This application is a 35 U.S.C. §371 National Phase Entry Application from PCT/EP2010/061218, filed Aug. 2, 2010, and designating the United States.
The present invention relates to a waveguide tuning device arranged for mounting in a waveguide structure which has a longitudinal extension and comprises a first inner wall, a second inner wall, a third inner wall and a fourth inner wall. The inner walls are constituted by respective main surfaces and are electrically conducting, and are arranged such that a rectangular cross-section is obtained for the waveguide structure. The first inner wall and the second inner wall have a first length and are facing each other. The third inner wall and the fourth inner wall have a second length and are facing each other. The electrical field is parallel to the main surfaces of the first inner wall and the second inner wall.
The present invention also relates to a tunable waveguide structure having a longitudinal extension and comprises a first inner wall, a second inner wall, a third inner wall and a fourth inner wall. The inner walls are constituted by respective main surfaces and are electrically conducting, and are arranged such that a rectangular cross-section is obtained for the waveguide structure. The first inner wall and the second inner wall have a first length and are facing each other. The third inner wall and the fourth inner wall have a second length and are facing each other. The electrical field is parallel to the main surfaces of the first inner wall and the second inner wall.
Electrical tuning of waveguide filters for radio communication is a well known technology. The usual way to implement electrical tuning devices in a waveguide is to vary the capacitive and inductive coupling in the waveguide and also to design additional structures in the waveguide to concentrate the electric field to the position where the tuning device is placed.
However, tuning of waveguide filters and other waveguide structures using pin diodes, ferroelectrics and MEMS in this way will affect the general electrical performance of the waveguide filter in a negative way. One of the absolute major problems is the resulting low effective Q-factor when for example using pin diodes or ferroelectric structures in a waveguide filter, which in turn results in high losses. MEMS-structures have also been used for tuning such filters, with the same poor result as for pin diodes and ferroelectric structures.
There is thus a need for an enhanced waveguide tuning device that is electrically controllable and an enhanced electrically tunable waveguide structure.
The object of the present invention is to provide an enhanced waveguide tuning device that is electrically controllable and an enhanced electrically tunable waveguide structure.
This object is achieved by means of a waveguide tuning device arranged for mounting in a waveguide structure which has a longitudinal extension and comprises a first inner wall, a second inner wall, a third inner wall and a fourth inner wall. The inner walls are constituted by respective main surfaces and are electrically conducting, and are arranged such that a rectangular cross-section is obtained for the waveguide structure. The first inner wall and the second inner wall have a first length and are facing each other. The third inner wall and the fourth inner wall have a second length and are facing each other. The electrical field is parallel to the main surfaces of the first inner wall and the second inner wall. The tuning device is electrically controllable and arranged for mounting at the first inner wall and/or the second inner wall.
This object is also achieved by means of a tunable waveguide structure which has a longitudinal extension and comprises a first inner wall, a second inner wall, a third inner wall and a fourth inner wall. The inner walls are constituted by respective main surfaces and are electrically conducting, and are arranged such that a rectangular cross-section is obtained for the waveguide structure. The first inner wall and the second inner wall have a first length and are facing each other. The third inner wall and the fourth inner wall have a second length and are facing each other. The electrical field is parallel to the main surfaces of the first inner wall and the second inner wall. At least one electrically controllable tuning device is arranged for mounting at the first inner wall and/or the second inner wall
According to an example, the second length exceeds the first length.
According to another example, the tuning device is arranged for altering the second length between at least two values along the extension of the tuning device.
According to another example, the tuning device comprises a non-conducting laminate on which at least one row of switches is placed, the switches being electrically openable and closable and being arranged to constitute an electrically conducting connection between the third inner wall and the fourth inner wall. The switches may be of the type Micro Electro Mechanical Systems, MEMS.
According to another example, the waveguide structure is in the form of a surface-mountable wave-guide part, which is arranged to be mounted to a printed circuit board, PCB, such that a metalization on the PCB constitutes the first inner wall.
According to another example, the waveguide structure comprises a first part and a second part, where the first part comprises the first inner wall, partly the third inner wall and partly the fourth inner wall. Furthermore, the second part comprises the second inner wall, partly the third inner wall and partly the fourth inner wall. The tuning device is arranged to be placed on the first inner wall in order to alter the distance between the first inner wall and the second inner wall. A metal foil with at least two apertures is arranged to be placed between the first part and the second part, then running parallel to the first inner wall and the second inner wall.
Other examples are evident from the dependent claims.
A number of advantages are obtained by means of the present invention, for example:
The present invention will now be described more in detail with reference to the appended drawings, where:
With reference to
The inner walls 3, 4, 5, 6 are constituted by respective main surfaces and are electrically conducting, the inner walls 3, 4, 5, 6 furthermore being mounted such that a rectangular cross-section comprising an opening 25 is obtained for the waveguide structure 2. The first inner wall 3 and the second inner wall 4 have a first length b in the rectangular cross-section and are facing each other. In a similar way, the third inner wall 5 and the fourth inner wall 6 have a second length a in the rectangular cross-section and are facing each other. The electrical field E is indicated in
According to the present invention, with reference to
In
This is illustrated in detail in
How the tuning is performed by means of the MEMS structure 1 will now be explained more in detail with reference to
As shown, there are two MEMS structures 1a, 1b positioned at both short sides of the waveguide structure 2; a first MEMS structure 1a mounted to the first inner wall 3 and a second MEMS structure 1b mounted to the inner second inner wall 4. In section A-A in
In
In
In
When the switches 12 are opened again, as shown in
Two examples of filter structures will be described, first a cavity filter with a surface-mounted waveguide structure 2′ and then an E-plane filter.
A cavity filter with a surface-mounted waveguide structure 2′ will be described with reference to
The waveguide structure 2′ is in the form of a Surface Mountable Waveguide (SMW) part 23 mounted to a printed circuit board (PCB) 13 such that a metalization 14 on the PCB 13 constitutes the first inner wall 3′. The second inner wall 4′, the third inner wall 5′ and the fourth inner wall 6′ are all formed in the SMW part 23. The SMW part 23 further comprises a first iris 15a and a second iris 15b placed between the second inner wall 4′, the third inner wall 5′ and the fourth inner wall 6′. Each iris 15a, 15b is in the form of a metal wall that has a main extension that runs perpendicular to the main surfaces of the inner walls 3′, 4′, 5′, 6′, contacting the second inner wall 4′, the third inner wall 5′ and the fourth inner wall 6′, but not reaching the first inner wall 3′. These are asymmetrical inductive irises 15, 15b which define a cavity 24.
In
A first MEMS structure 1a′ is placed on the first inner wall 3′ and a second MEMS structure 1b′ is placed on the second inner wall 4′, between the irises 15a, 15b, such that the first MEMS structure 1a′ and the second MEMS structure 1b′ face each other. In
The MEMS structures 1a′, 1b′ are arranged to alter the distance between the first inner wall 3′ and the second inner wall 4′ in a corresponding manner as discussed with reference to
Preferably the SMW part 23 and the first MEMS structure 1a′ are soldered to the PCB and will be biased from the PCB where the bias connection is placed in an internal layer of the PCB.
An E-plane filter will now be described with reference to
The E-plane filter comprises a waveguide structure 2″, which in turn comprises a first part 2a and a second part 2b. The first part 2a comprises the first inner wall 3″, partly the third inner wall 5″ and partly the fourth inner wall 6″. The second part 2b comprises the second inner wall 4″, partly the third inner wall 5″ and partly the fourth inner wall 6″. When the first part 2a and the second part 2b are mounted, as shown in
For reasons of clarity, only two apertures 17, 18 are denoted in
A MEMS structure 1″ is placed on the first inner wall 3″ in order to alter the distance between the first inner wall 3″ and the second inner wall 4″ in a corresponding manner as discussed with reference to
The present invention is not limited to the examples discussed above, but may freely within the scope of the appended claims. For example, a number of MEMS structures may be stacked, allowing tuning in several steps. It is possible to use any number of MEMS structures along one short side or both short sides of a waveguide structure.
Each MEMS structure generally constitutes an electrically controllable tuning device, and at least one electrically controllable tuning device is used in accordance with the present invention.
The basic idea of the present invention lies in positioning an electrically controllable tuning device in a waveguide where the electrical field is weak and the magnetic field is strong.
Preferably, MEMS-structures based on cantilever switches are used as tuning devices, although other types of electrically controllable tuning devices are conceivable. For a rectangular waveguide, this is close to the short wall of the waveguide constituted by the first inner wall 3, 3′, 3″ and the second inner wall 4, 4′, 4″ in the Figures. In general, this means that in the examples above, the second length a exceeds the first length b.
Where MEMS structures are used, the number of rows and the general constitution of the MEMS structure are only given as an example. There may be any suitable switch arrangement constituting such a MEMS structure. There does not have to be any vias or conducting frame, but there has to be an electrical connection via the rows 9, 10, 11 of switches 12 and the surrounding third inner wall 5 and fourth inner wall 6 when the switches 12 are closed
Also, a MEMS structure does not have to be mounted against any one of the first inner wall and/or second inner wall as shown in the examples above, but there may be a distance between each MEMS structure and the corresponding first inner wall and/or second inner wall. It is, however, important that there is an electrical contact between each MEMS structure and the third inner wall 5 and fourth inner wall 6, such that an electrical connection via the rows 9, 10, 11 of switches 12 and the surrounding third inner wall 5 and the fourth inner wall 6 when the switches 12 are closed.
The E-plane filter and the cavity filter are only given as examples of applications for the present invention. The present invention is applicable for any waveguide structure where tuning is desired.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2010/061218 | 8/2/2010 | WO | 00 | 1/31/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/016584 | 2/9/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5808528 | Griffith et al. | Sep 1998 | A |
7456711 | Goldsmith | Nov 2008 | B1 |
20050270125 | Higgins et al. | Dec 2005 | A1 |
20110084783 | Jinnai | Apr 2011 | A1 |
Number | Date | Country |
---|---|---|
2009157494 | Dec 2009 | WO |
2010063307 | Jun 2010 | WO |
Entry |
---|
Park, S. et al, “High-Q RF-MEMS Tunable Evanescent-Mode Cavity Filter”, 2009, IEEE, Microwave Symposium Digest, p. 1145-1148. |
Number | Date | Country | |
---|---|---|---|
20130135064 A1 | May 2013 | US |