The present disclosure relates to electrically operated gas vents for fire protection sprinkler systems and methods of venting gas from fire protection sprinkler systems.
This section provides background information related to the present disclosure which is not necessarily prior art.
Fire protection sprinkler systems are commonly used for suppressing fires with water upon detecting heat or smoke. These systems typically include a water source such as a source of city water, one or more sprinklers such as fusible sprinkler heads that are activated by heat, and a piping network interconnecting the water source and sprinkler heads. Various types of water based sprinkler systems are known, such as wet pipe sprinkler systems and dry pipe sprinkler systems, including preaction systems, water mist systems, water spray systems, etc. In some cases, mechanical gas vents may be used to remove gas from the system.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
According to one aspect of the present disclosure, a fire protection sprinkler system includes a water source, at least one sprinkler, a piping network interconnecting the water source and the at least one sprinkler, and an automatic gas vent coupled to the piping network and configured to discharge gas from the piping network. The automatic gas vent includes a sensor configured to sense a presence or absence of a liquid, and an electrically operated valve. The automatic gas vent is configured to open the electrically operated valve in response to the sensor sensing the absence of a liquid and close the electrically operated valve in response to the sensor sensing the presence of a liquid.
According to another aspect of the present disclosure, an automatic gas vent assembly for a fire protection sprinkler system is disclosed. The fire protection sprinkler system includes a water source and at least one sprinkler. The automatic gas vent assembly includes a sensor configured to sense a presence or absence of a liquid in the automatic gas vent assembly, and an electrically operated valve. The automatic gas vent assembly is configured to open the electrically operated valve in response to the sensor sensing the absence of a liquid and close the electrically operated valve in response to the sensor sensing the presence of a liquid.
According to a further aspect of the present disclosure, a method of venting gas from a fire protection sprinkler system using an automatic gas vent is disclosed. The fire sprinkler system includes a water source and at least one sprinkler. The automatic gas vent includes a sensor configured to sense a presence or absence of a liquid and an electrically operated valve. The method includes opening the electrically operated valve in response to the sensor sensing the absence of a liquid and closing the electrically operated valve in response to the sensor sensing the presence of a liquid.
According to yet another aspect of the present disclosure, a method of discharging gas from a fire sprinkler system is disclosed. The fire sprinkler system includes a water source and a piping network connected to the water source. The method includes sensing a presence of a gas within the piping network with a sensor, actuating an electrically operated valve in response to the sensing, and discharging the gas through the electrically operated valve.
Further aspects and areas of applicability will become apparent from the description provided herein. It should be understood that various aspects of this disclosure may be implemented individually or in combination with one or more other aspects. It should also be understood that the description and specific examples herein are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
a and 3b are schematic diagrams of an example electrical control for the automatic gas vent assemblies shown in
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings.
Example embodiments are provided so this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The methods, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
Spatially relative terms, such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
A fire protection sprinkler system according to one example embodiment of the present disclosure is illustrated in
As shown in
The automatically gas vent assembly 108 allows gas to be automatically discharged from the piping network 106 via the electrically operated valve 112 (as indicated by the arrows in
The sensor 110 may be any type of sensor adapted to sense the absence or presence of a liquid. In the particular example shown in
The electrically operated valve 112 is preferably a normally closed valve so the valve 112 will automatically close when electric power is lost. In this manner, the valve 112 will not allow water to escape from the piping network 106 when electric power is removed from the automatic gas vent assembly 108 (e.g., during a power outage). In the particular example shown in
As shown in
Conversely, when the fire protection system 100 is drained, the trapped air bubble will decompress and expand in volume to help remove water from around the sensor 110, causing the sensor 100 to sense the absence of water. This, in turn, will cause the electrically operated valve 112 to open and essentially reset the automatic gas vent assembly 108 before the piping network 106 is filled again with water.
As shown in
Additionally, the electrical control 116 is configured to produce an electrical output indicating a state of the electrically operated valve 112. This output may be provided, e.g., to one or more visual indicators (e.g., LEDs) for indicating whether the electrically operated valve is open or closed. In the example embodiment shown in
The pressure-operated valve 226 is in fluid communication with the electrically operated valve 112 and has a pressure setting that may be set in the factory or manually in the field. The pressure-operated valve 226 is configured to prevent an ingress of air into the system 200 through the pressure-operated valve 226. In other words, the pressure-operated valve 226 operates as a one-way valve that allows gas to exit the system 200 (as indicated by the arrows in
The pressure setting of the pressure-operated valve 226 is preferably below the water pressure of the water source 102. As a result, the water pressure of the water source 102 will be sufficient to discharge gas through the pressure-operated valve 226 as the piping network 106 is being filled with water. In some embodiments, the pressure setting of the pressure-operated valve 226 is about forty pounds per square inch gauge (PSIG).
Additionally, the pressure-operated valve 226 may increase the amount of air compressed in the space (e.g., in the piping 114) between the sensor 110 and the electrically operated valve 112 when the piping network 106 is filling with water. Initially, when the electrically operated valve 112 is open, the air in the space between the sensor 110 and the valve 112 will compress and reach the pressure setting of the pressure-operated valve (e.g., about forty PSIG) before air begins to exit the system 200 via the pressure-operated valve 226. Thus, a compressed air bubble will already exist in the space between the sensor 110 and the electrically operated valve 112 while the valve 112 is still open. When the electrically operated valve 112 closes in response to the sensor 110 sensing the presence of water, the water pressure in the piping network 106 will further compress and reduce the volume of the trapped air bubble until the pressure of the air bubble reaches the water pressure in the piping network 106. Thus, a larger volume of air may be trapped and compressed in the system 200 of
Consequently, when the fire protection system 200 is drained, the trapped air bubble will decompress and expand in volume to a greater extent than in the system 100 of
In some embodiments, the pressure-operated valve 226 may emit an audible indicator when the pressure-operated valve 226 is discharging gas from the system 200.
In the particular embodiment shown in
The redundant gas vent 228 shown in
The redundant gas vent 228 may be any suitable gas vent, and is preferably a passive mechanical gas vent to ensure no water will be discharged from the system during a power outage, even if the electrically operated valve 112 malfunctions. In the particular example shown in
When the sensor 110 senses the absence of water, the sensor 110 presents an open circuit to the board level controller 302, as shown in
Conversely, when the sensor 110 senses the presence of water, the sensor 110 presents a closed circuit to the board level controller 302, as shown in
In the example embodiment shown in
The fire protection systems described herein may be any suitable type of water-based fire protection sprinkler systems such as, for example, wet pipe sprinkler systems, dry pipe sprinkler systems, etc.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
This application is a continuation of International Application No. PCT/US2013/043707 filed May 31, 2013 and claims the benefit of U.S. Provisional Application No. 61/653,733 filed May 31, 2012. The entire disclosures of the above applications are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61653733 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2013/043707 | May 2013 | US |
Child | 14556642 | US |