2) Regarding the fact that the input absolute displacement can be estimated (obtained) by using the fluid pressure sensor as the input absolute displacement detecting means:
The stroke Xi of the input piston 58 and the stroke Xb of the booster piston 52 cause a fluid quantity change (volume change) ΔV given by Equation (11) to occur in the pressure chamber 2A.
ΔV=Xb·Ab+Xi·Ai (11)
Equation (11) may be changed to obtain Equation (12).
Xi=(ΔV−Xb·Ab)/Ai (12)
On the basis of Equation (11) and the above-described Pb−ΔV corresponding relationship [Pb=f(ΔV)], a fluid quantity change (volume change) ΔV can be obtained from the fluid pressure Pb detected by the fluid pressure sensor.
Therefore, by substituting the fluid quantity change ΔV obtained as stated above and the stroke Xa, which is known, into Equation (12), the stroke Xi of the input piston 58 can be calculated. In other words, the stroke Xi of the input piston 58 can be calculated from the data (fluid pressure Pb) detected by the fluid pressure sensor.
(B2) Regarding the fact that the input absolute displacement can be estimated (obtained) by using the brake pedal depressing force sensor as the input absolute displacement detecting means:
The fluid quantity change (volume change) ΔV is given by the following Equation (13).
ΔV=Xb·Ab+(Xb+ΔX)·Ai (13)
On the basis of Equations (13) and (9) and the above-described corresponding relationship Pb=f(ΔV), ΔX can be obtained from the known data and the brake pedal depressing force FiO detected by the brake pedal depressing force sensor.
Meanwhile, Xi is given by the following Equation (14). The stroke Xi of the input piston 58 can be calculated from the above-obtained ΔX.
Xi=Xb+ΔX (14)
Thus, the stroke Xi of the input piston 58 can be calculated from the brake pedal depressing force FiO detected by the brake pedal depressing force sensor.
(C2) Regarding the fact that the input absolute displacement can be estimated (obtained) by using the current sensor as the input absolute displacement detecting means:
The fluid pressure Pb in the pressure chamber 2A is given by Equation (10), and the fluid quantity change (volume change) ΔV is given by Equation (13). On the basis of Equations (10) and (13) and the above-described corresponding relationship Pb=f(ΔV), ΔX can be obtained from the known data and the booster thrust Fb (i.e. the electric current detected by the current sensor, which is the source of generating the booster thrust Fb).
Meanwhile, Xin is given by the above Equation (14). The stroke Xi of the input piston 58 can be calculated from the above-obtained ΔX.
Thus, the stroke Xi of the input piston 58 can be calculated from the electric current value detected by the current sensor.
Number | Date | Country | Kind |
---|---|---|---|
2005-278220 | Sep 2005 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2006/319037 | 9/26/2006 | WO | 00 | 3/10/2008 |