An efficient shape of permanent magnet 102 is a “C” in which the poles are in close proximity to one another and engage with the flux switch. The single flux is carried by a magnetizable member 100, also in a “C” shape with ends that are in close proximity to one another and also engage with the flux switch. In this and in other embodiments, the 2×2 switching cycle is carried out simultaneously. As such, control circuit 118 is preferably implemented with a crystal-controlled clock feeding digital counters, flip-flops, gate packages, or the like, to adjust rise time, fall time, ringing and other parasitic effects. The output stage of the control circuit may use FET (field-effect switches) to route analog or digital waveforms to the reluctance switches as required.
In the embodiment depicted in
Other arrangements are applicable, including those disclosed in pending U.S. Patent Application Serial no. 2006/0012453, the entire content of which is incorporated herein by reference. These switches disclosed in this reference are based upon the magnetoelectric (ME) effects of liquid crystal materials in the form of magnetorestrictive and piezoelectric effects. The properties of ME materials are described, for example, in Ryu et al, “Magnetoelectric Effect in Composites of Magnetorestrictive and Piezoelectric Materials,” Journal of Electroceramics, Vol. 8, 107-1 19 (2002), Filipov et al, “Magnetoelectric Effects at Piezoresonance in Ferromagentic-Ferroelectric Layered Composites,” Abstract, American Physical Society Meeting (March 2003) and Chang et al., “Magneto-band of Stacked Nanographite Ribbons,” Abstract, American Physical Society Meeting (March 2003). The entire content of each of these papers are also incorporated herein.
Further alternatives include materials that may sequentially heated and allowed to cool (or cooled and allowed to warm up or actively heated and cooled) above and below the Currie temperature, thereby modulating reluctance. Gadolinium is a candidate since its Currie point is near room temperature. High-temperature superconductors are other candidates, with the material being cooled in an insulated chamber at a temperature substantially at or near the Currie point. Microwave or other energy sources may be used in conjunction with the control unit to effectuate this switching. Depending upon how rigidly the switches are contained, further expansion-limiting ‘yokes’ may or may not be necessary around the block best seen in
More particularly, flux switching apparatus according to this embodiment uses a permanent magnet having a north pole ‘N’ and a south pole ‘S’ in opposing relation across a gap defining a volume. A magnetizable member with ends ‘A’ and ‘B’ is supported in opposing relation across a gap sharing the volume, and a flux switch comprises a stationary block in the volume having four sides, 1-4, with two opposing sides interfaced to N and S, respectively and with the other two opposing sides being interfaced to A and B, respectively. The block is composed of a magnetizable material segmented by two electrically operated magnetic flux switches and two gaps filled with air or other material(s). A control unit in electrical communication with the flux switches is operative to:
a) passively allow a default flux path through sides 1-2 and 3-4, then
b) actively establish a flux path through sides 2-3 and 1-4, and
c) repeat a) and b) on a sequential basis.
As an alternative to a motionless flux switch, a rotary flux switch may be used to implement the 2×2 alternating sequence. Referring to
Rotating cylinder 130 is made of high magnetic permeability material which is divided completely by the flux gap 132. A preferred material is a nanocrystalline material such as FINEMET® made by Hitachi. The flux gap 132 may be air, glass, ceramic, or any material exhibiting low magnetic permeability. A superconductor or other structure exhibiting the Meissner effect may alternatively be used.
An efficient shape of magnetizable member 136 is a “C” in which its opposing ends are curved with a same radius as cylinder 130 and are in the closest possible proximity with rotating cylinder 130. Permanent magnet 138 is also preferably C-shaped in which the opposing poles are curved with a same radius as cylinder 130 and are in the closest possible proximity with rotating cylinder 130. Manufacturing and assembly considerations may dictate other shapes.
While the embodiments described thus far utilize a single permanent magnet, other embodiments are possible according to the invention utilizing a plurality of permanent magnets while nonetheless generating a single flux path.
Under the control of unit 158, reluctance switches 150, 152 open (increasing reluctance), while switches 154, 156 close (decreasing reluctance). Reluctance switches 150, 152 then close, while switches 154, 156 open, and so on. This 2×2 opening and closing cycle repeats and, as it does, the magnetic flux from stationary permanent magnets 160, 162 is reversed in polarity through the magnetizable member, causing electricity to be generated in conducting coils 166, 168.
In the preferred implementation of this embodiment, the magnets are arranged with their N and S poles reversed. The magnetizable member is disposed between the two magnets, and there are four flux switches, SW1-SW4, two between each end of the member and the poles of each magnet. The reluctance switches are implemented with the structures described above with reference to
For added particularity, assume the first magnet has north and south poles, N1 and S1, the second magnet has north and south poles, N2 and S2 and the member has two ends A and B. Assuming SW1 is situated between N1 and A, SW2 is between A and S2, SW3 is between N2 and B, and SW4 is between B and S1, the control circuitry operative to activate SW1 and SW4, then activate SW2 and SW3, and repeat this process on a sequential basis. As with the other embodiments described herein, for reasons of efficiency, the switching is carried out simultaneously.
In all of the embodiments described herein the material used for the permanent magnet(s) may be either a magnetic assembly or a single magnetized unit. Preferred materials are ceramic ferrite magnets (Fe2O3), samarium cobalt (SmCO5), or combinations of iron, neodymium, and boron. The single flux path is carried by a material having a high magnetic permeability and constructed to minimize eddy currents. Such material may be a laminated iron or steel assembly or ferrite core such as used in transformers. A preferred material is a nanocrystalline material such as FINEMET®. The conducting coil or coils are wound around the material carrying the single flux path as many turns as required to meet the voltage, current or power objectives. Ordinary, standard, insulated, copper magnet wire (motor wire) is sufficient and acceptable. Superconducting materials may also be used. At least some of the electricity induced in the conducting coils may be fed back into the switch control unit. In this mode of operation, starting pulses of electricity may be provided from a chemical or solar battery, as required.
Although in the embodiments of
This application claims priority to U.S. Provisional Patent Application Ser. Nos. 60/792,602; 60/792,596; 60/792,594; and 60/792,595, all filed Apr. 17, 2006. The entire content of each application is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60792602 | Apr 2006 | US | |
60792596 | Apr 2006 | US | |
60792594 | Apr 2006 | US | |
60792595 | Apr 2006 | US |