The present invention relates to zero turning radius riding mowers of the type in which the seated driver controls speed, turning and forward/reverse travel by appropriately manipulating a pair of drive levers adjacent the seat. More particularly, it relates to a way of automatically applying parking brakes or other wheel retaining mechanism when the ignition is turned off or the drive levers are swung outwardly to their widespread positions for operator dismount.
Zero turning radius mowers are typically provided with twin drive levers that are manipulated by the seated operator to regulate the speed, turning, and forward or reverse operations of the mower. In a typical such mower, the ground-engaging drive wheels utilize reversible hydraulic motors that are supplied with hydraulic fluid in variable amounts by pumps linked to the drive levers. Steering of the machine is accomplished by speeding up or slowing down one of the hydraulic motors relative to the other through the appropriate manipulation of the drive levers. In some instances, one of the motors may be reversed relative to the other to turn the machine about a zero turning radius. Mechanical drive mechanisms have also been utilized in lieu of the hydraulic pumps and motors.
The drive levers are moveable independently of one another along fore-and-aft paths of travel to control the pumps and hydraulic motors. However, when the levers are aligned with one another in side-by-side relationship in neutral, they can be swung outwardly to widespread positions to make it more convenient for the operator to dismount the mower. In the present invention, through use of an electrical control circuit, swinging of the drive levers to their widespread positions causes the parking brakes or other wheel retaining mechanisms to be automatically applied, holding the mower against further movement. The electrical control circuit is also such that when the ignition is turned off for any reason, even if the drive levers are not in their widespread positions, the parking brake or retaining mechanism will be automatically applied as a safety means.
The present invention is susceptible of embodiment in many different forms. While the drawings illustrate and the specification describes certain preferred embodiments of the invention, it is to be understood that such disclosure is by way of example only. There is no intent to limit the principles of the present invention to the particular disclosed embodiments.
Referring initially to
An operator's seat 26 is supported on chassis 12 in front of engine 24 in such a position that an operator sitting on seat 26 can readily grasp a pair of drive levers 28 and 30 for controlling speed, turning, and forward or reverse travel of the mower. Levers 28 and 30 are moveable independently of one another along fore-and-aft paths of travel within respective T-shaped slots 32 and 34 in chassis 12 for accomplishing such control in a well-known manner. Fore-and-aft or longitudinal legs 36 (
Mower 10 may be provided with mechanical drive mechanism operably interconnecting the output shaft (not shown) of engine 24 with drive wheels 14, 16. However, in a preferred embodiment the engine output shaft is connected with a pair of hydraulic pumps 40 and 42 (
Each of the drive levers 28, 30 is pivotally attached to its corresponding support bracket 58 by a fore-and-aft pivot 68 (
At least one of the drive wheels 14, 16, and preferably both, is provided with retaining mechanism broadly identified by the numeral 70 (detailed in
Retaining mechanism 70 further includes a tension spring 80 operably coupled with brake member 74 in a manner to yieldably bias member 74 toward its raised actuated position, thus applying the brake. Tension spring 80 is connected at its upper end to an adjustable eye-bolt 82 that is secured to a mounting bracket 84 on the outside of an upright, formed metal, generally channel-shaped tower 86 that is secured to and forms a part of chassis 12. The lower end of tension spring 80 is connected to the outer end of a generally horizontally extending lever 88 that is pivotally mounted to tower 86 by a transverse pivot 90. Spring 80 thus yieldably biases the outer end of lever 88 upwardly. Also coupled with the outer end of lever 88 is an adjustable, upright turnbuckle 92 that is connected at its lower end with an inverted, generally L-shaped bracket 94 fixed to brake member 74. Lever 88, link 92 and bracket 94 thus transmit the biasing force of spring 80 to the member 74 to apply a braking force to the drum of brake 72.
An electric control circuit 96, shown schematically in
One primary component of control circuit 96 is an electrically powered control device 98 for each wheel 14, 16, such device 98 being mounted on and supported by the support tower 86 associated with that wheel. Each control device 98 includes, in one preferred form, a single-acting air cylinder 100 powered by a pump 102. In a preferred form, the air cylinder 100 and pump 102 are integrated into a single unit such as that available from North American Clutch Corporation of Milwaukee, Wis. as NORAM brand part number 700A020.
Each air cylinder 100 includes a ram or piston 103 (
When air cylinder 100 is electrically energized, it retracts piston rod 104 and releases the brake 72. An electrically controlled valve (not shown) associated with exhaust port 112 helps hold sufficient air pressure within housing 106 as to maintain rod 104 retracted such that the motor of pump 102 need not be constantly running during the time that pressurized air maintains piston rod 104 retracted. When air cylinder 100 is de-energized, the valve of exhaust port 112 opens to set the brake.
Provision is made to manually release the brake 72 and releasably maintain it in a released condition in the event that control device 98 is disabled or it is simply desired to maintain the brake released for any other reason, such as while the mower is being serviced. To this end, lever 88 is provided with a manual retaining rod 114 connected to the inner end of lever 88 via a generally upright slot 116 in lever 88. At its upper end, retaining rod 114 is joggled outwardly and passes through the proximal side wall of tower 86 to terminate in a finger loop 118. The upper end of retaining rod 114 is received within a vertical slot 120 in the proximal side wall of tower 86 so that link 114 may be manually grasped and pulled upwardly to the upper limit of slot 120. In such position, the rod 114 may be pushed to one side in a transverse leg 122 of slot 120 so as to releasably hold rod 114 in its upwardly raised position. Thus, by pulling upwardly on retaining rod 114 when the brake is in an applied condition, the brake 72 will become released as the inner end of lever 88 is swung upwardly by rod 114. By then temporarily pushing rod 114 into transverse leg 122, rod 114 will remain fully raised with the brake released and piston rod 104 retracted into housing 106.
Normally, retaining rod 114 is out of the transverse leg 122 of slot 120 and is resting on the bottom of slot 120. Under such conditions, the vertical slot 116 in lever 88 serves as a lost motion connection with rod 114 and permits piston rod 104 to retract and extend without causing manipulation of retaining rod 114. Of course, retaining rod 114 may also be pulled upwardly and hooked over the edge of transverse leg 122 when the brake is already in a released condition with piston rod 104 retracted into cylinder 100, thereby avoiding the need to manually overpower the spring 80.
Control circuit 96 further includes a pair of normally closed switches 124 that are mounted on the brackets 58 associated with drive levers 28, 30 and are electrically connected with the air pumps 102 associated with air cylinders 100. Each of the switches 124 has an actuating button 126 positioned within the path of travel of the lower end of the corresponding drive lever 28 or 30 so as to be depressed and thus open the circuit when levers 28, 30 are in their widespread position as illustrated in
Control circuit 96 also includes a storage battery 128 electrically connected with the pumps 102 and switches 124, and an ignition switch 130 that is positioned for access by the operator when seated on the mower. Ignition switch 130 must be closed in order to energize pumps 102. Because switches 124 are connected in parallel, at least one of them must also be closed to complete the circuit and energize pumps 102. Switches 124 could be connected in series relationship with one another, in which case both of them would need to be closed, along with ignition switch 130, before pumps 102 would be energized.
Operation
During mowing operations, drive levers 28, 30 are disposed within the longitudinal fore-and-aft legs 36 of T-slots 32, 34. This enables drive levers 28, 30 to be shifted independently of one another in appropriate fore-and-aft movements to control steering, speed and forward or reverse travel. Movement of levers 28, 30 forwardly from the neutral position illustrated in
During mowing operations, because ignition switch 130 is closed and drive levers 28, 30 are spaced away from actuating buttons 126 of switches 124, control circuit 96 is energized to keep brakes 72 released. This condition is illustrated in
When the mower is to be parked and dismounted, the operator places drive levers 28, 30 in their neutral positions aligned with transverse legs 38 of T-slots 32, 34 and then swings the levers out to their widespread positions of
It will be appreciated that the brakes 72 may also be set by simply turning off the ignition switch 130 (open the circuit) when the machine is running and the drive levers 28, 30 are in their operating modes within the longitudinal legs 36 of T-slots 32, 34. Thus, brakes 72 may be set by either placing the drive levers 28, 30 in neutral and swinging them out to their widespread positions, or by simply turning off the ignition through switch 130. Conversely, to release brakes 72, the ignition must be turned on through switch 130 and at least one of the drive levers 28, 30 swung inwardly to the operating mode within the longitudinal leg 36 of the T-slot 32 or 34.
The inventor hereby states his intent to rely on the Doctrine of Equivalents to determine and assess the reasonably fair scope of his invention as pertains to any apparatus not materially departing from but outside the literal scope of the invention as set out in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3942602 | Case et al. | Mar 1976 | A |
5496226 | Splittstoesser et al. | Mar 1996 | A |
5502957 | Robertson | Apr 1996 | A |
5507138 | Wright et al. | Apr 1996 | A |
5600944 | Wright et al. | Feb 1997 | A |
5765347 | Wright et al. | Jun 1998 | A |
5809755 | Velke et al. | Sep 1998 | A |
5984031 | Velke et al. | Nov 1999 | A |
6056074 | Heal et al. | May 2000 | A |
6059055 | Velke et al. | May 2000 | A |
6094897 | Velke et al. | Aug 2000 | A |
6138446 | Velke et al. | Oct 2000 | A |
6189304 | Velke et al. | Feb 2001 | B1 |
6276486 | Velke et al. | Aug 2001 | B1 |
6301864 | Damie et al. | Oct 2001 | B1 |
6327839 | Velke et al. | Dec 2001 | B1 |
6343668 | Dean | Feb 2002 | B1 |
6390225 | Velke et al. | May 2002 | B2 |
6434917 | Bartel | Aug 2002 | B1 |
6516596 | Velke et al. | Feb 2003 | B2 |
6550563 | Velke et al. | Apr 2003 | B2 |
6688090 | Velke et al. | Feb 2004 | B2 |
6729115 | Bartel | May 2004 | B2 |
6912831 | Velke et al. | Jul 2005 | B2 |
20040124697 | MacGregor et al. | Jul 2004 | A1 |
20080111342 | Niekerk et al. | May 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20080190084 A1 | Aug 2008 | US |