The invention relates to an electrically-conducting contact element and wiring assemblies and electrical connection systems that employ the contact element.
Electrical contacts, or terminals are commonly attached to wire cables by employing a crimp to form a crimp connection. In one such electrical application, a barrel-type terminal is utilized that attaches with an aluminum wire cable. The barrel-type terminal includes a portion defining a hole that receives the wire cable. While typically manufactured in a screw machine, the inner portion of the barrel-type terminal has a smooth internal surface. When the portion of the barrel-type terminal is crimped to an aluminum wire cable, the inner smooth surface of the barrel-type terminal may not engage the aluminum wire cable in a manner that allows breakage of oxides disposed on a lead of the wire cable so that a robust, reliable electrical connection of the aluminum wire cable to the barrel-type terminal is attained. Undesired high resistance crimp connections using these smooth surfaces may result that negatively affect the electrical performance of these crimp connections while a mechanical pull force of the wire cable from the terminal may be undesirably decreased.
What is needed is an electrical contact element that overcomes the foregoing shortcomings while allowing robust attachment of the aluminum wire cable to the terminal.
In accordance with one embodiment of the invention, an electrically-conducting contact element includes a section of the contact element defining an aperture. The section is configured to receive a wire cable in the aperture for attachment thereto. The section further including an internal surface defining at least one groove having sharp edges formed therein.
A method is also presented to construct an electrically-conducting contact element. One step in the method is providing the electrically-conducting contact element that has a section defining an aperture. The section is configured to receive a wire cable in the aperture for attachment thereto. The section further includes an internal surface. Another step in the method is forming at least one groove on the internal surface of the section.
A wire assembly and a vehicular electrical wiring harness that respectively include the electrically-conducting contact element are also presented.
Further features, uses and advantages of the invention will appear more clearly on a reading of the following detailed description of the embodiments of the invention, which is given by way of non-limiting example only and with reference to the accompanying drawings.
This invention will be further described with reference to the accompanying drawings in which:
Electrical wire harnesses may connect one electrical component with another electrical component in an electrical application such as may be found in the motorized vehicle transportation industry. One such wire harness may electrically connect an energy source to a load in an electric or hybrid-electric vehicle. The wire harness may include one or more wire assemblies that may be part of electrical connection system that is associated with the vehicle that electrically connect electrical devices together. Especially when aluminum wire cable is employed, constructing a wire assembly that also assists to break up oxides on a lead of the aluminum wire cable when the wire assembly is constructed is advantageously desired to ensure robust electrical connections.
Referring to
Referring to
Turning now to
Referring to
Referring to
Preferably, material from internal surface 120 of terminal 110 is generally removed prior to wire assembly 106 being constructed. In another embodiment, the terminal with a smooth internal surface may be initially constructed and the helical screw-thread type groove defined therein using a simple tap. In another embodiment, the helical groove may be manufactured when the terminal is constructed. Since groove 122 is formed or cut out of internal surface 120 of tubular section 116, sharp edges are also formed adjacent internal surface 120 along groove 122. When tubular section 116 is crimped to lead 113 of wire cable 102, inner core 112 engages these sharp edges which advantageously assist to scrape and break up oxides formed on lead 113 of wire cable 102. The material of lead 113 also flows during the crimping process, by being deformed and extruded into the helical groove 122, when the crimp connection is formed. The additional surface area formed by the helical groove by which the individual wire strands of the lead may interlockingly fill during formation of the crimp connection may further enhance the electrical performance at the lead to terminal interface. It has been observed that the helical groove allows the resistance of the crimp connection between the wire cable and the contact element to be less than that of an electrical contact that has a smooth internal surface that does not include the helical groove. Thus, the helical groove advantageously provides for an improved low resistance electrical crimp connection of the wire cable and electrical contact. It has also been observed that this improved, low resistance electrical connection may advantageously be more consistently manufactured. Yet another observation is that the helical groove may provide a stronger mechanical strength at the crimp connection than when using an electrical contact having a smooth internal surface as previously described in the Background of the Invention. The increased mechanical strength is especially prevalent on crimp connections that employ smaller sized wire cables. Wire assemblies 106a-c each have similar features and are constructed in a similar manner.
Terminal 110 is not in use when wire cable 102 has not been received in terminal 110.
Terminal 110 is in use when lead 113 of wire cable 102 is received in terminal 110 and wire cable 102 is crimped to terminal 110. Once crimped to terminal 110, an electrical signal carried on wire cable 102 also electrically transmits on terminal 110.
Referring to
Referring to
Alternately, the terminal may be plated with an electrically-enhancing plating material after the grove is formed in the terminal.
In another alternate embodiment, a plated terminal may have the groove formed in or through the plated material to a copper under layer of the terminal. In still yet another embodiment, a plated terminal may be subsequently re-plated after the construction of the groove.
Still yet alternately, the groove may be a raised groove that protrudes away from the internal surface of the tubular section.
Alternately, the terminal may have a shape that further extends away from the axis. For example, the terminal may include a right-angle bend. The tubular section may be disposed on one part of the right-angle bend and a ring-shaped tongue may be disposed on the other part of the right-angle bend.
In still other alternate embodiments, any groove shape may be defined in the internal surface. In a further alternate embodiment, the groove shape takes the form of a right-hand helical groove in combination with a left-hand helical groove disposed in the internal surface.
Still yet alternately, a through-hole may be drilled in the crimp barrel section in communication with the opening so that ease of plating the terminal is facilitated.
Thus, a robust electrical contact that attaches to a wire cable that breaks up oxides on a lead of an aluminum wire cable while decreasing the resistance and increasing the mechanical strength of the connection of the wire cable and the electrical contact. The mechanical and electrical connection between the wire cable and the electrical contact is easily attached to each other by crimping as is conventionally done in the wire connector arts. Aluminum or copper wire cables may be easily crimped to the terminal. The helical groove and the burrs at the edges of the helical groove assist to break up oxides on the wire cable, decrease the resistance of the wire cable/terminal connection and increase the mechanical strength of the crimp connection. A variety of grooves other than the helical groove may be employed in the internal surface of the electrical contact and still be within the spirit and scope of the invention. The groove is easily defined in an internal surface of the section of the electrical contact by milling, rifling, machining, and cutting using tools or machines that are known in the wiring or electrical contact art. The electrical contact with the helical groove is easily plated dependent on the application of use. The section of the electrical contact that includes the helical groove may be formed with or without a seam.
While this invention has been described in terms of the preferred embodiment thereof, it is not intended to be so limited, but rather only to the extent set forth in the claims that follow.
It will be readily understood by those persons skilled in the art that the present invention is susceptible of broad utility and application. Many embodiments and adaptations of the present invention other than those described above, as well as many variations, modifications and equivalent grooves, will be apparent from or reasonably suggested by the present invention and the foregoing description, without departing from the substance or scope of the present invention. Accordingly, while the present invention has been described herein in detail in relation to its preferred embodiment, it is to be understood that this disclosure is only illustrative and exemplary of the present invention and is made merely for purposes of providing a full and enabling disclosure of the invention. The foregoing disclosure is not intended or to be construed to limit the present invention or otherwise to exclude any such other embodiments, adaptations, variations, modifications and equivalent grooves, the present invention being limited only by the following claims and the equivalents thereof.
This application claims priority to provisional application U.S. Ser. No. 61/524,557 filed on Aug. 17, 2011.
Number | Name | Date | Kind |
---|---|---|---|
2008227 | Reilly | Jul 1935 | A |
2320543 | Doughty | Jun 1943 | A |
3852850 | Filhaber | Dec 1974 | A |
5369849 | De France | Dec 1994 | A |
6899571 | Koch et al. | May 2005 | B1 |
7393214 | DiStefano | Jul 2008 | B2 |
7597596 | Watanabe | Oct 2009 | B2 |
7666012 | Hughes et al. | Feb 2010 | B2 |
7837476 | DiStefano | Nov 2010 | B2 |
7862354 | Hughes et al. | Jan 2011 | B2 |
8052492 | Drew et al. | Nov 2011 | B2 |
Number | Date | Country | |
---|---|---|---|
20130045610 A1 | Feb 2013 | US |
Number | Date | Country | |
---|---|---|---|
61524557 | Aug 2011 | US |