1. Field of the Invention
In general, the invention relates to conductive ball joints, and to lamps and other structures using the conductive ball joints.
2. Description of Related Art
Ball joints are used to join two structures while allowing one to move with respect to another in multiple planes. A typical ball joint comprises a spherical or hemispherical “ball” mounted on the end of a first structure and a complementary socket on a second structure. The ball is received in and permitted to move within the socket, allowing the two structures to move relative to one another with up to three degrees of freedom.
Ball joints are common in many different types of machines, ranging from automobiles to lighting fixtures, and have been implemented in many different sizes, with different materials, and with different load-carrying capacities. In some cases, a ball joint simply provides mechanical connection and load transmission between and through the structures that it connects.
In many cases, it is necessary to transmit some form of electricity or electrical signal past or through the ball joint. Typically, this is done by creating a hole or bore through the ball of the ball joint and inserting wires through the hole or bore to carry the signal. Wires can also be routed around the joint in some cases. While common, these types of solutions can be problematic. For example, the presence of the wires can restrict the range of motion of the ball joint, and continued motion can strain or wear the insulation on the wires, raising the possibility of electrical short.
U.S. Pat. No. 7,061,169 to Fung purports to disclose a solution to this problem: an electrically conductive ball, split into two equally-sized, electrically isolated conductive halves by an insulator, to carry both voltage and ground. The socket in which the conductive ball rests is similarly electrically conductive. However, the Fung conductive ball joint is problematic, as it appears that the circuit will short out as the ball moves through its full range of motion.
Effective, reliable means for transmitting electricity and electrical signals past or through ball joints would be particularly useful for lighting fixtures and other products which are frequently repositioned, and in which a relatively large range of motion is desirable.
One aspect of the invention relates to an electrically conductive ball joint that can be used to join two members structurally and electrically. The ball of the ball joint is divided into two portions, with one portion generally being larger than the other. Each portion is adapted to carry a different electrical signal (e.g., voltage or ground), and the two portions are electrically isolated from one another by a nonconductive ball bushing interposed between them. The socket has a nonconductive socket bushing that receives the assembled ball and allows it to move. The socket bushing has one or more first contacts and one or more second contacts which are arranged to contact the first ball portion and the second ball portion, respectively. In this way, power or other electrical signals can be transferred across the electrically conductive ball joint without passing wires across, through, or around the joint. In fact, in some embodiments, the first and second members that are joined by the ball joint may be used as electrical conductors to conduct one of the two electrical signals themselves.
In some embodiments, the contacts extending from the socket bushing may be electrically conductive contact pins that are arranged in appropriate locations extending through openings or holes in the socket bushing to contact the appropriate, corresponding portions of the ball. These contact pins may be contoured and resiliently biased to remain in contact with the ball and to move across its surface as the ball moves relative to the socket bushing. In other embodiments, the contacts may be wires or blades provided on a common, resilient carrier set into a recess in the socket bushing. In these embodiments, the common carrier resiliently biases the contacts toward contact with the ball.
Another aspect of the invention relates to lighting fixtures. The lighting fixtures generally have a base, a first arm connected to the base, and a second arm connected to the first arm structurally and electrically using the electrically conductive ball joints described above. A lamp is coupled to the end of the second arm, and may be coupled to the second arm with another conductive ball joint. A counterweight is provided on the second arm adjacent to the electrically conductive ball joint to reduce net torques on the ball joint and assist in positioning the lighting fixture. The lamp may be a light-emitting diode (LED) or a group of LEDs. In some embodiments, a third arm may be coupled between the second arm and the lamp using additional conductive ball joints, for a total of three electrically conductive ball joints. If a third arm is provided, a second counterweight may be provided on the end of the third arm proximate to the ball joint that attaches it to the second arm.
These and other aspects, features, and advantages of the invention will be set forth in the description that follows.
The invention will be described with respect to the following drawing figures, in which like numerals represent like features throughout the drawings, and in which:
A socket bushing 24 is sized and adapted to fit within the socket 18. The socket bushing 24 has a complementary set of projecting keying/locking features 26 that mate or engage with the keying/locking features 22 of the socket bushing 24 and prevent the socket bushing 24 from rotating within the socket body 19. In a typical arrangement, the socket body 19 would be made of a metal or plastic, while the socket bushing 24 would be made of an electrical insulator, such as polyethylene, polypropylene, nylon, or polyvinyl chloride (PVC). Since the socket bushing 24 is the component that actually receives and engages the ball 16 and wears against it, it is also advantageous if the material of which it is made can sustain the level of frictional wear expected in the ball joint.
The socket bushing 24 also receives a plurality of electrically conductive contact pins 28 which are inserted into and through corresponding holes 30 in the socket bushing 24. The conductive contact pins 28 serve to maintain electrical contact with the ball 16 as it moves within the socket bushing 24. Conductive wires may be attached to the rear surfaces of the contact pins 28 by soldering, taping, or another means of securement in order to convey voltages and signals from the pins 28 through the second member 14.
The ball 16 is comprised of three major portions: an electrically conductive lower ball portion 32, an electrically conductive upper ball portion 34 and an insulative ball bushing 36 that is seated within a cavity in the lower ball portion 32 and electrically insulates and isolates the lower ball portion 32 from the upper ball portion 34. An electrical contact 40 on the underside of the upper ball portion 34 allows for a connection with a signal wire. As divided by the ball bushing 36, the ball can carry two electrical signals, typically a voltage and a ground, with one portion 32, 34 carrying the voltage and the other portion 32, 34 carrying the ground. This will be described below in more detail.
At the bottom of the lower ball portion 32, an opening 38 and associated cavity allow the ball 16 to be threaded, press-fit, adhered, or otherwise secured to the first member 12. Under the lower ball portion 32, a retaining ring 42 engages the screw threads 20 of the socket body 19 to retain the assembled ball 16 within the socket bushing 24 and the socket bushing 24 within the socket body 19. In some embodiments, the retaining ring 42 may also help to keep the upper contact pin 28 within the area defined by the upper ball portion 34
As can be seen in
The arrangement of the ball bushing 36 within a cavity 44 in the lower ball portion 32 is also shown in
In general, conductive wires may extend within and along the open channels formed in the interiors of the first and second members 12, 14 to bring electrical signals to and from the ball joint 10. Within the ball joint 10 itself, as was described briefly above, conductive wires or other conductive elements from the first member 12 may be attached within the ball 16 to convey electrical signals from the first member 12 to the conductive upper and lower ball portions 32, 34. Wires may also be attached to the contact pins 28 between the socket bushing 24 and the socket body 19 to convey signals from the socket 18 into the second member 14.
However, wires may not be necessary to convey all of the signals. For example, if the first member 12 and the second member 14 are themselves conductive, they may be used to conduct at least one of the signals, thereby reducing the number of wires within the members 12, 14 and the ball joint 10. In this case, one of the signals, typically either voltage or ground, would be carried by the members 12, 14 themselves, and the other signal would be carried by a insulated wire or another conductive element electrically isolated from the first and second members 12, 14. Additionally, as those of skill in the art will understand, exposed areas of the first and second members 12, 14 may be coated, insulated, or otherwise passivated to prevent electrical shorts.
As shown in
The ball joint 100 differs from the ball joint 10 in the manner in which the ball 106 makes electrical contact with the socket 118. Specifically, in the ball joint 100, instead of contact pins 28, a curved resilient contact member 124 is inserted between the ball 106 and the socket bushing 122. The contact member 124 has two sets of contacts 126, 128, one set of contacts 126, 128 positioned proximate to each end of the contact member 124. The contacts 126, 128 themselves are sets of curved wires or blades.
As shown in the sectional view of
In the embodiment of
A retaining ring 136 is installed to retain the ball 106 within the socket body 120. The retaining ring 136 is adapted to be installed using a set screw 138.
Conductive ball joints 10, 100 according to embodiments of the invention may carry any type of voltage or electrical signal, including direct current (DC) and alternating current (AC) voltages or signals. The features of any particular embodiment may depend, at least in part, on the type of current that is being carried, as well as the current and voltage levels.
The embodiments described above may be particularly suitable for low voltage embodiments. In this description, the term “low voltage” may be assumed to have the definition given to it in various industry standards, such as those promulgated by Underwriters' Laboratories (San Jose, Calif., USA), and typically refers to voltages less than about 50V, depending on current levels. In these types of low voltage embodiments, the two members 12, 14, 102, 104 can be used as conductors, if desired, and the ball 16, 106 may be arranged such that it is at least partially exposed, contributing to the aesthetic appearance of the device. Moreover, the ball 16, 106 may be made of a material such as nickel-plated aluminum or chrome-plated steel in order to improve its aesthetic appearance. The ball 16, 106 may also be made of a nonconductive material if it is coated or otherwise provided with a suitable conductive material on its surfaces.
In higher voltage embodiments, it may be advantageous to use dedicated wires or conductors, rather than using the members 12, 14, 102, 104 as conductors. Additionally, it may be advantageous to minimize the degree to which the ball 16, 106 is exposed, for example, by covering any portions that would be exposed with an insulated boot or covering.
The electrically conductive ball joints 10, 100 are particularly suitable for use in lighting fixtures, which are often low voltage, and in which flexibility in positioning can be particularly helpful.
The second arm member 210 can be continuously rotated 360° or more with respect to the first member 206 in the plane orthogonal to the plane of
Additionally, because of the second conductive ball joint 212, the head 214 of the lighting fixture 200 can be rotated continuously with respect to the second arm member 210 in multiple planes, with ranges of motion similar to those afforded by the first conductive ball joint 208.
As can be seen from the first and second electrically conductive ball joints 208, 212, if more than one electrically conductive ball joint is present in a device or fixture, the two joints need not be alike in shape, size, or range of motion. However, except for the outer shape of its socket, the second electrically conductive ball joint 212 generally has the same internal arrangement as the first electrically conductive ball joint 208.
The lighting fixture 200 provides low voltage to power a cluster of light emitting diodes (LEDs) 218. A lens or diffusing layer 220 may diffuse and/or focus the light from the LEDs 218. Typically, a transformer/inverter would be used to supply power at the voltage and current levels necessary for the LEDs 218. In addition to the LEDs 218, a plurality of LEDs may be arrayed in regular spacing around the perimeter of the head 214. In that case, the diffusing layer 220 may be a layer of optically suitable material that acts as an optical waveguide for the light from the LEDs. For example, 102 LEDs may be arrayed around the perimeter of the head 214, and the diffusing layer 220 may be made of a sheet of polycarbonate with suitable optical properties.
In the lighting fixture 300, the two conductive ball joints 308, 312 attached to the arm members 306, 310, 314 are essentially identical. The third conductive ball joint 316, like the conductive ball joint 212, is adapted to connect to the head 318 of the fixture 300. However, the two counterweights 320, 322 are of different sizes and weights, with the counterweight 320 being of a larger size because of the greater torques around the first conductive ball joint 308. The greater number of articulations provides for an even greater range of motion.
As those of skill in the art will understand, the precise number of conductive ball joints 10, 100 in any fixture or device will vary from embodiment to embodiment. In particular, in the lighting fixtures 200, 300 described above, the heads 214, 318 need not be connected via conductive ball joints 212, 316, although it is certainly advantageous to do so. Instead, in some embodiments, the connection may be fixed.
While the invention has been described with respect to certain embodiments, the embodiments are intended to be exemplary, rather than limiting. Modifications and changes may be made within the scope of the invention, which is defined by the claims.
This application claims priority to U.S. Provisional Patent Application No. 61/485,533, filed May 12, 2011. The entire contents of that application are incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61485533 | May 2011 | US |