This application is a national stage application under 35 USC §371(c) of International Application No. PCT/AU2008/001030, entitled “METHOD AND APPARATUS FOR FORMING AN ELECTRICALLY INSULATING STRUCTURE HAVING HOLES FOR FEEDTHROUGHS,” filed on Jul. 15, 2008, which claims priority from Australian Patent Application No. 2007903878, filed on Jul. 17, 2007. The entire disclosure and contents of the above applications are hereby incorporated by reference herein.
1. Field of the Invention
The present invention relates generally to feedthroughs, and more particularly to, forming an electrically insulative structure having holes for feedthroughs.
2. Related Art
As used herein, a ‘feedthrough’ is an electrically conductive path extending through an insulative member, and which has portions accessible at each side of the insulative member. The electrically conductive path may extend from the interior of a hermetically sealed container or housing on one side of the insulative member, to an external location outside the container or housing on the other side of the insulative member. Typically, a conductive path is provided by an electrically conductive pin or rod, which is electrically insulated from the container or housing by an electrically insulating body surrounding the pin. As such, a feedthrough allows one or more electrical connections to be made between electronic circuitry or other components within a hermetically sealed container or housing and components outside the housing, while protecting the circuitry or components from any damage or malfunction that may result from exposure to the surrounding environment. A structure comprising a collection of one or more feedthroughs is sometimes referred to herein as a ‘feedthrough device.’
There are many applications for feedthrough devices. One exemplary application is in electrical devices for implantation in a patient's body to provide therapy to the patient, such as cardiac pacemakers, defibrillators and cochlear implants, collectively and generally referred to herein as implantable medical devices. As the environment of living tissue and body fluids is relatively corrosive and devices may contain materials which may be detrimental if exposed to the patient, a hermetic feedthrough device is used to provide a barrier between the electronic components of the medical device and the external corrosive environment of the human body. With implantable medical devices in particular, it is beneficial that the hermetic seal of the device be physically rugged and long lasting. For this reason, stringent requirements are imposed on the hermeticity of an implanted device, typically requiring a seal that provides a leakage rate of approximately less than 10−8 cc/sec.
As such, conventional feedthrough devices used in implantable medical devices typically consist of a ceramic or glass bead that is bonded chemically at its perimeter through brazing or the use of oxides, and/or mechanically bonded through compression, to the walls of the sealed package. A suitable wire or other conductor passes through the center of the bead, and this wire or conductor must also be sealed to the bead through chemical bonds and/or mechanical compression. Such feedthroughs are typically cylindrical and the wire(s) or conductor(s) mounted within the bead are centered or mounted in a uniform pattern, centrally within the bead. Other materials and processes are known for making conventional feedthroughs for implantable medical devices rely, for example, on use of aluminum oxide ceramic and binders.
One of the conventional processes for making a feedthrough consists of pre-drilling holes in a sintered ceramic plate and then forcing electrical conductive pins through the holes. Examples of such processes are disclosed in U.S. Pat. No. 5,046,242. While useful, this method is tedious, slow, does not necessarily guarantee a hermetic seal, and generally results in unsatisfactory leakage rates and yields. Furthermore, it has been found that drill bits wear quickly when used on ceramics due to the abrasive nature of the ceramics. Thus, to meet required tolerances, drill bits typically need to be replaced often. Also, the build-up of stress around punched or drilled holes can result in subsequent cracking of the sintered ceramic.
Another conventional method for making a feedthrough involves inserting the conductive pins into an unsintered ceramic plate then curing the assembly by firing to achieve a hermetic seal. A major disadvantage of this process is that, historically such processes were required to be performed by hand. Such a manual method of manufacture can lead to inaccuracies and may be time consuming, expensive and labor intensive. Moreover, feedthroughs resulting from such a process do not necessarily have precisely positioned electrical conductors, with the position of the conductors being greatly dependent upon the process itself. Furthermore, as the conductors are typically wires being of a general cylindrical shape and configuration, the size and shape of the accessible portions of the conductor are generally the same as the conductor embedded in the insulative material.
As implantable medical devices continue to develop and become thinner, smaller and more electronically sophisticated, the requirements of the feedthrough have also increased. For example, in certain cochlear implants, where there are 22-24 electrodes, there may be a need for 22-24 conductive pins passing through the feedthrough device. As the desire for more electrodes and smaller feedthrough devices increases, the demands placed upon the design of the traditional feedthrough also increases. The problems in fabricating feedthrough devices on a large scale are significant, especially when one considers the relatively high degree of labor intensity and specialization of current fabricating methods.
While the above described conventional feedthrough devices and fabrication methods have proven successful, it is a relatively slow and labor intensive process to manufacture such devices. These methods of manufacture of the feedthrough devices also presents limitations as to the construction of the feedthrough devices.
US Patent Publication No. 2006/0141861, by the present applicant, discloses various embodiments of methods for forming a feedthrough device. In the embodiment illustrated in FIG. 26 of this US publication, an electrically insulating structure having holes for feedthroughs is formed by powder injection molding (PIM). The mold includes a pair of opposed mold plates, with one of the plates carrying a number of pins and the other plate having recesses which receive the pins. The plates are slowly moved apart to expose a partial cavity, into which hot feedstock is injected. The feedstock is injected in the partial cavity around the exposed portions of the pins. The process of moving the plates apart and injecting feedstock into the further exposed cavity continues until the cavity is fully molded. Once this process is completed, the molded structure is ejected, the molded structure having holes formed therethrough where the pins were located. The holes then allow feedthrough conductors to be arranged through the molded structure. The content of US Patent Publication No. 2006/0141861 is hereby incorporated by reference herein.
In one aspect of the present invention, an apparatus for forming an electrically insulative structure having holes for feedthroughs is provided. The apparatus comprises: a housing defining a cavity having first and second ends; an injection nozzle disposed at the first end of the cavity configured to inject moldable material into the cavity; a plurality of pins extending through the cavity from the second to the first end; a cavity member extending across the cavity so as to form a sub-cavity between the cavity member and the first end of the cavity into which the moldable material is injected, the cavity member having a plurality holes through which the pins extend; wherein the member is initially positioned such that the member is adjacent the first end, and wherein the member is configured to move, relative to the pins and the housing, away from the first end along an axis to increase the volume of the sub-cavity as the moldable material is injected.
In another aspect of the present invention, a method of forming a feedthrough device through the use of a mold apparatus comprising a housing defining a cavity having first and second ends, an injection nozzle disposed at the first end of the cavity, a plurality of pins extending through the cavity along the axis, and a cavity member extending across the cavity so as to form a sub-cavity between the cavity member and the first end of the cavity into which the moldable material is injected, the cavity member having a plurality holes through which the pins extend is provided. The method comprises: biasing the cavity member such that the member is adjacent the first end of the cavity; and injecting moldable electrically insulative material into the cavity via the nozzle such that the cavity member moves, relative to the pins and the housing, along an axis away from the first end to increase the volume of the sub-cavity as the moldable material is injected.
Embodiments of the present invention are described below with reference to the attached drawings, in which:
Embodiments of the present invention are generally apparatus and methods for forming an insulative structure usable as a component of a feedthrough device. Subsequent to the molding, hermetically sealed feedthroughs are formed in the holes to form a feedthrough device.
As shown, upper r portion 12 carries an injection nozzle 18 via which moldable electrically insulating material, such as ceramic feedstock, may be injected into a mold cavity 22. Injection nozzle 18 is directed towards an open top end 20 of a mold cavity 22 arranged in lower portion 14 having first and second ends. When upper and lower portions 12, 14 are brought together, a sealing member in the form of an o-ring 24 which provides a vacuum seal which allows a negative pressure to be provided i in cavity 22. As such, injection nozzle 18 is able to inject the ceramic feedstock towards cavity 22.
Housed within lower portion 14 and extending through cavity 22 from the second to the first end are a number of pins 26. As shown in
Arranged within cavity 22 is a moveable cavity member 28 which extends across cavity 22 to define a bounded region of cavity 22, referred to as a sub-cavity. Cavity member 28 is initially biased adjacent the first end (ie. adjacent parting line 16) and is configured to move along a path or axis of travel away from the first end. Cavity member 28 has through-holes through which pins 26 are configured to extend. Cavity member 28 is engaged with a spring-loaded carrier 30 which biases cavity member 28 towards parting line 16, as shown in
When injection nozzle 18 begins injecting the ceramic feedstock, the injected feedstock contacts an upper surface 32 of cavity member 28. Thus, cavity member 28 is positioned adjacent the end of the cavity. The pressure of the injected feedstock causes the cavity member 28 to slide against the spring bias within the cavity 22 and along the length of the pins 26 away from parting line 16. The movement of cavity member 28 away from parting line 16 increases the size of the sub-cavity, i.e. exposes more of cavity 22, and exposes more of the length pins 26 to the injected feedstock. In this manner, the ceramic feedstock gradually fills cavity 22 around the exposed length of pins 26. The gradual exposure of pins 26 by the moving of cavity member 28 prevents damage or deformation of pins 26 due to high injection pressures.
Cavity member 28 is shown having an axial recess 34 within which is arranged an actuator member 36. Actuator member 36 is arranged to engage a pressure sensor (not shown). With this arrangement, the pressure within the cavity 22 can be monitored. In certain embodiments, the pressure sensor is linked in a closed loop arrangement with a controller for the injection process. As such, precise control of injection pressure and holding pressures within cavity 22 is possible. That is, in this embodiment the output of the pressure sensor is used by an injection controller for controlling injection nozzle 18.
As shown in
Following the above molding process, the molded electrically insulating structure 42 is ejected from cavity 22 while the ceramic is in a green or unsintered state. Resulting structure 42, as shown in
Following the ejection of structure 42 from cavity 22, the finalized feedthrough device may be formed. Referring to
It would be appreciated that a number of different types of ceramic feedstock may be utilized in embodiments of the present invention. However, in embodiments of the present invention, two characteristics influence the choice of suitable ceramic feedstock. A first such characteristic is the ability of a feedstock to shrink during sintering to clamp around conductive pins 50. A second characteristic is the production of a glass phase during sintering which can allow a glaze to form around the conductive pins 50. Two materials having the above characteristics are Alumina and Zirconia. These two materials have a high shrinkage rate, in the range of approximately 16-25 percent. In certain embodiments, composition of the feedstock may include 94-96 percent Alumina (Al2O3) or Zirconia (ZrO2) with a particle size between approximately 0.5 microns to approximately 3 microns. The composition may also include polyethylene which acts as a binder for the composition. Providing trace amounts of Magnesium oxide, Silicon oxide, Zinc oxide or other oxides may stabilize the ceramic and assist in the formation of the glaze.
If insufficient wall space is provided between conductive pins 50, cracks may form during sintering between the pins 50. As such, as shown in
In certain embodiments, methods of the present invention utilize a mold apparatus comprising a housing defining a cavity having an axis extending there through, an injection nozzle disposed at a first end of the cavity, a plurality of pins extending through the cavity along the axis, and a cavity member extending across the cavity substantially orthogonal to the axis so as to form a sub-cavity between the cavity member and the first end of the cavity into which the moldable material is injected, the cavity member having a plurality holes through which the pins extend. In such embodiments, the method comprises: biasing the cavity member such that the member is adjacent the first; and injecting moldable electrically insulative material into the cavity via the nozzle such that the cavity member moves, relative to the pins and the housing, along the axis away from the first end to increase the volume of the sub-cavity as the moldable material is injected.
In certain embodiments, the method further includes the step of sealing the mold cavity under vacuum pressure before injecting the feedstock. In exemplary embodiments, the method further includes the step expelling air from the cavity as the feedstock is injected.
In still further embodiments the method includes the step of measuring the pressure within the cavity. In specific such embodiments, the measured pressure is utilized to control the injection of the feedstock.
The invention described and claimed herein is not to be limited in scope by the specific embodiments herein disclosed, since these embodiments are intended as illustrations, and not limitations, of several aspects of the invention. Any equivalent embodiments are intended to be within the scope of this invention. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2007903878 | Jul 2007 | AU | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/AU2008/001030 | 7/15/2008 | WO | 00 | 6/14/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/009827 | 1/22/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1948875 | Beitling | Feb 1934 | A |
2824306 | Pfaff et al. | Feb 1958 | A |
3166104 | Foley et al. | Jan 1965 | A |
3271625 | Caracciolo | Sep 1966 | A |
3429788 | Parstorfer | Feb 1969 | A |
3467990 | Kutik et al. | Sep 1969 | A |
3478424 | Meoni | Nov 1969 | A |
3497947 | Ardezzone | Mar 1970 | A |
4101899 | Jones, Jr. et al. | Jul 1978 | A |
4200971 | Shimizu et al. | May 1980 | A |
4396792 | Falk | Aug 1983 | A |
4602637 | Elmqvist et al. | Jul 1986 | A |
4785827 | Fischer | Nov 1988 | A |
4797236 | Kojima | Jan 1989 | A |
4865562 | Burg et al. | Sep 1989 | A |
4936792 | Onoue et al. | Jun 1990 | A |
5041019 | Sharp et al. | Aug 1991 | A |
5103818 | Maston et al. | Apr 1992 | A |
5206495 | Kreft | Apr 1993 | A |
5274917 | Corbett, III et al. | Jan 1994 | A |
5282841 | Szyszkowski | Feb 1994 | A |
5336246 | Dantanarayana | Aug 1994 | A |
5409362 | Neu | Apr 1995 | A |
5419865 | Ogata et al. | May 1995 | A |
5462408 | Coffy | Oct 1995 | A |
5596797 | Bumsted | Jan 1997 | A |
5683435 | Truex et al. | Nov 1997 | A |
5753164 | Ritchie et al. | May 1998 | A |
5779839 | Tuttle et al. | Jul 1998 | A |
5780079 | Lee | Jul 1998 | A |
5782645 | Stobie et al. | Jul 1998 | A |
5833714 | Loeb | Nov 1998 | A |
5907893 | Zadno-Azizi et al. | Jun 1999 | A |
5925852 | Hinz et al. | Jul 1999 | A |
5967841 | Bianca et al. | Oct 1999 | A |
6011993 | Tziviskos et al. | Jan 2000 | A |
6052623 | Fenner et al. | Apr 2000 | A |
6101371 | Barber et al. | Aug 2000 | A |
6119044 | Kuzma | Sep 2000 | A |
6133072 | Fjelstad | Oct 2000 | A |
6179659 | Moden | Jan 2001 | B1 |
6181296 | Kulisan et al. | Jan 2001 | B1 |
6195858 | Ferguson et al. | Mar 2001 | B1 |
6206735 | Zanolli | Mar 2001 | B1 |
6219247 | Haupt et al. | Apr 2001 | B1 |
6297943 | Carson | Oct 2001 | B1 |
6308744 | Becherucci et al. | Oct 2001 | B1 |
6336269 | Eldridge et al. | Jan 2002 | B1 |
6364654 | Luther | Apr 2002 | B1 |
6414835 | Wolf et al. | Jul 2002 | B1 |
6421569 | Treaba et al. | Jul 2002 | B1 |
6446678 | Becherucci et al. | Sep 2002 | B1 |
6447304 | Korsunsky et al. | Sep 2002 | B1 |
6501437 | Gyorko et al. | Dec 2002 | B1 |
6505073 | Gramse | Jan 2003 | B2 |
6517476 | Bedoya et al. | Feb 2003 | B1 |
6552655 | Barbulescu | Apr 2003 | B2 |
6638121 | Walker et al. | Oct 2003 | B1 |
6704994 | Gijs | Mar 2004 | B1 |
6721602 | Engmark et al. | Apr 2004 | B2 |
6764336 | Ma et al. | Jul 2004 | B2 |
6765779 | Stevenson et al. | Jul 2004 | B2 |
6820314 | Ferguson et al. | Nov 2004 | B2 |
7184843 | Cohen | Feb 2007 | B1 |
7223085 | Puniello et al. | May 2007 | B2 |
7300268 | Dooley et al. | Nov 2007 | B2 |
7337974 | Caruana | Mar 2008 | B2 |
7396265 | Darley et al. | Jul 2008 | B2 |
7503758 | Reis et al. | Mar 2009 | B2 |
7950134 | Ho et al. | May 2011 | B2 |
7988507 | Darley et al. | Aug 2011 | B2 |
7996982 | Darley et al. | Aug 2011 | B2 |
8016586 | Entezarian et al. | Sep 2011 | B2 |
20010039374 | Schulman | Nov 2001 | A1 |
20030069613 | Kuzma et al. | Apr 2003 | A1 |
20040164923 | Aisenbrey | Aug 2004 | A1 |
20060085055 | Dadd et al. | Apr 2006 | A1 |
20070031532 | Chen | Feb 2007 | A1 |
20070053812 | Kawai et al. | Mar 2007 | A1 |
20070126138 | Dooley et al. | Jun 2007 | A1 |
20070128940 | Ho et al. | Jun 2007 | A1 |
20090061127 | Entezarian et al. | Mar 2009 | A1 |
20100019408 | Kawai et al. | Jan 2010 | A1 |
20100207302 | Ootera et al. | Aug 2010 | A1 |
20100292760 | Leigh et al. | Nov 2010 | A1 |
20110300764 | Darley et al. | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
2009200093 | Mar 2011 | AU |
41 39 440 | Jun 1993 | DE |
1 547 207 | Aug 2011 | EP |
2 166 005 | Apr 1986 | GB |
2 288 028 | Oct 1995 | GB |
2 356 935 | Jun 2001 | GB |
63-274074 | Nov 1988 | JP |
2001-009841 | Jan 2001 | JP |
2001-052780 | Feb 2001 | JP |
2002-119435 | Apr 2002 | JP |
2003-317892 | Nov 2003 | JP |
0203408 | Jan 2002 | WO |
02089907 | Nov 2002 | WO |
2004030159 | Apr 2004 | WO |
2005055363 | Jun 2005 | WO |
2006081361 | Aug 2006 | WO |
2007050212 | May 2007 | WO |
2009009827 | Jan 2009 | WO |
Entry |
---|
International Search Report. PCT/AU2008/001030. Mailed Sep. 17, 2008. |
Japanese Application No. 2004-538572, Notice of Rejection mailed on Sep. 30, 2008, 7 Pages. |
Derwent Abstract Accession No. 87-121639/17, SU 1256-122 A, Frunze Ty Azhelektro, Sep. 7, 1986. |
Derwent Abstract Accession No. 93-376433/47, SU 1775803, Khak Aivation Inst., Nov. 15, 1992. |
Australian Application No. 2003266816, Office Action mailed on Apr. 17, 2007, 2 Pages. |
Australian Application No. 2009200093, Office Action mailed on May 19, 2010, 2 Pages. |
Australian Application No. 2011201190, Office Action mailed on Oct. 7, 2011, 1 Page. |
European Application No. 03747701.5, Supplementary Search Report mailed on Feb. 27, 2007, 3 Pages. |
European Application No. 03747701.5, Communication Pursuant to Article 94(3) EPC mailed on Nov. 6, 2008, 5 Pages. |
International Application No. PCT/AU03/01288, International Search Report mailed on Oct. 31, 2003, 5 Pages. |
International Application No. PCT/AU08/001030, International Preliminary Report on Patentability mailed on Jan. 19, 2010, 5 Pages. |
International Application No. PCT/AU08/001030, International Search report and Written Opinion mailed on Sep. 17, 2008, 6 Pages. |
International Application No. PCT/AU2004/001726, International Preliminary Report on Patentability mailed on Nov. 23, 2005, 5 Pages. |
International Application No. PCT/AU2004/001726, International Search Report and Written Opinion mailed on Mar. 18, 2005, 10 Pages. |
International Application No. PCT/AU2008/000973, International Search Report mailed on Aug. 29, 2008, 5 Pages. |
International Application No. PCT/US2008/083794, International Preliminary Report on Patentability mailed on Nov. 10, 2009, 7 Pages. |
International Application No. PCT/US2008/083794, International Search Report and Written Opinion mailed on Jan. 22, 2009, 5 Pages. |
International Application No. PCTAU2003001288, International Preliminary Examination Report mailed on Jan. 18, 2005, 5 Pages. |
Petersen, “Silicon as a Mechanical Material”, Proceedings of the IEEE, vol. 70, No. 5, May 1982, pp. 420-457. |
Rousche et al., “Flexible Polyimide-Based Intracortical Electrode Arrays with Bioactive Capability”, IEEE Transactions on Biomedical Engineering, vol. 48, No. 3, Mar. 2001, 11 Pages. |
Ziaie et al., “A Hermetic Glass-Silicon Micropackage with High-Density On-Chip Feedthroughs for Sensors and Actuators”, Microelectromechanical Systems Journal, vol. 5, Issue 3, Sep. 1996, pp. 166-179. |
Number | Date | Country | |
---|---|---|---|
20100326723 A1 | Dec 2010 | US |