[Not Applicable]
Certain embodiments of the invention relate to assisted pool access devices. More specifically, certain embodiments of the invention relate to an electrically-powered platform lift mountable in a pool.
Title III of the ADA prohibits discrimination on the basis of disability by places of public accommodation. The 2010 Standards require that newly constructed or altered swimming pools, wading pools, and spas have an accessible way for people with disabilities to enter and exit the pool. Examples of accessible means for entering and exiting a pool include sloped entries and pool lifts.
With regard to sloped entries, most facilities simply do not have enough space to incorporate a sloped entry into new construction, and the cost to add a sloped entry to an existing pool is not feasible. Although pool lifts can be more space and cost effective than sloped entries, existing pool lifts have a number of drawbacks. For example, existing pool lifts are typically deck mounted, which may clutter the pool deck. As another example, existing pool lifts are typically chair-based devices that require an individual in a wheelchair to transfer from the wheelchair to the lift chair prior to entering the pool. Existing pool lifts that are mounted in a pool and have a platform for lowering a wheelchair into the pool are currently hydraulically-powered. Existing hydraulically-powered pool lifts are larger and less powerful (i.e., lower weight capacity) than electrically-powered pool lifts.
Further limitations and disadvantages of conventional and traditional approaches will become apparent to one of skill in the art, through comparison of such systems with some aspects of the present invention as set forth in the remainder of the present application with reference to the drawings.
A system and/or method is provided for an electrically-powered platform lift that provides assisted access to a pool, substantially as shown in and/or described in connection with at least one of the figures, as set forth more completely in the claims.
These and other advantages, aspects and novel features of the present invention, as well as details of an illustrated embodiment thereof, will be more fully understood from the following description and drawings.
Certain embodiments of the invention may be found in a pool lift. More specifically, certain embodiments provide an electrically-powered platform lift mountable in a pool. An example embodiment of the present invention aids users with limited mobility by providing a pool lift that can transfer a wheelchair holding the user into a pool, instead of having to transfer the limited mobility user from the wheelchair into the lift chair, and then into the pool, for example. An example embodiment of the present invention provides a clean finish to a swimming pool deck by mounting the pool lift directly in the pool.
Various embodiments include a system 100 that provides assisted access to a pool. The system 100 comprises a platform 120 that comprises a frame 122, a deck 126, and one or more handrails 124. The deck 126 is attached to the frame 122 and sized to receive a wheelchair. The one or more handrails 124 are attached to at least one of the frame 122 and the deck 126. The system 100 comprises an upright lifting component case 108. The frame 122 of the platform 120 is substantially perpendicular to the upright lifting component case 108. The system 100 comprises lifting components (e.g., 134, 138, 140, 142, 144, 146, 150, 156) that are at least partially disposed in the upright lifting component case 108 and attached to the platform 120. The lifting components (e.g., 134, 138, 140, 142, 144, 146, 150, 156) are operable to vertically move the frame 122 between a top and a bottom of the upright lifting component case 108. The system 100 comprises an electrical power source 102 operable to provide electrical power to at least a portion of the lifting components (e.g., 134).
As used herein, the terms “exemplary” or “example” means serving as a non-limiting example, instance, or illustration. As used herein, the term “e.g.” introduces a list of one or more non-limiting examples, instances, or illustrations.
As used herein, an element recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural of the elements, unless such exclusion is explicitly stated. Furthermore, references to “an embodiment,” “one embodiment,” “a representative embodiment,” “an exemplary embodiment,” “various embodiments,” “certain embodiments,” and the like are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Moreover, unless explicitly stated to the contrary, embodiments “comprising,” “including,” or “having” an element or a plurality of elements having a particular property may include additional elements not having that property.
The control console 104 provides control of the operation of the platform lift 100. The control console 104 includes control buttons for providing directional control of the platform 120. In various embodiments, the control console 104 can include a radio frequency control receiver powered by the electrical power source 102 for wirelessly communicating with one or more wireless handsets that allow remote operation of the platform lift 100, such as by a user situated on the platform 120.
Referring again to
The lifting frame 114 mounts to a pool floor and couples to the lifting component case 108 to support the platform lift 100. The lifting frame 114 attaches to the lifting component case 108 to hold the lifting component case 108 in an upright (i.e., vertical) position. The lifting frame 114 comprises floor brackets 116 and leveling pads 118. The floor brackets 116 are operable to affix the lifting frame 114 to the pool floor. The leveling pads 118 are adjustable pads on an underside of the lifting frame 114 for assisting with leveling the platform 120 with the pool deck when the platform 120 is in an elevated position and/or with the pool floor when the platform 120 is in a lowered position.
The platform 120 comprises a frame 122, rails 124, and a deck 126. The frame 122 attaches to the lifting components disposed in the lifting component case 108 through case slots 110, such that the lifting components may raise and lower the platform 120. The rails 124 attach to two opposing sides of the frame 122 to provide a hand grip for a user of the platform lift 100. The deck 126 affixes to a top side of the frame 122 to provide a surface for receiving the wheelchair being elevated and/or lowered using the platform lift 100. In various embodiments, the deck 126 can be approximately 40 inches by 46 inches or any suitable dimensions. The deck 126 can be fiberglass or any suitable material, and may include a non-slip textured surface. The rails 124 may be approximately 34 inches tall and can be positioned on each 46 inch side of the deck 126, for example. The frame 122 and rails 124 can be stainless steel or any suitable material.
The electrical power source 102 provides power to the control console 104 and lifting components disposed in the lifting component case 108. The control console 104 provides control of the operation of the platform lift 100. The lifting component case 108 houses the components operable to lift the platform 120. In various embodiments, the components operable to lift the platform 120 comprise an electric motor 134, a shaft coupler 138, a belt 140, sprockets 142, power screws 144, a carriage plate 146, and power screw receiving mechanisms 156.
The electric motor 134 is powered by the electrical power source 102 and controlled by the control console 104. The electrical motor 134 operates to rotate power screws 144 in a first direction to elevate the platform 120 and in a second direction to lower the platform 120 as directed by control signals received from the control console 104. More specifically, the electrical motor 134 may be activated to create rotational energy of a motor shaft in a clockwise or counterclockwise direction. The motor shaft may be attached to a shaft of a sprocket 142 via a shaft coupler 138, such as a jaw coupling, for example. The shaft coupler 138 transmits the torque generated by the motor 134 to the sprocket 142. The sprocket 142 is attached to a power screw 144 and a belt 140. As the sprocket 142 is rotated by the motor 134, the sprocket rotates the power screw 144 and the belt 140. The belt 140 can be a carbon fiber belt or any suitable belt that is stretched between a pair of sprockets 142. As the first sprocket 142 coupled to the electric motor 134 is rotated by the electric motor 134, the belt 140 is driven to rotate a second sprocket 142 that is attached to and rotates a second power screw 144. As such, the power screws 144 are simultaneously rotated in a same direction to cooperate in elevating and lowering the platform 120.
The power screws 144 are coupled to the platform 120 by a carriage plate 146 that extends substantially the width within the lifting component case 108. The carriage plate 146 comprises power screw receiving mechanisms 156, plate apertures 148, and carriage connector brackets 150. As described in more detail below in connection with
In various embodiments, carriage wheels 152 may be coupled to each of the carriage connector brackets 150 and slidably fit within wheel guide slots 154 that extend vertically along the ends of the lifting component case. The carriage wheels 152 may be polymer plane bearings and stainless steel rollers, or any suitable material. The carriage wheels 152 slidably coupled within the wheel guide slots 154 assist in distributing the loads evenly and safely, provide additional support to maintain a level angle of the platform 120, and assist with providing smooth vertical movements of the platform 120.
In certain embodiments, a maximum elevated position height and/or a minimum lowered position height of the platform 120 may be adjustable. For example, a user may desire to adjust the platform lift 100 such that the maximum height may align the platform deck 126 with the pool deck and the minimum height can align the platform deck 126 with the pool floor. In an example embodiment, the maximum and minimum heights can be controlled by two electronic switches 166 adjusted by two stop adjustment knobs 160 located in the lifting component case 108. A user may access the stop adjustment knobs 160 by, for example, removing the case top 112.
Referring again to
More specifically, washers can be used to attach the linear lead screw nuts 156 to the carriage plate 146 such that the linear lead screw nuts 156 extend through the carriage apertures 148 and are angularly aligned with and coupled to the power screws 144. The washers provide the linear lead screw nuts 156 with a flexible angular alignment to the power screws 144 to prevent binding at the connection of the linear lead screw nuts 156 to the power screws 144. A carrier is attached to each of the linear lead screw nuts 156 to prevent rotation of the linear lead screw nuts 156 as the power screws 144 are rotated. The carriage plate 146 travels up and down with the linear lead screw nuts 156 on the power screws 144 as the power screws 144 are turned by the electric motor 134.
In various embodiments, the power screws 144 can be stainless steel or any suitable material. The power screws 144 may not need a grease lubricant because the platform lift 100 is mounted in a pool and the power screws 144 can use pool water as the working lubricant. Still referring to
In accordance with various embodiments of the invention, a system 100 for providing assisted access to a pool comprises a platform 120 that comprises a frame 122, a deck 126, and one or more handrails 124. The deck 126 is attached to the frame 122 and sized to receive a wheelchair. The one or more handrails 124 are attached to at least one of the frame 122 and the deck 126. The system 100 comprises an upright lifting component case 108. The frame 122 of the platform 120 is substantially perpendicular to the upright lifting component case 108. The system 100 comprises lifting components (e.g., 134, 138, 140, 142, 144, 146, 150, 156) that are at least partially disposed in the upright lifting component case 108 and attached to the platform 120. The lifting components (e.g., 134, 138, 140, 142, 144, 146, 150, 156) are operable to vertically move the frame 122 between a top and a bottom of the upright lifting component case 108. The system 100 comprises an electrical power source 102 operable to provide electrical power to at least a portion of the lifting components (e.g., 134).
In an example embodiment, the electrical power source 102 is a rechargeable battery. In various embodiments, the system 100 comprises a control console 104 configured to control the lifting components (e.g., 134, 138, 140, 142, 144, 146, 150, 156). In certain embodiments, the control console 104 comprises a radio frequency control receiver powered by the electrical power source 102. The radio frequency control receiver is configured to receive wireless control signals to control the lifting components (e.g., 134, 138, 140, 142, 144, 146, 150, 156).
In various embodiments, the system 100 comprises at least one wireless handset 168 operable to wirelessly transmit directional control signals to the radio frequency control receiver of the control console 104 in response to a user input 170 received at the at least one wireless handset 168. In an example embodiment, the at least one wireless handset 168 enters a sleep mode if a user input 170 is not received for a predetermined period of time. The at least one wireless handset 168 comprises a lockout mechanism 172 configured to awake the at least one wireless handset 168 from the sleep mode to enable receiving the user input 170.
In certain embodiments, the system 100 comprises a lifting frame 114 attached to the upright lifting component case 108. The lifting frame 114 is operable to support the upright lifting component case 108 in an upright position. The lifting frame 114 comprises hardware operable to level 118 the lifting frame 114 and mount 116 the lifting frame 114 to a pool floor. In various embodiments, the system 100 comprises a screen 158 attached to the platform 120 and extending to the lifting frame 114. The screen 158 is collapsible as the platform 120 is lowered from an elevated position to a lowered position. The screen 158 is operable to prevent solid objects from entering an area between the frame 122 of the platform 120 and the lifting frame 114. In an example embodiment, the deck 126 is fiberglass and comprises a non-slip textured surface. In certain embodiments, the frame 122 comprises a platform adjustment mechanism 128 operable to adjust an angle of the deck 126.
In an example embodiment, the lifting components (e.g., 134, 138, 140, 142, 144, 146, 150, 156) comprise a carriage 146, at least one power screw 144, at least one power screw receiving mechanism 156, and an electric motor 134. The carriage 146 is attached to the platform 120. The at least one power screw receiving mechanism 156 couples the carriage 146 to the at least one power screw 144. The electric motor 134 is powered by the electrical power source 102. The electric motor 134 is operable to generate torque that rotates the at least one power screw 144. The rotation of the at least one power screw 144 in a first direction causes the at least one power screw receiving mechanism 156 to travel up the at least one power screw 144 to elevate the platform 120. The rotation of the at least one power screw 144 in a second direction causes the at least one power screw receiving mechanism 156 to travel down the at least one power screw 144 to lower the platform 120.
In various embodiments, the carriage 146 is a plate that comprises carriage connector brackets 150 that attach to the frame 122 of the platform 120. In certain embodiments, the upright lifting component case 108 comprises slots 110. The carriage connector brackets 150 extend through the slots 110 to attach to the frame 122 of the platform 120. In an example embodiment, the at least one power screw 144 comprises two power screws. Each of the power screws 144 are attached to a sprocket 142. The sprockets 142 are coupled by a belt 140. The rotation of one of the two power screws 144 by the electric motor 134 causes the other of the two power screws 144 to simultaneously rotate in the same direction due to the sprockets 142 coupled by the belt 140. In various embodiments, the at least one power screw receiving mechanism 156 comprises a linear lead screw nut extending through 148 and attaching to the carriage 146. The linear lead screw nut 156 is flexibly and angularly aligned to the at least one power screw 144 to prevent binding at the coupling of the linear lead screw nut 156 and the at least one power screw 144.
In certain embodiments, the upright lifting component case 108 comprises wheel guide slots 154. The carriage connector brackets 150 comprise carriage wheels 152 that slidably couple with the wheel guide slots 154. In an example embodiment, the electric motor 134 comprises an emergency drive 136 that is drivable without power from the electrical power source 102.
In various embodiments, the system 100 comprises an electronic switch 166, a threaded rod 162, a slider guide 164, and a stop adjustment knob 160. The threaded rod 162 is attached to the electronic switch 166 by a coupling nut. The slider guide 164 defines a height adjustment range. The electronic switch 166 is movable within the slider guide 164. The stop adjustment knob 160 is attached to the threaded rod 162. The stop adjustment knob 160 is operable to rotate the threaded rod 162 to move the electronic switch 166 vertically within the slider guide 164. The electronic switch 166 sets one or more of a maximum elevated position height and a minimum lowered position height of the frame 122 of the platform 120. The rotation of the threaded rod 162 in a first direction causes the coupling nut attached to the electronic switch 166 to travel up the threaded rod 162 within the slider guide 164. The rotation of the threaded rod 162 in a second direction causes the coupling nut attached to the electronic switch 166 to travel down the threaded rod 162 within the slider guide 164.
In an example embodiment, the electronic switch 166 is a Hall effect sensor. In certain embodiments, one or more of the upright lifting component case 108 and at least a portion of the lifting components (e.g., 134, 138, 140, 142, 144, 146, 150, 156) is at least one of fiberglass and coated with a corrosion resistant barrier.
Although devices and systems according to the present invention may have been described in connection with a preferred embodiment, it is not intended to be limited to the specific form set forth herein, but on the contrary, it is intended to cover such alternative, modifications, and equivalents, as can be reasonably included within the scope of the invention as defined by this disclosure and appended diagrams.
While the present invention has been described with reference to certain embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the present invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the present invention without departing from its scope. Therefore, it is intended that the present invention not be limited to the particular embodiment disclosed, but that the present invention will include all embodiments falling within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2482211 | Reichardt | Feb 1947 | A |
3661228 | Glasser | May 1972 | A |
3946788 | Van Muyen | Mar 1976 | A |
4133437 | Gates | Jan 1979 | A |
4141089 | Krumbeck | Feb 1979 | A |
4353436 | Rice | Oct 1982 | A |
4599835 | Rinke | Jul 1986 | A |
4712788 | Gaudreau, Jr. | Dec 1987 | A |
5143181 | Bixby | Sep 1992 | A |
5158157 | Billington, III | Oct 1992 | A |
5322408 | Wooden | Jun 1994 | A |
5368131 | Yoshihiro | Nov 1994 | A |
5499694 | Dorn | Mar 1996 | A |
5542493 | Jacobson et al. | Aug 1996 | A |
5702222 | Rosen | Dec 1997 | A |
5883680 | Nykerk | Mar 1999 | A |
5901812 | Meunier | May 1999 | A |
5901816 | Camilleri | May 1999 | A |
6086314 | Savaria | Jul 2000 | A |
7926618 | Zuercher | Apr 2011 | B2 |
20070079439 | Patterson et al. | Apr 2007 | A1 |
20070137944 | Lam | Jun 2007 | A1 |
20070158627 | Dittmer | Jul 2007 | A1 |
20100122406 | Gschwind | May 2010 | A1 |
20130098712 | Svendsen | Apr 2013 | A1 |
20130312174 | Kanetis | Nov 2013 | A1 |
Entry |
---|
International Search Report and the Written Opinion of the International Searching Authority for PCT Application No. PCT/US2015/023496 mailed Jul. 2, 2015, 16 pages. |
Number | Date | Country | |
---|---|---|---|
20150272799 A1 | Oct 2015 | US |