The present disclosure generally relates to an electrically isolated light-emitting display (LED) module that efficiently transfers heat away from electronic components by thermally conducting the heat to the outside walls of an enclosure.
LED modules are assemblies that include one or more light emitting diodes and electrical circuits which are typically enclosed inside a housing. Such LED modules are used for a wide variety of purposes, such as for railroad signals, traffic signals, street lights, and refrigerated display lighting (RDL).
In many LED modules, a known problem exists concerning extraction of heat from the power supply units (PSU) and LEDs. One conventional method of solving the heat extraction problem is to provide a metal enclosure and/or housing and to connect the LED module to the housing. However, such metal enclosures are electrically conductive, which could lead to a shock hazard, and are relatively expensive.
Another conventional method for solving the heat extraction problem is to use a heat sink connected to the LED module inside a plastic enclosure. But this method traps heat inside the plastic enclosure, leading to heat buildup and possible over-heating. Yet another conventional solution is to use a metal heat sink over-molded with plastic, but in this case the difference in thermal expansion coefficient sometimes impairs the stability of the seal for the enclosure. Another solution relates to under-driving the LEDs of the LED module in such manner that the component becomes less sensitive to heat, but such operation introduces inefficiencies which may be undesirable.
Presented are apparatus and methods for providing an electrically isolated light-emitting display (LED) module that efficiently transfers heat away from electronic components by thermally conducting the heat to the outside walls of an enclosure. An embodiment includes a plastic enclosure having thin plastic walls that define an opening, a plastic cover having a lens and configured to cover the opening, a power supply unit (PSU), a light-emitting diode (LED) operably connected to the PSU, and a thermally conducting potting material. The potting material is deposited into an interior volume of the plastic enclosure to cover the PSU, contact a back portion of the LED, and to thermally connect the PSU and the LED to the thin plastic walls of the plastic enclosure without covering a front portion of the LED.
In another embodiment, a method for assembling an LED module includes affixing a light-emitting diode (LED) power supply unit (PSU) within an interior volume of a container comprising thin plastic walls, forming an LED sub-assembly by affixing an LED to a plastic cover such that the LED is aligned with a lens that permits light to pass through the plastic cover, and operably connecting the LED PSU to the LED. A potting material is then deposited into the interior volume of the container to cover the LED PSU and to thermally connect it to the interior surface area of the thin plastic walls of the container, and then the container is covered with the LED sub-assembly such that a back portion of the LED contacts the potting material without the potting material covering a front portion of the LED.
Features and advantages of some embodiments, and the manner in which the same are accomplished, will become more readily apparent with reference to the following detailed description taken in conjunction with the accompanying drawings, which illustrate exemplary embodiments (not necessarily drawn to scale), wherein:
Embodiments described herein relate to LED modules having a relatively large power consumption. For example, LED modules that consume at least ten watts (10 W) of electrical power. For such LED modules, there is a need to dissipate the heat generated by the various electronic components (for example, heat generated by the driver circuitry, by the power supply components, and the like) and the LED light source(s). Thus, in some embodiments disclosed herein, an enclosure is provided for the LED module that is not electrically conductive and that contains a potting material which contacts the various electronic components and functions to conduct the heat therefrom and to spread the heat outward to the walls of the enclosure, which overcomes the problem of producing a hot spot. In addition, it has been found that it is desirable to use a major portion of the outer surface area of such an enclosure to dissipate the heat so that heat can be uniformly dissipated from the LED module.
Accordingly, some embodiments utilize a thin-walled plastic enclosure to house the LED module, and a potting material deposited therein is used to conduct heat away from the LED light source(s) and the electronic circuitry to minimize thermal resistance. In an implementation, an LED connected to a heat sink and to a power supply is installed within the plastic enclosure. Next, the plastic enclosure is filled, partially or wholly, with a potting material that is electrically nonconductive and thermally conductive, such as a silicone-based potting material. In some embodiments, the volume within the plastic enclosure that includes the heat sink and power supply is wholly filled with the potting material to eliminate air gaps, which is advantageous because heat can then be easily transferred via the potting material from the hot components to substantially the entire surface area of the exterior surfaces of the plastic enclosure. Thus, hot spots on the LED module may be minimized or eliminated because the heat is transferred uniformly to all of the outside walls of the plastic enclosure. In addition, such embodiments allow for all the electrical components to be thermally controlled, without the need to utilize multiple heat sinks. Furthermore, the plastic enclosure may be sealed in a manner that does not require gaskets or fasteners. Yet further, in some embodiments, due to the use of the potting material, the LED module and/or other electronic components within the plastic enclosure or container may advantageously be shock resistant and/or impact resistant and/or vibration resistant and/or fire resistant and/or water resistant. Such embodiments of an electrically isolated and thermally radiated LED module may therefore be suitable for use in extreme and/or harsh environments, for example, within a freezer display case having temperatures below the freezing point of water.
Referring to
Referring again to
Once the LED module assembly 100 is completed and put into operation, the silicone potting material 120 facilitates heat transfer from the LED chips(s) 110 and heat sink 112, and from the PSU 118 and support 119 by providing pathways to the interior surface area of the outside walls 106A, 106B, 106C and 106D (and the walls that are not shown) of the plastic enclosure 102. The heat is then dissipated by these outside walls of the plastic enclosure 102 into the ambient air. In some embodiments, approximately fifty percent of the outside surface area of the walls 106A, 106B, 106C and 106D (and the walls that are not shown) radiate or convect heat outwardly away from the plastic enclosure 102 during operation of the LED module. It should be understood that potting compounds other than silicone-based compounds could be used as long as such alternate potting compounds provide adequate thermal conductivity and/or heat dissipation properties. In addition, potting compounds that are not transparent or opaque can be utilized with the embodiments described herein because the LED module assembly is configured such that when the potting compound is deposited within the plastic enclosure it does not cover the LED chip(s) 110. In some implementations, the amount of potting compound deposited within the volume of the plastic housing is controlled so as to avoid contact with the LED chip(s) and/or interior features (such as a barrier) of the front wall of the plastic housing 102 may be provided that prevent the potting compound from impinging on and/or covering the LED chip(s) 110 and/or the lens 108. Thus, in some embodiments an asphalt potting compound (which is less expensive than silicone potting materials) may be used as the potting material.
Referring again to
In some embodiments, the front cover 202 and heat sink 208 sub-assembly is press-fit to the plastic housing 214 and LED driver 212 sub-assembly, and then a potting material is poured into the interior volume through a fill hole (not shown in
The technical advantages of the LED module assembly embodiments described herein include providing an LED module assembly that provides superior thermal dissipation characteristics, and that includes electronic components that are isolated from harsh environments. Thus, overall reliability and durability are improved. In addition, the disclosed LED module assemblies can be utilized for many different and/or diverse applications, for example, to provide light in freezer display cases while operating in low temperatures, to provide light in greenhouses having high humidity, and to provide lighting in outside environments, for example in a street lamps or signal lamps or outside household lamps, that may be subject to high temperatures, low temperatures, high winds, rain, sleet and/or snow and/or vibration depending on the location and/or season of the year.
It should be understood that the above descriptions and/or the accompanying drawings are not meant to imply a fixed order or sequence of steps for any process referred to herein; rather any process may be performed in any order that is practicable, including but not limited to simultaneous performance of steps indicated as sequential.
Although the present invention has been described in connection with specific exemplary embodiments, it should be understood that various changes, substitutions, and alterations apparent to those skilled in the art can be made to the disclosed embodiments without departing from the spirit and scope of the invention as set forth in the appended claims.
Number | Date | Country | |
---|---|---|---|
62053776 | Sep 2014 | US |