Various example embodiments generally relate to sound posts for musical instruments and, more specifically but not exclusively, to sound posts for stringed musical instruments.
This section introduces aspects that may help facilitate a better understanding of the disclosure. Accordingly, the statements of this section are to be read in this light and are not to be understood as admissions about what is in the prior art or what is not in the prior art.
Many types of stringed musical instruments, such as the violin, the viola, the violoncello, the double bass, and others use a “bridge” that connects the strings to an upper wall of the instrument's sound box. The bridge transfers acoustic vibrations from the strings to the upper wall of the sound box. Further, such instruments may use a “sound post” within the instrument's sound box to connect an upper wall of the instrument's sound box with a lower wall of the instrument's sound box. The sound post transfers acoustic vibrations from the upper wall to the lower wall.
Length and position of the sound post are of material importance to the sound quality of an instrument, as both parameters impact the mechanical pressure that the upper wall of the instrument exerts onto the lower wall, thus changing the instrument body's acoustic resonance properties. For centuries, luthiers have used cylindrical wooden sticks as sound posts and have adjusted their lengths, the angles at which they are cut, and their placement within the sound box, in an effort to fine-tune the tone quality of the instrument.
Changing humidity levels may necessitate frequent sound post adjustments. These are typically made in relatively lengthy adjustment sessions involving the musician and the luthier, based on subjective sound quality assessments with limited reproducibility.
Since the 1930s, certain mechanically adjustable sound post assemblies have been disclosed, comprising manually adjustable components that allow to vary the total length of the sound post assembly by adding or removing mechanical spacers or by manually adjusting lead screws using relatively complicated wrench tools. In addition to their length adjustability, ball-and-socket-based swivel arrangements at one or both ends of the sound post assemblies have been introduced to adapt the sound post ends to the local curvature of the sound box's upper and lower walls [see, e.g., U.S. Pat. Nos. 2,145,237; 2,162,595; 5,208,408; 9,940,911; and U.S. Patent Application Publication No. 2017/0249927, all of which are incorporated herein by reference in their entirety]. Some of these sound post assemblies may allow for fine-tuning of the sound post's position and length, but still involve rather intricate manual adjustments by the luthier based on subjective sound quality assessments by the luthier and musician.
Disclosed herein are various embodiments of electrically enabled sound post assemblies, and in particular of electrically enabled sound post assemblies used in stringed musical instruments, aiming both at:
(i) static and/or quasi-static electrical sensor functions (e.g., electrically measuring and monitoring certain parameters, such as the static or quasi-static mechanical pressure (or the static or quasi-static mechanical force) exerted by the sound post on upper and lower walls of the instrument's sound box, the humidity level, and/or the temperature), and
(ii) electrical actuator functions (e.g., adjusting the static or quasi-static mechanical pressure (or the static or quasi-static mechanical force) exerted by the sound post on the upper and lower walls of the instrument's sound box through piezo-electric or electro-magnetic motor arrangements).
In some embodiments disclosed herein, sensing and actuation functions can be performed:
(i) in open-loop operation, e.g., by reading or measuring the static or quasi-static mechanical pressure (or the static or quasi-static mechanical force) exerted by the sound post on the upper and lower walls of the instrument's sound box from a static or quasi-static electrical pressure and/or force sensor, and adjusting the static or quasi-static mechanical pressure (or the static or quasi-static mechanical force) exerted by the sound post on the upper and lower walls of the instrument's sound box through an electrical actuator of the sound post assembly, e.g., via a user-operated control unit, a computer-controlled program, or a smart phone application, and/or
(ii) in closed-loop operation, e.g., by letting the sound post assembly automatically adjust the static or quasi-static mechanical pressure (or the static or quasi-static mechanical force) exerted by the sound post on the upper and lower walls of the instrument's sound box via an electrical actuator of the sound post assembly, based on readings from a static or quasi-static electrical pressure and/or force sensor of the sound post assembly, either continuously or in regular or irregular time intervals.
According to one example embodiment, provided is a stringed musical instrument comprising a sound box having an inner cavity bounded by an upper wall and a lower wall thereof; a sound-post assembly having ends thereof connecting, directly or indirectly, the upper and lower walls in the inner cavity, the sound post assembly including two or more mechanical components movable with respect to one another to change an end-to-end length of the sound-post assembly; and wherein the sound-post assembly comprises a static or quasi-static force sensor.
In some embodiments of the above stringed instrument, the static or quasi-static force sensor comprises a piezoresistive material.
In some embodiments of any of the above stringed instruments, the piezoresistive material is sandwiched between first and second electrodes electrically connectable to an electrical circuit.
In some embodiments of any of the above stringed instruments, the static or quasi-static force sensor is a static force sensor.
In some embodiments of any of the above stringed instruments, the static or quasi-static force sensor is a quasi-static force sensor.
In some embodiments of any of the above stringed instruments, the static or quasi-static force sensor is configured to function as a static or quasi-static pressure sensor.
In some embodiments of any of the above stringed instruments, the static or quasi-static force sensor is electrically connectable to an external electrical circuit.
In some embodiments of any of the above stringed instruments, the static or quasi-static force sensor is configured to change one or more of: an electrical resistance thereof; an electrical capacitance thereof; an electrical inductance thereof, in response to a mechanical force applied thereto.
In some embodiments of any of the above stringed instruments, the static or quasi-static force sensor is sensitive to a varying force characterized by a frequency smaller than 15 Hz.
In some embodiments of any of the above stringed instruments, the static or quasi-static force sensor is sensitive to a varying force characterized by a frequency smaller than 1 Hz.
In some embodiments of any of the above stringed instruments, the sound-post assembly further comprises an electrical actuator connectable to an electrical circuit and configured to change the end-to-end length of the sound post assembly.
In some embodiments of any of the above stringed instruments, the electrical actuator comprises a piezoelectric material.
In some embodiments of any of the above stringed instruments, the electrical actuator comprises an electro-magnetic motor connected to a lead screw arrangement.
In some embodiments of any of the above stringed instruments, the two or more mechanical components are mechanically engaged using a key-and-slot arrangement or a pin-and-hole arrangement to restrict relative rotational motion thereof.
In some embodiments of any of the above stringed instruments, the sound-post assembly further comprises a mechanism to break a flow of electrical power to the electrical actuator in response to the sound-post assembly reaching or exceeding a pre-determined length.
In some embodiments of any of the above stringed instruments, the pre-determined length is adjustable.
In some embodiments of any of the above stringed instruments, the mechanism comprises a contact rod mounted on a first of the two or more mechanical components and a sleeve mounted on a second of the two or more mechanical components.
In some embodiments of any of the above stringed instruments, the contact rod comprises elastic end faces.
In some embodiments of any of the above stringed instruments, the sleeve is longitudinally movable on the second mechanical component.
In some embodiments of any of the above stringed instruments, longitudinal movement is accomplished by a thread connecting the sleeve with the second mechanical component.
In some embodiments of any of the above stringed instruments, the string instrument further comprises a wall-mounted electrical connector connected by electrical wires to the static or quasi-static force sensor.
In some embodiments of any of the above stringed instruments, the wall-mounted electrical connector comprises a static magnet.
In some embodiments of any of the above stringed instruments, the wall-mounted electrical connector comprises a static magnet placed on an outer surface of the sound box.
In some embodiments of any of the above stringed instruments, the electrical wires are loosely coiled around an elastic mechanical element.
In some embodiments of any of the above stringed instruments, the length of the elastic mechanical element is extendable by at least 10%.
In some embodiments of any of the above stringed instruments, the length of the elastic mechanical element is extendable by at least 25%.
In some embodiments of any of the above stringed instruments, the two or more mechanical components include a swivel end cap including a swivel mechanism formed by a ball-and-socket arrangement; and wherein a center of a spherically shaped cavity of the socket is located below a rim of the swivel end cap by at least 10% of a sphere's radius corresponding to the spherically shaped cavity.
According to another example embodiment, provided is a sound-post assembly for a stringed musical instrument, the sound-post assembly comprising: two or more mechanical components movable with respect to one another to change an end-to-end length of the sound-post assembly; and a static or quasi-static force sensor; and wherein ends of the sound-post assembly are configured to connect upper and lower walls of an inner cavity of a sound box of the stringed musical instrument.
In some embodiments of the above sound post assembly, the static or quasi-static force sensor comprises a piezoresistive material.
In some embodiments of any of the above sound post assembly, the piezoresistive material is sandwiched between first and second electrodes electrically connectable to an electrical circuit.
In some embodiments of any of the above sound post assembly, the static or quasi-static force sensor is a static force sensor.
In some embodiments of any of the above sound post assembly, the static or quasi-static force sensor is a quasi-static force sensor.
In some embodiments of any of the above sound post assembly, the static or quasi-static force sensor is configured to function as a static or quasi-static pressure sensor.
In some embodiments of any of the above sound post assembly, the static or quasi-static force sensor is electrically connectable to an external electrical circuit.
In some embodiments of any of the above sound post assembly, the static or quasi-static force sensor is configured to change one or more of: an electrical resistance thereof; an electrical capacitance thereof; an electrical inductance thereof, in response to a mechanical force applied thereto.
In some embodiments of any of the above sound post assembly, the static or quasi-static force sensor is sensitive to a varying force characterized by a frequency smaller than 15 Hz.
In some embodiments of any of the above sound post assembly, the static or quasi-static force sensor is sensitive to a varying force characterized by a frequency smaller than 1 Hz.
In some embodiments of any of the above sound post assembly, the sound post assembly further comprises an electrical actuator connectable to an electrical circuit and configured to change the end-to-end length of the sound post assembly.
In some embodiments of any of the above sound post assembly, the electrical actuator comprises a piezoelectric material.
In some embodiments of any of the above sound post assembly, the electrical actuator comprises an electro-magnetic motor connected to a lead screw arrangement.
In some embodiments of any of the above sound post assembly, the two or more mechanical components are mechanically engaged using a key-and-slot arrangement or a pin-and-hole arrangement to restrict relative rotational motion thereof.
In some embodiments of any of the above sound post assembly, the sound post assembly further comprises a mechanism to break a flow of electrical power to the electrical actuator in response to the sound-post assembly reaching or exceeding a pre-determined length.
In some embodiments of any of the above sound post assembly, the pre-determined length is adjustable.
In some embodiments of any of the above sound post assembly, the mechanism comprises a contact rod mounted on a first of the two or more mechanical components and a sleeve mounted on a second of the two or more mechanical components.
In some embodiments of any of the above sound post assembly, the contact rod comprises elastic end faces.
In some embodiments of any of the above sound post assembly, the sleeve is longitudinally movable on the second mechanical component.
In some embodiments of any of the above sound post assembly, longitudinal movement is accomplished by a thread connecting the sleeve with the second mechanical component.
In some embodiments of any of the above sound post assembly, the sound post assembly further comprises a wall-mounted electrical connector connected by electrical wires to the static or quasi-static force sensor.
In some embodiments of any of the above sound post assembly, the wall-mounted electrical connector comprises a static magnet.
In some embodiments of any of the above sound post assembly, the wall-mounted electrical connector comprises a static magnet placed on an outer surface of the sound box.
In some embodiments of any of the above sound post assembly, the electrical wires are loosely coiled around an elastic mechanical element.
In some embodiments of any of the above sound post assembly, the length of the elastic mechanical element is extendable by at least 10%.
In some embodiments of any of the above sound post assembly, the length of the elastic mechanical element is extendable by at least 25%.
In some embodiments of any of the above sound post assembly, the two or more mechanical components include a swivel end cap including a swivel mechanism formed by a ball-and-socket arrangement; and wherein a center of a spherically shaped cavity of the socket is located below a rim of the swivel end cap by at least 10% of a sphere's radius corresponding to the spherically shaped cavity.
According to yet another example embodiment, provided is an apparatus, comprising: a sound-post assembly for a stringed musical instrument; and a control unit to electrically interface to one or more functions of the sound-post assembly; wherein the sound-post assembly comprises: two or more mechanical components movable with respect to one another to change an end-to-end length of the sound-post assembly; and a static or quasi-static force sensor; wherein ends of the sound-post assembly are configured to connect, directly or indirectly, upper and lower walls of an inner cavity of a sound box of the stringed musical instrument; and wherein the static or quasi-static force sensor is electrically connectable to the control unit.
In some embodiments of the above apparatus, the control unit is configured to read sensor data from the static or quasi-static force sensor.
In some embodiments of any of the above apparatus, the control unit is configured to filter the sensor data using a low-pass cut-off frequency smaller than 15 Hz.
In some embodiments of any of the above apparatus, the control unit is configured to filter the sensor data using a low-pass cut-off frequency smaller than 1 Hz.
In some embodiments of any of the above apparatus, the apparatus further includes an electrical actuator configured to change the end-to-end length of the sound-post assembly; and wherein the control unit is configured to apply an electrical control signal to the electrical actuator in response to the sensor data.
In some embodiments of any of the above apparatus, the apparatus further includes an electrical actuator configured to change the end-to-end length of the sound-post assembly.
In some embodiments of any of the above apparatus, the control unit is configured to apply an electrical control signal to the electrical actuator.
In some embodiments of any of the above apparatus, the control unit is further configured to read sensor data from the static or quasi-static force sensor; and wherein the electrical control signal depends on said sensor data.
In some embodiments of any of the above apparatus, the control unit is configured to operate the static or quasi-static force sensor and the electrical actuator in a closed-loop setting to maintain a sensor reading within a fixed range.
In some embodiments of any of the above apparatus, the static or quasi-static force sensor comprises a piezoresistive material.
In some embodiments of any of the above apparatus, the piezoresistive material is sandwiched between first and second electrodes electrically connectable to an electrical circuit.
In some embodiments of any of the above apparatus, the static or quasi-static force sensor is a static force sensor.
In some embodiments of any of the above apparatus, the static or quasi-static force sensor is a quasi-static force sensor.
In some embodiments of any of the above apparatus, the static or quasi-static force sensor is configured to function as a static or quasi-static pressure sensor.
In some embodiments of any of the above apparatus, the static or quasi-static force sensor is electrically connectable to an external electrical circuit.
In some embodiments of any of the above apparatus, the static or quasi-static force sensor is configured to change one or more of: an electrical resistance thereof an electrical capacitance thereof; an electrical inductance thereof, in response to a mechanical force applied thereto.
In some embodiments of any of the above apparatus, the static or quasi-static force sensor is sensitive to a varying force characterized by a frequency smaller than 15 Hz.
In some embodiments of any of the above apparatus, the static or quasi-static force sensor is sensitive to a varying force characterized by a frequency smaller than 1 Hz.
In some embodiments of any of the above apparatus, the apparatus further comprises an electrical actuator connectable to an electrical circuit and configured to change the end-to-end length of the sound post assembly.
In some embodiments of any of the above apparatus, the electrical actuator comprises a piezoelectric material.
In some embodiments of any of the above apparatus, the electrical actuator comprises an electro-magnetic motor connected to a lead screw arrangement.
In some embodiments of any of the above apparatus, the two or more mechanical components are mechanically engaged using a key-and-slot arrangement or a pin-and-hole arrangement to restrict relative rotational motion thereof.
In some embodiments of any of the above apparatus, the apparatus further comprises a mechanism to break a flow of electrical power to the electrical actuator in response to the sound-post assembly reaching or exceeding a pre-determined length.
In some embodiments of any of the above apparatus, the pre-determined length is adjustable.
In some embodiments of any of the above apparatus, the mechanism comprises a contact rod mounted on a first of the two or more mechanical components and a sleeve mounted on a second of the two or more mechanical components.
In some embodiments of any of the above apparatus, the contact rod comprises elastic end faces.
In some embodiments of any of the above apparatus, the sleeve is longitudinally movable on the second mechanical component.
In some embodiments of any of the above apparatus, longitudinal movement is accomplished by a thread connecting the sleeve with the second mechanical component.
In some embodiments of any of the above apparatus, the apparatus further comprises a wall-mounted electrical connector connected by electrical wires to the static or quasi-static force sensor.
In some embodiments of any of the above apparatus, the wall-mounted electrical connector comprises a static magnet.
In some embodiments of any of the above apparatus, the wall-mounted electrical connector comprises a static magnet placed on an outer surface of the sound box.
In some embodiments of any of the above apparatus, the electrical wires are loosely coiled around an elastic mechanical element.
In some embodiments of any of the above apparatus, the length of the elastic mechanical element is extendable by at least 10%.
In some embodiments of any of the above apparatus, the length of the elastic mechanical element is extendable by at least 25%.
In some embodiments of any of the above apparatus, the two or more mechanical components include a swivel end cap including a swivel mechanism formed by a ball-and-socket arrangement; and wherein a center of a spherically shaped cavity of the socket is located below a rim of the swivel end cap by at least 10% of a sphere's radius corresponding to the spherically shaped cavity.
Other aspects, features, and benefits of various disclosed embodiments will become more fully apparent, by way of example, from the following detailed description and the accompanying drawings, in which:
Herein, a static or quasi-static electrical pressure sensor (or a static or quasi-static electrical force sensor) is a sensor element whose one or more electrical properties (e.g., a resistance, a capacitance, or an inductance) can change in response to a static or quasi-static mechanical pressure (or a static or quasi-static mechanical force) applied to the sensor. In operation, e.g., when assisted by a corresponding electrical read-out and/or control unit, a static or quasi-static electrical pressure sensor (or a static or quasi-static electrical force sensor) may produce one or more static or quasi-static electrical read-out signals (e.g., a current or a voltage).
Herein, a static or quasi-static electrical actuator is an actuator element configured to convert, in operation and assisted by a corresponding electrical control unit, one or more electrical signals into a slow length change of the sound post assembly.
Herein, a quantity is said to be “static” or “quasi-static” if the quantity changes only slowly compared to audible acoustic frequencies produced by the musical instrument that the sound post assembly is intended to be used within. For example, a double bass may typically produce acoustic frequencies as low as 30 Hz, and a quantity associated with the sound post assembly of a double bass may be considered static or quasi-static if at least 90% of the quantity's energy falls in a frequency range below 30 Hz. A violin may typically produce acoustic frequencies as low as 190 Hz, and a quantity associated with the sound post assembly of a violin may be considered static or quasi-static if at least 90% of the quantity's energy falls in a frequency range below 190 Hz. In more absolute terms, the audible acoustic frequencies of humans may be within the frequency range between approximately 15 Hz and 20 kHz, and a quantity may be called static or quasi-static if at least 90% of the quantity's energy falls in a frequency range below 10 Hz. In another example, a quantity may be called static or quasi-static if at least 90% of the quantity's energy falls in a frequency range below 1 Hz. Conversely, a quantity is said to be “dynamically varying” if the quantity has significant energy in the audible acoustic frequency range. In some embodiments, at least 90% of the energy of a dynamically varying quantity falls in a frequency range having frequencies higher than 15 Hz.
The ends of the two sound post components 141 and 142 facing the upper and lower walls of the instrument's sound box may be angle-cut as shown in
The entire sound post assembly, either in full or in parts, is preferably dimensioned such as to be insertable through the instrument's f-holes 170.
Efforts to rigorously quantify the mechanical properties of string instruments using electronics-aided techniques, such as static or quasi-static electrical pressure sensors (or static or quasi-static electrical force sensors), may be directed to the bridge. However, as the bridge may be highly visible to a musician's audience, modifications to the bridge may be much less attractive to a musician than solutions based on the sound post, which is hidden within the instrument.
Motor enclosure 442c may contain motor 445a in a way that prevents substantial rotational movement of the stator of motor 445a relative to motor enclosure 442c through, e.g., non-rotationally-symmetric mechanically fitting shapes, pins, screws, or glue. Sensor 445c may be connected to parts 442b and 442c in a way that substantially prevents rotational movements, e.g., through non-rotationally-symmetric mechanically fitting shapes, pins, screws, or glue. Hence, parts 442b, 445c, 445a, and 442c may be substantially rotationally locked relative to each other. Motor 445a may drive lead screw 445b, which may be inserted in a female thread within part 441c and may hence move part 441 up or down depending on the direction of the motor's rotation. Part 441c may slide within part 442c along a rotationally locking arrangement, such as key-and-slot arrangement 441d comprising of one or more keys sliding in one or more slots. (The functionality of an exemplary key-and-slot arrangement will become more apparent in the context of
The parts constituting the sound post assembly may be manufactured out of various materials and combinations of materials, examples of which include wood, metal, plastic, or carbon (carbon-fiber reinforced plastics), all using appropriate additive or subtractive manufacturing techniques, such as machining, milling, routing, and 3D printing.
Although various embodiments disclosed above may invoke sound post assemblies with essentially circular symmetry of most components, and in particular with circular symmetry of their end pieces that attach to the instrument's sound box across circular surfaces, other suitable cross-sectional shapes of one or more parts of the sound post assembly may be used, such as ellipses, or polygons with sharp or rounded corners. Such shapes, which are herewith included in this disclosure, may result in non-circular surfaces by which the sound post assembly attaches to the instrument's sound box. Further, the end pieces may be rounded towards the surface attaching to the instrument.
The sound post assembly disclosed in
As shown in
(i) as shown in one embodiment in
(ii) as shown in one embodiment in
(ii) in one embodiment, re-using existing metallic parts that connect the inside of the instrument's sound box to its outside, embodiments of which include metallic, partially metallic, or wired versions of end pins of a cello or double bass as well as buttons or end pins of a violin or viola;
In one embodiment, as shown in
As used herein, the term “static or quasi-static electrical force sensor” refers to a device or circuit element that can change one or more of its electrical properties (e.g., a resistance, a capacitance, and/or an inductance) in response to a static or quasi-static mechanical force applied to the sensor. In operation, e.g., when assisted by a corresponding electrical read-out circuit, a static or quasi-static electrical force sensor may produce one or more static or quasi-static electrical signals (e.g., a current or a voltage) for readout. In an example embodiment, a static or quasi-static electrical force sensor is designed and configured to effectively convert a static or quasi-static mechanical force applied thereto into one or more corresponding static or quasi-static electrical signals while being ineffective in (e.g., incapable of) converting dynamic force variations into corresponding dynamically varying electrical signals or fast electrical-signal variations. In some cases, a static or quasi-static electrical force sensor may be configured to operate as a static or quasi-static electrical pressure sensor. In such cases, the force-receiving area of the sensor may be relatively uniformly force-loaded such that the corresponding pressure across the force-receiving area may be relatively accurately estimated by dividing the measured force by the force-receiving area of the sensor. In such cases, a person of ordinary skill in the pertinent art will be able to (re)calibrate a force sensor and then use it as a pressure sensor without any undue experimentation.
A static or quasi-static electrical force sensor may be compared and contrasted with an “electrical sound pick-up” or an acoustic microphone often used in acoustic applications. For example, an electrical sound pick-up is a device or circuit element designed and configured to effectively convert dynamic mechanical-pressure variations into one or more corresponding, time-dependent, fast-changing electrical signals while being ineffective in (e.g., incapable of) converting static or quasi-static pressures into the corresponding static or quasi-static electrical signals. For example, an electrical sound pick-up or an acoustic microphone may be sensitive to mechanical pressure variations in the acoustic frequency range between about 20 Hz and 20 kHz while being insensitive to mechanical pressure variations in the frequency range below about 20 Hz. The energy of the corresponding electrical signal generated by such electrical sound pick-up or microphone is thus typically spectrally confined (e.g., has more than 90% of its energy) in the frequency range between about 20 Hz and 20 kHz.
In normal operation, the sound post of a stringed musical instrument may convey, from an upper wall to a lower wall of a sound box thereof, a combination of a static force and dynamically varying pressure having characteristic frequencies in the above-indicated acoustic range. While the static force is present irrespective of whether the instrument is being played or not, the dynamically varying pressure is typically only produced by playing or by otherwise dynamically exciting the instrument.
In example embodiments, static or quasi-static electrical force sensors may be constructed such as to effectively convert a static or quasi-static mechanical force (or a static or quasi-static mechanical pressure) into one or more corresponding static or quasi-static electrical signals. For example, an output voltage produced by such a sensor may be a substantially linear function of (e.g., proportional to) of the applied static or quasi-static mechanical force. Hence, static or quasi-static electrical force sensors may rely on static or quasi-static electro-mechanical conversion mechanisms, such as a change in resistance, inductance, or capacitance of the sensor element. For example, the resistive static or quasi-static electrical force sensor “FlexiForce” available through the company TekScan of Boston, Mass., may comprise two plate-like metallic electrodes in-between which an electrically conductive (e.g., piezoresistive) ink is placed, whereby the electrical resistance of the metal-ink-metal structure may vary with the mechanical force (or pressure) applied to the sensor element. In some embodiments, a sensor may be connected to one or more analog or digital electrical low-pass filters such as to produce a static or quasi-static electrical signal at the output of the combined sensor/filter circuit.
In contrast, a sound pick-up is typically constructed to have a natural high-pass or band-pass characteristic, i.e., a sound pick-up may have a lower cut-off frequency below which it is ineffective in converting acoustic vibrations into some form of variations of the output electrical signal(s). Such cut-off frequencies are typically in the 15 Hz to 20 Hz range, which makes sound pick-ups by themselves unsuitable to act as static or quasi-static force or pressure sensors. For example, a conventional sound pick-up may not function as a suitable substitute for one of the above-mentioned “FlexiForce” sensors.
Herein, a force sensor is referred to as “static force sensor” when the characteristic response time to a step-like change of the loading force is longer than about 10 seconds. A force sensor is referred to as “quasi-static force sensor” when the characteristic response time to a step-like change of the loading force is between about 10 seconds and about one tenth of a second.
A static or quasi-static force 830 (denoted as F) applied to the sensor unit 810 causes corresponding changes in a static or quasi-static electrical parameter P according to a transfer function of the force F, i.e., P=P(F). In various embodiments, the parameter P may be a resistance, a capacitance, or an inductance of the sensor element. In some alternative embodiments, the parameter P may be a resonance frequency of the sensor element. The read-out unit converts the electrical parameter P(F) into an output O(F) indicative of the magnitude of the force 830. In some embodiments, the output O(F) may be a voltage or a current. In some other embodiments, the output O(F) may be a digital value displayed on a digital display.
V
out(F)=−Vref×Rref/R(F)
where Rref is a reference resistor.
In an example embodiment, circuit 800 has a static or quasi-static transfer function in the sense of the term “static or quasi-static” explained above. In some embodiments, circuit 800 may not have a lower cut-off frequency, i.e., is designed to respond to arbitrarily low-frequency variations of the applied force F. In some embodiments, circuit 800 may have a cut-off frequency of 100 mHz (Milli-Hertz), as it may take pressure-dependent resistor R(F), e.g., 10 seconds to reach a representative steady-state resistance once a change of the force F is effected.
In some alternative embodiments, more complex circuits, e.g., using capacitive, inductive, or resonance-frequency based sensor elements may be used. Some embodiments of circuit 800 may rely on an electrical excitation of the corresponding sensor element by various electrical stimulus frequencies generated using the read-out unit 820. Such excitation with the stimulus frequencies may typically render the sensor unit 810 unsuitable for sound pick-up.
In operation, once the sound post assembly reaches the pre-determined maximum length, the damage-prevention mechanism of the shown embodiment breaks the electrical circuit supplying the motor with electrical power, e.g., directly on the sound post. In particular, a first sound post component 941 may include a part 441c with female thread 441f as well as a rotationally locking arrangement, such as key-and-slot arrangement 441d comprising one or more keys sliding in one or more slots as described in connection with
In operation, electrical current may be supplied to motor 445a as follows: A first of motor wires 446a is electrically connected to a control unit, e.g. to control unit 612, through an electrical conductor 946a (e.g., a wire or an electrical foil). A second of motor wires 446a is electrically connected to a first electrically conductive portion 904a of sleeve 904 through an electrical conductor 946c. If the longitudinal position of contact rod 901 overlaps with the longitudinal position of sleeve 904, then the first electrically conductive portion 904a of sleeve 904 is electrically connected to a second electrically conductive portion 904a of sleeve 904 through contact rod 901. The second electrically conductive portion 904a of sleeve 904 is connected to a control unit, e.g. to control unit 612, through an electrical conductor 946b, thus completing the electrical circuit and enabling the same to supply motor 445a with electrical power. If the sound post assembly extends beyond the length where contact rod 901 makes contact with sleeve 904, then the electrical circuit supplying motor 445a with electrical power is broken and no further sound post extensions can inadvertently be made.
In some embodiments, sleeve 904 may be configured to be longitudinally movable along sound post part 442c so as to adjust the maximally allowed sound post extension specific to the respective instrument that the sound post is inserted in. In some embodiments, sleeve 904 may be configured to slide up and down sound post part 442c. In some embodiments, sleeve 904 may be held in place by mechanical friction. In some embodiments, sleeve 904 may be held in place by affixing sleeve 904 to sound post part 442c at the desired location using glue. In some embodiments, sleeve 904 may have an inner thread and sound post part 442c may have an outer thread, which allows the position of sleeve 904 to be adjusted by turning sleeve 904 clockwise or counter-clockwise on sound post part 442c. In some embodiments, contact rod 901 may further comprise an elastic mechanism that in operation pushes conducting end faces 902 against sleeve 904. For example, in some embodiments, end faces 902 may comprise conducting elastic contact brushes. In some other embodiments, end faces 902 may be spring-loaded relative to each other or relative to contact rod 901, such as to exert an outward pushing force onto end faces 902.
According to an example embodiment disclosed above, e.g., in the summary section and/or in reference to any one or any combination of some or all of
In some embodiments of any of the above stringed musical instruments, the first electrical component is electrically connectable to an electrical circuit (e.g., 610, 612,
In some embodiments of any of the above stringed musical instruments, the two or more mechanical components are configured to accommodate one or more removable spacer elements therebetween to change the end-to-end length (e.g., 340,
In some embodiments of any of the above stringed musical instruments, the two or more mechanical components include a lead screw and a female threaded part mated to be relatively rotatable to change the end-to-end length (e.g., 380, 390,
In some embodiments of any of the above stringed musical instruments, the first electrical component comprises a static or quasi-static electrical pressure sensor (e.g., 445c,
In some embodiments of any of the above stringed musical instruments, the static or quasi-static electrical pressure sensor is configured to change one or more of: an electrical resistance thereof; an electrical capacitance thereof; an electrical inductance thereof, in response to a physical pressure applied thereto.
In some embodiments of any of the above stringed musical instruments, the first electrical component comprises a static or quasi-static electrical actuator (e.g., 445a,
In some embodiments of any of the above stringed musical instruments, the static or quasi-static electrical actuator comprises a piezoelectric material.
In some embodiments of any of the above stringed musical instruments, the static or quasi-static electrical actuator comprises an electro-magnetic motor connected to a lead screw arrangement (e.g., 445a, 445b, 441f,
In some embodiments of any of the above stringed musical instruments, the two or more mechanical components are mechanically engaged using a key-and-slot arrangement (541d, 541e,
In some embodiments of any of the above stringed musical instruments, the sound-post assembly comprises a second electrical component (e.g., the other one of 445a, 445c,
In some embodiments of any of the above stringed musical instruments, the first electrical component comprises a static or quasi-static electrical pressure sensor, and the second electrical component comprises a static or quasi-static electrical actuator (e.g., 445a and 445c,
In some embodiments of any of the above stringed musical instruments, the stringed musical instrument further comprises a wall-mounted electrical connector (e.g., 605,
In some embodiments of any of the above stringed musical instruments, the wall-mounted electrical connector comprises a static magnet.
In some embodiments of any of the above stringed musical instruments, the wall-mounted electrical connector comprises a static magnet placed on the outside of the soundbox (e.g., 606,
In some embodiments of any of the above stringed musical instruments, the electrical wires are coiled around an elastic mechanical element (e.g., 646, 601,
In some embodiments of any of the above stringed musical instruments, the two or more mechanical components include a swivel end cap (e.g., 442a, 442b,
In some embodiments of any of the above stringed musical instruments, the two or more mechanical components include a swivel mechanism formed by a ball-and-socket arrangement; and wherein a center of a spherically shaped cavity of the socket is located below a rim of the swivel end cap by at least 10% of the sphere's radius (e.g., 452,
According to another example embodiment disclosed above, e.g., in the summary section and/or in reference to any one or any combination of some or all of
In some embodiments of any of the above sound post assemblies, the two or more mechanical components are configured to accommodate one or more removable spacer elements therebetween to change the end-to-end length (e.g., 370,
In some embodiments of any of the above sound post assemblies, the two or more mechanical components include a lead screw and a female threaded part mated to be relatively rotatable to change the end-to-end length (e.g., 380, 390,
In some embodiments of any of the above sound post assemblies, the first electrical component comprises a static or quasi-static electrical pressure sensor (e.g., 445c,
In some embodiments of any of the above sound post assemblies, the static or quasi-static electrical pressure sensor is configured to change one or more of: an electrical resistance thereof; an electrical capacitance thereof; an electrical inductance thereof, in response to a static or quasi-static physical pressure applied thereto.
In some embodiments of any of the above sound post assemblies, the first electrical component comprises a static or quasi-static electrical actuator (e.g., 445a,
In some embodiments of any of the above sound post assemblies, the static or quasi-static electrical actuator comprises a piezoelectric material.
In some embodiments of any of the above sound post assemblies, the static or quasi-static electrical actuator comprises an electro-magnetic motor connected to a lead screw arrangement (e.g., 445a, 445b, 441f,
In some embodiments of any of the above sound post assemblies, the two or more mechanical components are mechanically engaged using a key-and-slot arrangement (541d, 541e,
In some embodiments of any of the above sound post assemblies, the sound-post assembly comprises a second electrical component (e.g., the other one of 445a, 445c,
In some embodiments of any of the above sound post assemblies, the first electrical component comprises a static or quasi-static electrical pressure sensor, and the second electrical component comprises a static or quasi-static electrical actuator (e.g., 445a and 445c,
In some embodiments of any of the above sound post assemblies, the sound post assembly further comprises a wall-mounted electrical connector (e.g., 605,
In some embodiments of any of the above sound post assemblies, the wall-mounted electrical connector comprises a static magnet.
In some embodiments of any of the above sound post assemblies, the wall-mounted electrical connector comprises a static magnet placed on the outside of the soundbox (e.g., 606,
In some embodiments of any of the above sound post assemblies, the electrical wires are coiled around an elastic mechanical element (e.g., 646, 601,
In some embodiments of any of the above sound post assemblies, the two or more mechanical components include a swivel end cap (e.g., 442a, 442b,
In some embodiments of any of the above sound post assemblies, the two or more mechanical components include a swivel mechanism formed by a ball-and-socket arrangement; and wherein a center of a spherically shaped cavity of the socket is located below a rim of the swivel end cap by at least 10% of the sphere's radius (e.g., 452,
According to yet another example embodiment disclosed above, e.g., in the summary section and/or in reference to any one or any combination of some or all of
In some embodiments of any of the above apparatus, the two or more mechanical components are configured to accommodate one or more removable spacer elements therebetween to change the end-to-end length (e.g., 370,
In some embodiments of any of the above apparatus, the two or more mechanical components include a lead screw and a female threaded part mated to be relatively rotatable to change the end-to-end length (e.g., 380, 390,
In some embodiments of any of the above apparatus, the first electrical component comprises a static or quasi-static electrical pressure sensor (e.g., 445c,
In some embodiments of any of the above apparatus, the a static or quasi-static electrical pressure sensor is configured to change one or more of: an electrical resistance thereof; an electrical capacitance thereof; an electrical inductance thereof, in response to a a static or quasi-static physical pressure applied thereto.
In some embodiments of any of the above apparatus, the control unit is configured read a static or quasi-static pressure sensor data from the a static or quasi-static electrical pressure sensor.
In some embodiments of any of the above apparatus, the first electrical component comprises a static or quasi-static electrical actuator (e.g., 445a,
In some embodiments of any of the above apparatus, the static or quasi-static electrical actuator comprises a piezoelectric material.
In some embodiments of any of the above apparatus, the static or quasi-static electrical actuator comprises an electro-magnetic motor connected to a lead screw arrangement (e.g., 445a, 445b, 441f,
In some embodiments of any of the above apparatus, the control unit is configured apply an electrical control signal to the static or quasi-static electrical actuator.
In some embodiments of any of the above apparatus, the two or more mechanical components are mechanically engaged using a key-and-slot arrangement (541d, 541e,
In some embodiments of any of the above apparatus, the sound-post assembly comprises a second electrical component (e.g., the other one of 445a, 445c,
In some embodiments of any of the above apparatus, the first electrical component comprises a a static or quasi-static electrical pressure sensor, and the second electrical component comprises a static or quasi-static electrical actuator (e.g., 445a and 445c,
In some embodiments of any of the above apparatus, the control unit operates a static or quasi-static electrical pressure sensor and static or quasi-static electrical actuator in a closed-loop setting to maintain a user-specified a static or quasi-static sound post assembly pressure within a user-specified a static or quasi-static pressure range.
In some embodiments of any of the above apparatus, the apparatus further comprises a wall-mounted electrical connector (e.g., 605,
In some embodiments of any of the above apparatus, the wall-mounted electrical connector comprises a static magnet.
In some embodiments of any of the above apparatus, the wall-mounted electrical connector comprises a static magnet placed on the outside of the soundbox (e.g., 606,
In some embodiments of any of the above apparatus, the electrical wires are coiled around an elastic mechanical element (e.g., 646, 601,
In some embodiments of any of the above apparatus, the two or more mechanical components include a swivel end cap (e.g., 442a, 442b,
In some embodiments of any of the above apparatus, the two or more mechanical components include a swivel mechanism formed by a ball-and-socket arrangement; and wherein a center of a spherically shaped cavity of the socket is located below a rim of the swivel end cap by at least 10% of the sphere's radius (e.g., 452,
According to yet another example embodiment disclosed above, e.g., in the summary section and/or in reference to any one or any combination of some or all of
In some embodiments of the above stringed musical instrument, the static or quasi-static force sensor comprises a piezoresistive material (e.g., 816,
In some embodiments of any of the above stringed musical instruments, the piezoresistive material is sandwiched between first and second electrodes (e.g., 812, 814,
In some embodiments of any of the above stringed musical instruments, the static or quasi-static force sensor is a static force sensor.
In some embodiments of any of the above stringed musical instruments, the static or quasi-static force sensor is a quasi-static force sensor.
In some embodiments of any of the above stringed musical instruments, the static or quasi-static force sensor is configured to function as a static or quasi-static pressure sensor.
In some embodiments of any of the above stringed musical instruments, the static or quasi-static force sensor is electrically connectable to an external electrical circuit (e.g., 610, 612,
In some embodiments of any of the above stringed musical instruments, the static or quasi-static force sensor is configured to change one or more of: an electrical resistance thereof; an electrical capacitance thereof; an electrical inductance thereof, in response to a mechanical force applied thereto.
In some embodiments of any of the above stringed musical instruments, the static or quasi-static force sensor is sensitive to a varying force characterized by a frequency smaller than 15 Hz.
In some embodiments of any of the above stringed musical instruments, the static or quasi-static force sensor is sensitive to a varying force characterized by a frequency smaller than 1 Hz.
In some embodiments of any of the above stringed musical instruments, the sound-post assembly further comprises an electrical actuator (e.g., 445a,
In some embodiments of any of the above stringed musical instruments, the electrical actuator comprises a piezoelectric material.
In some embodiments of any of the above stringed musical instruments, the electrical actuator comprises an electro-magnetic motor connected to a lead screw arrangement (e.g., 445a, 445b, 441f,
In some embodiments of any of the above stringed musical instruments, the two or more mechanical components are mechanically engaged using a key-and-slot arrangement (541d, 541e,
In some embodiments of any of the above stringed musical instruments, the sound-post assembly further comprises a mechanism to break a flow of electrical power to the electrical actuator in response to the sound-post assembly reaching or exceeding a pre-determined length (e.g., 901, 904,
In some embodiments of any of the above stringed musical instruments, the pre-determined length is adjustable.
In some embodiments of any of the above stringed musical instruments, the mechanism comprises a contact rod (e.g., 901,
In some embodiments of any of the above stringed musical instruments, the contact rod comprises elastic end faces (e.g., 902,
In some embodiments of any of the above stringed musical instruments, the sleeve is longitudinally movable on the second mechanical component.
In some embodiments of any of the above stringed musical instruments, longitudinal movement is accomplished by a thread connecting the sleeve with the second mechanical component.
In some embodiments of any of the above stringed musical instruments, the stringed musical instrument further comprises a wall-mounted electrical connector (e.g., 605,
In some embodiments of any of the above stringed musical instruments, the wall-mounted electrical connector comprises a static magnet (e.g., 605,
In some embodiments of any of the above stringed musical instruments, the wall-mounted electrical connector comprises a static magnet placed on an outer surface of the sound box (e.g., 606,
In some embodiments of any of the above stringed musical instruments, the electrical wires are loosely coiled around an elastic mechanical element (e.g., 646, 601,
In some embodiments of any of the above stringed musical instruments, the length of the elastic mechanical element is extendable by at least 10%.
In some embodiments of any of the above stringed musical instruments, the length of the elastic mechanical element is extendable by at least 25%.
In some embodiments of any of the above stringed musical instruments, the two or more mechanical components include a swivel end cap (e.g., 442a, 442b,
According to yet another example embodiment disclosed above, e.g., in the summary section and/or in reference to any one or any combination of some or all of
In some embodiments of the above sound post assembly, the static or quasi-static force sensor comprises a piezoresistive material (e.g., 816,
In some embodiments of any of the above sound post assemblies, the piezoresistive material is sandwiched between first and second electrodes (e.g., 812, 814,
In some embodiments of any of the above sound post assemblies, the static or quasi-static force sensor is a static force sensor.
In some embodiments of any of the above sound post assemblies, the static or quasi-static force sensor is a quasi-static force sensor.
In some embodiments of any of the above sound post assemblies, the static or quasi-static force sensor is configured to function as a static or quasi-static pressure sensor.
In some embodiments of any of the above sound post assemblies, the static or quasi-static force sensor is electrically connectable to an external electrical circuit (e.g., 610, 612,
In some embodiments of any of the above sound post assemblies, the static or quasi-static force sensor is configured to change one or more of: an electrical resistance thereof; an electrical capacitance thereof; an electrical inductance thereof, in response to a mechanical force applied thereto.
In some embodiments of any of the above sound post assemblies, the static or quasi-static force sensor is sensitive to a varying force characterized by a frequency smaller than 15 Hz.
In some embodiments of any of the above sound post assemblies, the static or quasi-static force sensor is sensitive to a varying force characterized by a frequency smaller than 1 Hz.
In some embodiments of any of the above sound post assemblies, the sound post assembly further comprises an electrical actuator (e.g., 445a,
In some embodiments of any of the above sound post assemblies, the electrical actuator comprises a piezoelectric material.
In some embodiments of any of the above sound post assemblies, the electrical actuator comprises an electro-magnetic motor connected to a lead screw arrangement (e.g., 445a, 445b, 441f,
In some embodiments of any of the above sound post assemblies, the two or more mechanical components are mechanically engaged using a key-and-slot arrangement (541d, 541e,
In some embodiments of any of the above sound post assemblies, the sound post assembly further comprises a mechanism to break a flow of electrical power to the electrical actuator in response to the sound-post assembly reaching or exceeding a pre-determined length (e.g., 901, 904,
In some embodiments of any of the above sound post assemblies, the pre-determined length is adjustable.
In some embodiments of any of the above sound post assemblies, the mechanism comprises a contact rod (e.g., 901,
In some embodiments of any of the above sound post assemblies, the contact rod comprises elastic end faces (e.g., 902,
In some embodiments of any of the above sound post assemblies, the sleeve is longitudinally movable on the second mechanical component.
In some embodiments of any of the above sound post assemblies, longitudinal movement is accomplished by a thread connecting the sleeve with the second mechanical component.
In some embodiments of any of the above sound post assemblies, the sound post assembly further comprises a wall-mounted electrical connector (e.g., 605,
In some embodiments of any of the above sound post assemblies, the wall-mounted electrical connector comprises a static magnet (e.g., 605,
In some embodiments of any of the above sound post assemblies, the wall-mounted electrical connector comprises a static magnet placed on an outer surface of the sound box (e.g., 606,
In some embodiments of any of the above sound post assemblies, the electrical wires are loosely coiled around an elastic mechanical element (e.g., 646, 601,
In some embodiments of any of the above sound post assemblies, the length of the elastic mechanical element is extendable by at least 10%.
In some embodiments of any of the above sound post assemblies, the length of the elastic mechanical element is extendable by at least 25%.
In some embodiments of any of the above sound post assemblies, the two or more mechanical components include a swivel end cap (e.g., 442a, 442b,
According to yet another example embodiment disclosed above, e.g., in the summary section and/or in reference to any one or any combination of some or all of
In some embodiments of the above apparatus, the control unit is configured to read sensor data from the static or quasi-static force sensor.
In some embodiments of any of the above apparatus, the control unit is configured to filter the sensor data using a low-pass cut-off frequency smaller than 15 Hz.
In some embodiments of any of the above apparatus, the control unit is configured to filter the sensor data using a low-pass cut-off frequency smaller than 1 Hz.
In some embodiments of any of the above apparatus, the apparatus further includes an electrical actuator (e.g., 445a,
In some embodiments of any of the above apparatus, the apparatus further includes an electrical actuator configured to change the end-to-end length of the sound-post assembly.
In some embodiments of any of the above apparatus, the control unit is configured to apply an electrical control signal to the electrical actuator.
In some embodiments of any of the above apparatus, the control unit is further configured to read sensor data from the static or quasi-static force sensor; and wherein the electrical control signal depends on said sensor data.
In some embodiments of any of the above apparatus, the control unit is configured to operate the static or quasi-static force sensor and the electrical actuator in a closed-loop setting to maintain a sensor reading within a fixed range.
In some embodiments of any of the above apparatus, the static or quasi-static force sensor comprises a piezoresistive material (e.g., 816,
In some embodiments of any of the above apparatus, the piezoresistive material is sandwiched between first and second electrodes (e.g., 812, 814,
In some embodiments of any of the above apparatus, the static or quasi-static force sensor is a static force sensor.
In some embodiments of any of the above apparatus, the static or quasi-static force sensor is a quasi-static force sensor.
In some embodiments of any of the above apparatus, the static or quasi-static force sensor is configured to function as a static or quasi-static pressure sensor.
In some embodiments of any of the above apparatus, the static or quasi-static force sensor is electrically connectable to an external electrical circuit (e.g., 610, 612,
In some embodiments of any of the above apparatus, the static or quasi-static force sensor is configured to change one or more of: an electrical resistance thereof; an electrical capacitance thereof; an electrical inductance thereof, in response to a mechanical force applied thereto.
In some embodiments of any of the above apparatus, the static or quasi-static force sensor is sensitive to a varying force characterized by a frequency smaller than 15 Hz.
In some embodiments of any of the above apparatus, the static or quasi-static force sensor is sensitive to a varying force characterized by a frequency smaller than 1 Hz.
In some embodiments of any of the above apparatus, the apparatus further comprises an electrical actuator (e.g., 445a,
In some embodiments of any of the above apparatus, the electrical actuator comprises a piezoelectric material.
In some embodiments of any of the above apparatus, the electrical actuator comprises an electro-magnetic motor connected to a lead screw arrangement (e.g., 445a, 445b, 441f,
In some embodiments of any of the above apparatus, the two or more mechanical components are mechanically engaged using a key-and-slot arrangement (541d, 541e,
In some embodiments of any of the above apparatus, the apparatus further comprises a mechanism to break a flow of electrical power to the electrical actuator in response to the sound-post assembly reaching or exceeding a pre-determined length (e.g., 901, 904,
In some embodiments of any of the above apparatus, the pre-determined length is adjustable.
In some embodiments of any of the above apparatus, the mechanism comprises a contact rod (e.g., 901,
In some embodiments of any of the above apparatus, the contact rod comprises elastic end faces (e.g., 902,
In some embodiments of any of the above apparatus, the sleeve is longitudinally movable on the second mechanical component.
In some embodiments of any of the above apparatus, longitudinal movement is accomplished by a thread connecting the sleeve with the second mechanical component.
In some embodiments of any of the above apparatus, the apparatus further comprises a wall-mounted electrical connector (e.g., 605,
In some embodiments of any of the above apparatus, the wall-mounted electrical connector comprises a static magnet (e.g., 605,
In some embodiments of any of the above apparatus, the wall-mounted electrical connector comprises a static magnet placed on an outer surface of the sound box (e.g., 606,
In some embodiments of any of the above apparatus, the electrical wires are loosely coiled around an elastic mechanical element (e.g., 646, 601,
In some embodiments of any of the above apparatus, the length of the elastic mechanical element is extendable by at least 10%.
In some embodiments of any of the above apparatus, the length of the elastic mechanical element is extendable by at least 25%.
In some embodiments of any of the above apparatus, the two or more mechanical components include a swivel end cap (e.g., 442a, 442b,
Although referred to as “upper” and “lower” or “top” and “bottom” in exemplary disclosed embodiments, no notion of an absolute orientation is relevant to any specific embodiment of this disclosure, and any assembly exemplary described here may be turned in any way without changing its functionality in the spirit of the disclosure.
Also for purposes of this description, the terms “connect,” “connecting,” or “connected” refer to any manner known in the art or later developed in which energy and/or force are/is allowed to be transferred between two or more elements, and the interposition of one or more additional elements is contemplated, although not required. The terms “directly connected,” etc., specifically imply the absence of such additional elements whereas the terms “indirectly connected” etc., specifically imply the presence of such additional elements. In either case, no implication is made of how the connection is being made, how it is being maintained, and whether or not the connection is permanent. For example, the bridge of a musical instrument may “connect” the strings to the upper wall of the sound box, which means that the bridge is simultaneously in physical contact with the strings and with the upper wall of the sound box to allow transfer of sound vibrations. In this case, the “connection” is maintained by the strings' tension which holds the bridge in place between the strings and the upper wall of the sound box.
As used herein in reference to some embodiments, the phrase “attached to” implies to mean “being in physical contact with”, without any implication of how such physical contact is being made, how it is being maintained, and whether or not the resulting attachment is permanent. For example, an attachment can be made by tension forces, by a relatively thin layer of adhesive, or by another suitable binder.
Unless otherwise specified herein, the use of the ordinal adjectives “first,” “second,” “third,” etc., to refer to an object of a plurality of like objects merely indicates that different instances of such like objects are being referred to, and is not intended to imply that the like objects so referred-to have to be in a corresponding order or sequence, either temporally, spatially, in ranking, or in any other manner.
As used herein in reference to some embodiments, the phrase “electrically connect”, “electrically connecting”, or “electrically connectable” implies to mean “bring in electrical contact”, “bringing in electrical contact”, or “enabled to bring in electrical contact”.
As used herein in reference to some embodiments, the word “connector” implies to mean “electrical connector”, denoting a mechanism that establishes electrical contact between one or more electrical conductors embedded in a first part of the connector and the corresponding one or more electrical conductors embedded in a second part (i.e., a counterpart) of the connector. The action of establishing electrical connection between corresponding electrical conductor is referred to as “mating” connector part and connector counterpart. Once mated, connector part and connector counterpart are configured to maintain electrical connections by mechanical arrangements (such as a snap-in arrangement) or by magnetically assisted arrangements.
As used herein in reference to some embodiments, the term “lead screw” implies to mean a male threaded rod or tube, regardless of the type of thread used.
While this disclosure includes references to illustrative embodiments, this specification is not intended to be construed in a limiting sense. Various modifications of the described embodiments, as well as other embodiments within the scope of the disclosure, which are apparent to persons skilled in the art to which the disclosure pertains are deemed to lie within the principle and scope of the disclosure, e.g., as expressed in the following claims.
Some embodiments can be embodied in the form of methods and apparatuses for practicing those methods. Some embodiments can also be embodied in the form of program code recorded in tangible media, such as magnetic recording media, optical recording media, solid state memory, floppy diskettes, CD-ROMs, hard drives, or any other non-transitory machine-readable storage medium, wherein, when the program code is loaded into and executed by a machine, such as a computer, the machine becomes an apparatus for practicing the patented invention(s). Some embodiments can also be embodied in the form of program code, for example, stored in a non-transitory machine-readable storage medium including being loaded into and/or executed by a machine, wherein, when the program code is loaded into and executed by a machine, such as a computer or a processor, the machine becomes an apparatus for practicing the patented invention(s). When implemented on a general-purpose processor, the program code segments combine with the processor to provide a unique device that operates analogously to specific logic circuits.
Unless explicitly stated otherwise, each numerical value and range should be interpreted as being approximate as if the word “about” or “approximately” preceded the value or range.
It will be further understood that various changes in the details, materials, and arrangements of the parts which have been described and illustrated in order to explain the nature of this disclosure may be made by those skilled in the art without departing from the scope of the disclosure, e.g., as expressed in the following claims.
The use of figure numbers and/or figure reference labels in the claims is intended to identify one or more possible embodiments of the claimed subject matter in order to facilitate the interpretation of the claims. Such use is not to be construed as necessarily limiting the scope of those claims to the embodiments shown in the corresponding figures.
Reference herein to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one embodiment of the disclosure. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments necessarily mutually exclusive of other embodiments. The same applies to the term “implementation.”
Unless otherwise specified herein, the use of the ordinal adjectives “first,” “second,” “third,” etc., to refer to an object of a plurality of like objects merely indicates that different instances of such like objects are being referred to, and is not intended to imply that the like objects so referred-to have to be in a corresponding order or sequence, either temporally, spatially, in ranking, or in any other manner.
The described embodiments are to be considered in all respects as only illustrative and not restrictive. In particular, the scope of the disclosure is indicated by the appended claims rather than by the description and figures herein. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.
The description and drawings merely illustrate the principles of the disclosure. It will thus be appreciated that those of ordinary skill in the art will be able to devise various arrangements that, although not explicitly described or shown herein, embody the principles of the disclosure and are included within its spirit and scope. Furthermore, all examples recited herein are principally intended expressly to be only for pedagogical purposes to aid the reader in understanding the principles of the disclosure and the concepts contributed by the inventor(s) to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the disclosure, as well as specific examples thereof, are intended to encompass equivalents thereof.
The functions of the various elements shown in the figures, including any functional blocks labeled as “processors” and/or “controllers,” may be provided through the use of dedicated hardware as well as hardware capable of executing software in association with appropriate software. When provided by a processor, the functions may be provided by a single dedicated processor, by a single shared processor, or by a plurality of individual processors, some of which may be shared. Moreover, explicit use of the term “processor” or “controller” should not be construed to refer exclusively to hardware capable of executing software, and may implicitly include, without limitation, digital signal processor (DSP) hardware, network processor, application specific integrated circuit (ASIC), field programmable gate array (FPGA), read only memory (ROM) for storing software, random access memory (RAM), and non-volatile storage. Other hardware, conventional and/or custom, may also be included.
It should be appreciated by those of ordinary skill in the art that any block diagrams herein represent conceptual views of illustrative circuitry embodying the principles of the disclosure.
This application is a continuation-in-part of U.S. patent application Ser. No. 16/559,265, filed on Sep. 3, 2019, and entitled “ELECTRICALLY ENABLED SOUND POST FOR STRINGED MUSICAL INSTRUMENTS,” which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 16559265 | Sep 2019 | US |
Child | 16996440 | US |