This invention relates to an adjustable steering column, and more particularly, to an electrically actuated steering column.
Steering columns currently in production with both a rake and telescope feature generally use a lever to lock and unlock the mechanism allowing movement of the steering column. Often, the lever utilized to unlock and lock the adjustment mechanism is placed on an underside of the steering column and is cumbersome to adjust by a driver.
Various positions of the lever currently used today are also necessary to accommodate left-hand and right-hand drivers. Often, because of the awkward position of such a lever, drivers may not lock the lever in position to maintain a position of a steering column.
There is, therefore, a need in the art for an electrically actuated steering column mechanism that will eliminate the need for a mechanical lever to unlock and lock a steering column.
An electrically actuated steering column system that includes an electrically actuated steering column mechanism. The mechanism is interconnected with a switch that may be toggled by a driver to allow movement of a steering column housing. There is also included appropriate electrical control structure for regulating the electrically actuated steering column mechanism. The electrically actuated steering column system allows a driver to activate the switch and apply a force to initiate movement of the steering column housing and then deactivate the switch to halt movement of the steering column housing.
The electrically actuated steering column mechanism includes a steering column housing, at least one movement bracket attached to the steering column housing, and a support plate associated with the at least one movement bracket. The support plate includes a cam. A rake bolt having first and second ends is positioned to intersect with the at least one movement bracket. There is also included an electrical actuator attached to the rake bolt at the first end allowing movement of the rake bolt to initiate a switching action whereby movement of a steering column housing relative to the driver is initiated and halted.
These and other features and advantages of the present invention will become more readily appreciated when considered in connection with the following detailed description and appended drawings, where:
With reference to
With reference to
As stated above, the first embodiment of the electrically actuated steering column mechanism 10 is designed for use with a rake and telescoping steering column. The at least one movement bracket of the first embodiment preferably comprises a mounting bracket 85 and a rake bracket 90 both of which are attached to the steering column housing 30. The mounting bracket 85 is generally a U-shaped member attached at an underside of the steering column housing. The mounting bracket 85 has slots 95 formed on opposite sides 100. The slots 95 allow the rake bolt 50 to pass through. The electrically actuated steering column mechanism 10 of the first embodiment includes a second rake bracket 92 attached to the steering column housing 30 on an opposite side 94 of the steering column housing 30 relative to a first rake bracket 90 thereby creating a symmetrical orientation. In this manner, the steering column housing 30 can maintain a uniform collapse stroke during a crash.
The electrically actuated steering column mechanism 10, of the first embodiment includes a cam insert 80 disposed about the rake bolt 50 to facilitate increasing or decreasing a compression force to allow for movement of the steering column housing 30 relative to a driver. A more detailed description of the interaction of the rake bolt 50 and cam 45 will be discussed below.
The cam 45 of the support plate 40 may be formed integrally with the support plate 40 or be a piece that is connected with the support plate 40. For example, a bore 105 may be formed within the support plate 40 in which a cam 45 is press fit. The manner of forming the cam 45 in the support plate 40 is not critical and alternative means of forming cams within the support plate 40 can be utilized without departing from the inventive aspect of the mechanism. The support plate 40 also preferably includes a cam guide 110 attached therewith. The cam guide 110 aligns the cam insert 80 with the cam 45 formed in the support plate 40. As can be seen in
The electrically actuated steering column mechanism of the first embodiment also includes an electric actuator 65 that comprises an electric motor assembly 115. The electric motor assembly 115 comprises an electric motor 120, gearing 125 for transferring the rotary motion of the electric motor 120, and a mounting rod 130 for attaching the electric motor assembly 115 to the support plate 40. The gearing 125 associated with the electric motor assembly 115 comprises a partial gear 135 that is meshed with a gear 140 that is connected to the electric motor 120. The first end 55 of the rake bolt 50 is connected to the partial gear 135 for providing movement to the rake bolt 50. A limiting switch 145 is associated with the partial gear 135 to stop rotation of the partial gear 135 corresponding to initiating and halting movement of the steering column housing 30 relative to a driver.
The electric actuator 65, as described in the first embodiment need not be directly attached to the rake bolt 50, as described above. The actuator 65 can be placed at other positions on the steering column housing 30 and the rotary motion transmitted to the rake bolt 50 and the cam insert 80 through a belt and pulley drive, a chain and sprocket drive or a screw rod and crank without departing from the inventive aspect of the mechanism. Also, the cam 45 and cam insert 80 may be replaced by a multiple lead screw rod that may be turned by the electric actuator 65 to clamp the mounting bracket 85 and increase or decrease the compression force as described above.
In a preferred aspect of the present invention, the rake bolt 50 includes a locking portion 150 circumferentially disposed thereon for interacting with the mounting 85 and rake brackets 90, 92. In a preferred embodiment, two locking portions 150 are disposed about the rake bolt 50 to interact with the symmetrically positioned mounting bracket 85 and rake brackets 90 and 92, as previously described. As stated above, the mounting bracket 85 includes slots 95 formed on opposite sides 100 of the mounting bracket, to allow for passage of the rake bolt 50. The slots, in a preferred aspect, include serrations 79 formed along a bottom edge of the slot such that they engage with teeth 78 formed on the locking portion 150. The rake brackets 90, 92 also include serrations 96 formed on an edge of the slot, again to mesh with the teeth 78 formed on the locking portion 150 during a collision. The teeth 78 formed on the locking portion 150 and the serrations 79, 96 formed on the mounting 85 and rake brackets 90, 92 provide a positive locking feature designed to move the steering column housing 30 in a uniform manner along a collapse stroke, during a collision. The first end 55 of the rake bolt 50 may include a shaped portion 155 that mates with the electric motor assembly 115. The shaped portion 155 can be square, keyed, any other shape that is designed to mesh with the partial gear 135 of the electric motor assembly 115.
As another aspect of the first embodiment of the electrically actuated steering column mechanism 10 of the present invention, there may be included a spring 165 associated with the support plate 40 that allows for movement of the electric motor assembly 115 corresponding to movement of the steering column housing 30. In this manner, the electric motor assembly 115 is allowed to move relative to the steering column housing 30 while maintaining a connection with the rake bolt 50. The spring 165 is attached at a first end with the support plate 40 and at a second end to the electric motor assembly 115.
In another aspect of the first embodiment of the present invention, a positioning spring 70 may be disposed between the mounting bracket 85 and the steering column housing 30 for applying a constant biasing force that returns the steering column housing 30 to an initial position 75 when a force is not applied by the driver to move the steering column housing 30. In this manner, when the electrically actuated steering column mechanism is initiated to allow movement of the steering column housing 30, the default position of fully telescoped in the most upward rake position will allow a driver to exit a vehicle without having to apply a force to the steering column housing 30.
As described above with reference to the electrically actuated steering column system 5, a door switch, as opposed to the switch 15, may be included in a driver door such that when a vehicle is shutoff and the driver opens a door to exit, the electrically actuated steering column mechanism 10 is initiated to allow movement of the steering column housing 30. The positioning spring 70 then applies a force to the rake bracket returning the steering column housing 30 to an initial position 75, as detailed above.
In use, as the switch 15 of the electrically actuated steering column system 5 is depressed by a driver, the electrically actuated steering column mechanism 10 allows movement of a steering column housing 30 relative to the driver. Electrical control structure 20 regulates the electrically actuated steering column mechanism 10 to initiate and halt movement of the steering column housing 30.
Specifically, when the switch 15 is depressed by a diver, the electric motor 120 of the electric motor assembly 115 turns a gear 140 that is meshed with a partial gear 135. The first end 55 of the rake bolt 50 is connected with the partial gear 135 such that the rake bolt 50 is turned in a rotary manner. The cam insert 80 disposed about the rake bolt 50 engages the cam 45 of the support plate 40 such that the compression force placed on the electrically actuated steering column mechanism 10 is decreased to allow movement of the steering column housing 30 relative to the driver. In other words, depressing the switch 15 moves the components that cooperate to frictionally lock the column mechanism 10 against adjustment to an “unlocked” position by releasing the frictional bonding force applied to the column mechanism 10. The control structure deactivates the electric motor 120 once rotation of the rake bolt 50 has sufficiently reduced the compression force to allow movement of the steering column housing 30. When the switch 15 is released by the driver, the control structure 20 again initiates the electric motor 120 turning the rake bolt 50 in an opposite direction to again apply a compression force to the electrically actuated steering column mechanism 10 such that movement of the steering column housing 30 relative to a driver is halted. In other words, releasing the switch 15 moves the frictional locking device back to its locked position to prevent adjustment of the column mechanism 10. In this manner, a driver can simply depress a switch 15 to unlock the column for adjustment and release the switch 15 to restore the column 10 to a locked condition, thereby allowing slideable movement of the steering column housing 30 without the use of a lever as is commonly utilized in the art.
With reference to
While preferred embodiments are disclosed, a worker in this art would understand that various modifications were to come within the scope of the invention. Thus, the following claims should be studied to determine the scope and content of this invention.
Number | Name | Date | Kind |
---|---|---|---|
3978740 | Selzer | Sep 1976 | A |
4244236 | Sylvester | Jan 1981 | A |
4449419 | Soler Bruguera | May 1984 | A |
4656888 | Schmitz | Apr 1987 | A |
4752085 | Yamamoto | Jun 1988 | A |
5029489 | Burmeister et al. | Jul 1991 | A |
5035446 | Arvidsson | Jul 1991 | A |
5259264 | Bodin et al. | Nov 1993 | A |
5449199 | Heinrichs et al. | Sep 1995 | A |
5485376 | Oike et al. | Jan 1996 | A |
5520416 | Singer, III et al. | May 1996 | A |
5524927 | Toussaint | Jun 1996 | A |
5562306 | Rispeter | Oct 1996 | A |
5606891 | Tisell et al. | Mar 1997 | A |
5722299 | Yamamoto et al. | Mar 1998 | A |
5787759 | Olgren | Aug 1998 | A |
5820163 | Thacker et al. | Oct 1998 | A |
5829311 | Roberson | Nov 1998 | A |
6068295 | Skabrond et al. | May 2000 | A |
6139057 | Olgren et al. | Oct 2000 | A |
6189405 | Yazane | Feb 2001 | B1 |
6237438 | Ben Rhouma et al. | May 2001 | B1 |
6390505 | Wilson | May 2002 | B1 |
6419269 | Manwaring et al. | Jul 2002 | B1 |
6616185 | Manwaring et al. | Sep 2003 | B2 |
6659504 | Riefe | Dec 2003 | B2 |
6666478 | Livengood | Dec 2003 | B2 |
6695349 | Bohlen et al. | Feb 2004 | B2 |
6748774 | Dubay et al. | Jun 2004 | B2 |
6761376 | Riefe et al. | Jul 2004 | B2 |
Number | Date | Country |
---|---|---|
03 272528 | Dec 1991 | JP |
Number | Date | Country | |
---|---|---|---|
20040000779 A1 | Jan 2004 | US |