The invention relates to a downhole electrically controlled release device. The release device is adapted for releasing downhole apparatus such as a conveyance from a downhole tool or a portion of a tool string.
Various devices and methods have been provided in the oilfield service industry for releasing downhole apparatus such as wireline from the conveyance head and tools. Traditionally, such apparatus have relied upon mechanical weakpoints. U.S. Pat. No. 6,431,269, incorporated herein by reference, assigned to Schlumberger Technology Corporation addressed disadvantages and shortcomings of the prior art devices and methods.
Therefore, it is a desire to provide a release device that overcomes deficiencies of the prior art devices. It is a further desire, to provide a release device that provides additional benefits.
An embodiment of the present invention provide a device for releasably connecting downhole apparatus. The device comprises a housing; a latch mounted at one end of the housing having a central opening and a plurality of projecting members extending into the housing; an actuator having a first end disposed in the central opening; and a shape memory alloy member functionally connected to the actuator in a manner such that the actuator is held in a first position prior to activation of the shape memory alloy member and the actuator is moveable to a second position after the shape memory alloy member is activated. The latch is held in connection with the housing by an interference fit between the projecting members and the housing when the actuator is in the first position. The latch is disengaged from the housing when the actuator is in the second position.
Another embodiment of the present invention provides a device for releasably connecting a wireline to a downhole tool. In this embodiment, the device comprises a housing; a latch mounted at one end of the housing, the latch having a central opening and a plurality of projecting members extending into the housing; an actuator having a first end disposed in the central opening; and a shape memory alloy member positioned in parallel with the load path of the actuator and functionally connected to the actuator in a manner such that the actuator is held in a first position prior to activation of the shape memory alloy member and the actuator is moveable to a second position after the shape memory alloy member is activated. The projecting members have inner surfaces for engagement of an outer surface of the actuator, the inner surfaces of the projecting members and the outer surface of the actuator being substantially parallel to one another and the longitudinal axis of the actuator. The latch is held in connection with the housing by an interference fit between the projecting members and the housing when the actuator is in the first position, and wherein the latch is disengaged from the housing when the actuator is in the second position.
Another embodiment of the present invention provides a device for releasably connecting a conveyance to a downhole tool. In this embodiment, the device comprises a housing; a latch mounted at one end of the housing, the latch having a central opening and a plurality of projecting members extending into the housing; an actuator having a first end disposed in the central opening; and a releasable connector functionally connected to the actuator in a manner such that the actuator is held in a first position prior to activation of the releasable connector and the actuator is moveable to a second position after the releasable connector is activated. The projecting members have inner surfaces for engagement of an outer surface of the actuator, the inner surfaces of the projecting members and the outer surface of the actuator being substantially parallel to one another and the longitudinal axis of the actuator. The latch is held in connection with the housing by an interference fit between the projecting members and the housing when the actuator is in the first position, and wherein the latch is disengaged from the housing when the actuator is in the second position.
The foregoing has outlined the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention.
The foregoing and other features and aspects of the present invention will be best understood with reference to the following detailed description of a specific embodiment of the invention, when read in conjunction with the accompanying drawings, wherein:
Refer now to the drawings wherein depicted elements are not necessarily shown to scale and wherein like or similar elements are designated by the same reference numeral through the several views.
As used herein, the terms “up” and “down”; “upper” and “lower”; and other like terms indicating relative positions to a given point or element are utilized to more clearly describe some elements of the embodiments of the invention. Commonly, these terms relate to a reference point as the surface from which drilling operations are initiated as being the top point and the total depth of the well being the lowest point.
The present invention provides an electrically controlled release device. It should be understood that the release device is equally applicable to releasing a conveyance from a downhole tool as it is to releasing a part of a tool string from the remainder of the tool string. However, for purposes of illustrating the principles of the release device, the release device will primarily be described as releasing a conveyance from a downhole tool.
The electrically controlled release device has two modes of operation. In the first mode of operation, the electrically controlled release device transmits the tension applied to the conveyance head (or tool head) by a conveyance to the downhole tools coupled to the conveyance head without releasing the conveyance from the conveyance head. In the second mode of operation, the electrically controlled device releases the conveyance from the conveyance head when a low tension is applied to the conveyance head. The electrically controlled release device can be activated to release the wireline cable regardless of the tensile load it is transmitting.
A latch 14 is mounted on upper housing body 4. Latch 14 has a latching head 16 and fingers 18 which extend from latching head 16. Fingers 18 extend into central opening 10 of upper housing body 4. Fingers 18 have wedge-shaped surfaces 20 which are adapted to engage with a wedge-shaped surface 22 in the inner wall of the upper housing body 4. An O-ring 24 provides a seal between latching head 16 and upper housing body 4.
An actuator 26 is disposed within a central opening 28 in latch 14. A lower portion 30 of actuator 26 extends through upper housing body 4 into the central chamber 12 of lower housing body 6. Actuator 26 has an outer surface 100 substantially parallel to the longitudinal axis of actuator 26. Actuator surface 100 is adapted for engagement with the inner surface 102 of fingers 18. Inner finger surfaces 102 are substantially parallel to the longitudinal axis of actuator 26 and actuator outer surface 100. Co-owned U.S. Pat. No. 6,431,269 incorporated by reference herein, teaches that if surface 100 was parallel to the axis of release device 2 the frictional forces would prevent actuator 26 from moving when release device 2 was transmitting tension. The present invention teaches that actuator surface 100 being substantially parallel to the axis of release device 2 provides benefits and addresses disadvantages recognized in the prior release technology.
A first benefit of the inventive parallel actuator surface 100 and finger surfaces 102 is that the assembly of release device 2 is facilitated because the elements may be moved relative to each other to allow for tolerance. In the prior art invention, more precise control during assembly was required to ensure that loads would not be inadvertently translated to releasable connector 36. An additional benefit is that the release device of the present invention provides a safety feature to prevent accidental release of the carried tool at the surface. In the present invention release device 2 tends to self-lock when tension is applied to it. The weight of the tool string, when hanging in the derrick, creates sufficient tension to keep actuator 26 from moving even if release device 2 has been triggered to release. When release device 2 is lowered into the wellbore, the well pressure acts on latch 14 as a result of the pressure differential between the latch and the housing forcing the latch back into the housing, relieving any tension that may be present. In effect, the surface safety release is turned off when release device 2 is lowered in the wellbore.
Release device 2 includes a releasable connector 36 in functional connection with actuator 26 for triggering the device from mode 1 operation to mode 2. Releasable connector 36 is illustrated as a split bobbin assembly disposed in central chamber 12 of lower housing body 6. As shown in
Returning to
Release device 2 has two modes of operation. In mode one, the release device transmits tension applied to latch 14 without fingers 18 separating from upper housing body 4. In mode two, fingers 18 can be separated from upper housing body 4 with a small tension applied to latch 14.
In mode one, a tensile load may be applied to latch 14 through surface 55 of latch 14. The tension applied to latch 14 is transmitted to upper housing body 4 through the interference fit of fingers 18 and housing 4 at surfaces 20, 22. The wedging effect of surfaces 20, 22 tends to cause fingers 18 to deflect, causing a compressive force to be applied to actuator 26 at surfaces 100, 102. This compressive force in addition to the force from the pressure differential between the wellbore and the housing maintains actuator 26 against split bobbin assembly 36. This compressive force is reacted by split bobbin assembly 36 and lower housing 6 and thus, latch 14 in connection with upper housing 4. As long as this compressive force is reacted, and actuator 26 remains in the first position, fingers 18 remain in connection with upper housing 4 via the interference fit.
In mode two, fingers 18 can be separated from upper housing body 4 with a small tension applied to latch 14. To switch release device 2 from mode one to mode two, a command is sent to a switching circuit (not shown) to power resistive heater 46 (shown in
Desirably, the seal provided by O-ring seal 35 is broken when bobbin pieces 44 separate and as actuator 26 moves downward. This allows release device 2 to be flooded with wellbore fluid so the pressure is equalized between the interior and the exterior of release device 2. This is necessary because the interior of release device 2 is initially at atmospheric pressure and release device 2 may need to be separated at ambient external pressures as high as 20,000 psi. If release device 2 were not pressure balanced, the pressure forces holding latch 14 and upper housing body 4 would be too great to allow fingers 18 to disengage from upper housing body 4. The flooding of release device 2 also provides additional force for moving actuator 26 downward.
As illustrated, bobbin assembly type releasable connector 36 of
Sleeve assembly 104 includes an expandable sleeve 106, a heater 108 and a releasable stop 110. Sleeve 106 of the present embodiment is a shaped memory alloy (SMA) that when heated elongates. Sleeve 106 is positioned in parallel with biasing mechanism 42 and the load path of actuator 26. Sleeve 106 is positioned between a lip 112 of housing 4 and a shelf 114 extending from actuator 26 in a manner such that when sleeve 106 is heated and elongates it urges actuator 26 downward. A stop 110 is positioned to maintain actuator 26 in a set and non-moving position in mode 1 operation. Releasable stop 110 may be, but is not limited to, a shear pins, a Truarc ring, a rupture disc, or a reusable mechanism such as a collet latch or press fit washer. Heater 108 is positioned in functional connection with sleeve 106. Operation of, and functional connections with, heater 108 are not provided herein as they are well known in the art and addressed in more detail in relation to
In mode 1, fingers 18 are maintained in engagement with housing 4 by actuator 26 which is held in place by attachment of latch 14 to housing 4 and releasable stop 110. To release, heater 108 is activated heating sleeve 106 which elongates. The elongation of sleeve 106 results in breaking or separating releasable stop 110 releasing actuator 26 for movement. Biasing mechanism 42 will urge actuator 26 downward releasing fingers 18 from engagement with house 4. The movement of actuator 26 breaks seal 35 equalizing the pressure inside and out of release device 2 facilitating the removal of latch 14 from housing 4.
From the foregoing detailed description of specific embodiments of the invention, it should be apparent that an electrically controlled release device that is novel and unobvious has been disclosed. Although specific embodiments of the invention have been disclosed herein in some detail, this has been done solely for the purposes of describing various features and aspects of the invention, and is not intended to be limiting with respect to the scope of the invention. It is contemplated that various substitutions, alterations, and/or modifications, including but not limited to those implementation variations which may have been suggested herein, may be made to the disclosed embodiments without departing from the spirit and scope of the invention as defined by the appended claims which follow.