The present invention relates to an electricity storage device and particularly to an improvement in a sealing structure that accommodates an electricity storage element.
This application claims the benefit of priority based on Japanese Patent Application Nos. 2013-193565, filed on Sep. 18, 2013, 2013-197132 filed on Sep. 24, 2013, and 2013-210482 filed on Oct. 7, 2013, the entire contents of which are incorporated by reference.
In recent years, electricity storage devices used for personal digital assistants, electric vehicles, household power storage devices, and the like have been developed. Among the electricity storage devices, capacitors and nonaqueous electrolyte secondary batteries have been actively studied. In particular, the development of, for example, lithium ion capacitors, electric double layer capacitors, lithium ion batteries, and sodium ion batteries is highly anticipated.
Such an electricity storage device includes an electrolyte and an electrode group that includes first electrodes, second electrodes, and separators disposed between the electrodes. Each of the electrodes includes a current collector (electrode core) and an active material layer carried on the current collector.
When the electricity storage device includes a case having an open edge and accommodating an electricity storage element that includes an electrode group and an electrolyte, the open edge of the case is sealed with a sealing plate. The sealing plate is attached to the open edge of the case by performing, for example, laser welding (refer to PTL 1).
PTL 1: Japanese Unexamined Patent Application Publication No. 2012-109219
In a sealing structure in which the sealing plate is attached to an open edge of a case by performing welding, the sealing plate is not placed on the open edge, but the inner surface of the open edge and the peripheral portion of the sealing plate are generally laser-welded while the sealing plate 16A is fitted to the inside of the open edge of the case 14A as illustrated in
In the above sealing structure, however, the outer size of the sealing plate 16 and the size of the open edge of the case needs to agree with each other with high precision. Otherwise, sufficient adhesion cannot be achieved between the peripheral surface of the sealing plate and the inner surface of the open edge during welding. If the adhesion between the peripheral surface of the sealing plate 16A and the inner surface of the open edge of the case 14A is not achieved, foreign matter 90 generated due to sputtering or the like during welding may enter the case.
The electricity storage device is basically mass-produced. Among several tens of thousands of products, there may be some products that include a case and a sealing plate which do not satisfy the required precision. The influence (e.g., decrease in capacitance) of the entry of foreign matter may appear after a certain period of time. In such a case, it is difficult to find the entry of foreign matter into the case during the sealing by performing inspection.
According to one aspect of the present invention, there is provided an electricity storage device including:
an electrode group including a first electrode, a second electrode, and a separator that electrically insulates the first electrode and the second electrode;
an electrolyte;
a bottom-closed case having an open edge and accommodating the electrode group and the electrolyte; and
a sealing plate that seals the open edge of the case, the sealing plate having a first principal surface that faces an outside of the case and a second principal surface that faces an inside of the case,
wherein the first electrode includes a sheet-shaped first current collector and a first active material carried on the first current collector,
the second electrode includes a sheet-shaped second current collector and a second active material carried on the second current collector,
the first electrode and the second electrode are stacked with the separator disposed between the first electrode and the second electrode,
the sealing plate includes a peripheral portion that fits the open edge of the case and a first inclined surface, in at least part of the peripheral portion, that forms an acute angle θ1 with the first principal surface,
the open edge of the case includes a second inclined surface that contacts the first inclined surface, and
the peripheral portion of the sealing plate and the open edge of the case are joined by welding the first inclined surface and the second inclined surface.
According to another aspect of the present invention, there is provided an electricity storage device including:
an electrode group including a first electrode, a second electrode, and a separator that electrically insulates the first electrode and the second electrode;
an electrolyte;
a bottom-closed case having an open edge and accommodating the electrode group and the electrolyte; and
a sealing plate that seals the open edge of the case and that includes a first principal surface which faces an outside of the case, a second principal surface which faces an inside of the case, a peripheral portion which fits the open edge of the case, and a first inclined surface, in at least part of the peripheral portion, which forms an acute angle θ1 with the first principal surface,
wherein the first electrode includes a sheet-shaped first current collector and a first active material carried on the first current collector,
the second electrode includes a sheet-shaped second current collector and a second active material carried on the second current collector,
the first electrode and the second electrode are stacked with the separator disposed between the first electrode and the second electrode,
the electricity storage device includes a sealing structure in which the sealing plate is attached to the open edge of the case by performing welding,
the open edge of the case includes a second inclined surface that contacts the first inclined surface before the welding, and
the sealing structure is formed by welding the peripheral portion of the sealing plate and the open edge of the case while the first inclined surface and the second inclined surface are in contact with each other.
When the peripheral portion of the sealing plate and the open edge of the case are welded, foreign matter can be prevented from entering the case. Thus, an electricity storage device with desired performance can be more stably produced.
An electricity storage device according to one aspect of the present invention includes an electrode group including a first electrode, a second electrode, and a separator that electrically insulates the first electrode and the second electrode, an electrolyte, a bottom-closed case having an open edge and accommodating the electrode group and the electrolyte, and a sealing plate that seals the open edge of the case. The sealing plate has a first principal surface 16b (refer to
The first electrode includes a sheet-shaped first current collector and a first active material carried on the first current collector. The second electrode includes a sheet-shaped second current collector and a second active material carried on the second current collector. The first electrode and the second electrode are stacked with the separator disposed between the first electrode and the second electrode. When a plurality of the first electrodes and a plurality of the second electrodes are present, the first electrodes and the second electrodes are alternately stacked with the separators disposed between the first electrode and the second electrode.
The sealing plate includes a peripheral portion that fits the open edge of the case and a first inclined surface 16a, in at least part of the peripheral portion, that forms an acute angle θ1 with the first principal surface (refer to
The open edge of the case includes a second inclined surface 14a that contacts the first inclined surface. The term “contact” herein refers to a plane-contact between the first inclined surface and the second inclined surface. The peripheral portion of the sealing plate and the open edge of the case are joined by welding the first inclined surface and the second inclined surface. Hereafter, the angle (acute angle) between the peripheral surface 14b of the sidewall of the case and the second inclined surface is defined to be θ2. When the peripheral surface 14b (hereafter also simply referred to as an outer surface of the case) of the sidewall of the case and the outer surface of the sealing plate are perpendicular to each other, θ2=(90−θ1) (degrees).
As illustrated in
Furthermore, a weld having a length larger than that of a typical weld (refer to
Herein, the acute angle θ1 is preferably in the range of 5 to 85 degrees. The angle θ1 can be set to an optimum angle in the above range in accordance with the thickness of the sealing plate and the thickness of the case. The angle θ1 is more preferably in the range of 10 to 45 degrees.
When the angle θ1 is set to, for example, in the range of 5 to 85 degrees, the peripheral portion of the sealing plate and the open edge of the case are easily welded to each other. That is, when the angle θ1 is within the above range, the peripheral portion of the sealing plate and the open edge of the case can be welded by applying laser light in a direction perpendicular to the outer surface of the sealing plate as illustrated in
The thickness L11 of a portion, which is adjacent to the second inclined surface 14a, of a sidewall of the case can be set to, for example, 0.1 to 3 mm. The thickness L11 may agree with the average thickness of the entire case. Alternatively, only a portion adjacent to the second inclined surface may have a thickness L11 in the above range. The thickness L12 of a portion, which is adjacent to the first inclined surface 16a, of the sealing plate can be set to, for example, 0.1 to 4 mm. The thickness L12 may also agree with the average thickness of the entire sealing plate. Alternatively, only a portion adjacent to the first inclined surface 16a may have a thickness L12 in the above range.
The first current collector preferably includes a first metal porous body. For example, when the first electrode is a positive electrode for lithium ion capacitors or nonaqueous electrolyte secondary batteries, a metal porous body containing aluminum is preferably used as the first current collector. When the first electrode is a negative electrode for lithium ion capacitors or nonaqueous electrolyte secondary batteries, a metal porous body containing copper is preferably used as the first current collector.
To increase the capacitance of the electricity storage device, the amount of an active material carried per unit area of the current collector is desirably increased as much as possible. However, if a large amount of active material is carried on a metal foil current collector in the related art, the thickness of the active material layer increases, which increases the average distance between the active material and the current collector. As a result, the current collecting properties of the electrode degrade, and the contact between the active material and the electrolyte is restricted, which makes it easy to impair the charge-discharge characteristics.
Thus, a metal porous body with communicating pores having a high porosity is preferably used as the current collector. The metal porous body is produced by, for example, forming a metal layer on the skeleton surface of a resin foam with communicating pores, such as a urethane foam, pyrolyzing the urethane foam, and then reducing the metal.
The second current collector can also include a second metal porous body. A plurality of the second current collectors can also each include a tab-shaped second connection portion for achieving electrical connection with the adjacent second current collector. The second connection portions can be disposed so as to overlap one another in a stacking direction of the electrode group with a sheet-shaped second conductive spacer disposed therebetween, and can be fastened to each other by a second fastening member.
The first metal porous body and the second metal porous body may have such a porous structure that the surface area (hereafter, also referred to as an effective surface area) where an active material is to be carried is larger than that of a simple metal foil or the like. From this viewpoint, the first metal porous body and the second metal porous body are most preferably a metal porous body having a three-dimensional network hollow skeleton, such as Celmet (registered trademark of Sumitomo Electric Industries, Ltd.) or Aluminum-Celmet (registered trademark of Sumitomo Electric Industries, Ltd.), which is described below, because the effective surface area per unit volume can be considerably increased. In addition, the first metal porous body and the second metal porous body may be, for example, nonwoven fabric, punched metal, or expanded metal. Herein, nonwoven fabric, Celmet, and Aluminum-Celmet are porous bodies having a three-dimensional structure, and punched metal and expanded metal are porous bodies having a two-dimensional structure.
The above-described metal porous body is believed to be suitable for an electrode for electricity storage devices because the metal porous body can carry a large amount of active material due to its large surface area and can easily hold an electrolyte. However, when a plurality of electrodes each having the same polarity and including a metal porous body as a current collector are used, the current collectors having the same polarity need to be connected to each other in parallel.
For example, an electrode group 100 illustrated in
The metals are generally connected by welding. However, it is quite difficult to join the connection portions formed of a metal porous body by welding. This is because when a metal porous body is heated, the structure and properties of the porous body considerably change. Furthermore, it is difficult to precisely control the shape of a welded portion, and thus an irregular boundary is easily formed between the welded portion and the surrounding portion. As a result, the stress is locally concentrated, which makes it difficult to achieve both good conductivity and sufficient joint strength.
Therefore, the connection portion, for example, integrally formed with a main body of the current collector is joined or fastened to the adjacent connection portion by a fastening member with a conductive spacer or the like disposed therebetween. The fastening member may be, for example, a rivet. When the connection portions are mechanically joined by a fastening member such as a rivet in such a manner, the structure and properties of the metal porous body do not considerably change as in the case of welding, which can prevent the degradation of durability. Furthermore, the joint strength obtained by employing a mechanical joint method that uses a fastening member such as a rivet is several times higher than that obtained by employing a metallurgical joint method such as welding.
As described below, such a fastening member (first fastening member or second fastening member) is not limited to the rivet. Any member or tool that can mechanically join or fasten the connection portions can be used as the fastening member. However, as described below, such a fastening member is most preferably a rivet.
A specific method for mechanically joining the connection portions using a fastening member will be described using an example.
In the case of a shaft-shaped fastening member, the following is conceivable. A through-hole into which a fastening member is to be inserted is formed in the connection portion, the fastening member is inserted into the through-hole, and the tip of the fastening member is squashed and engaged with the side surface of the connection portion to perform riveting. The through-hole is easily made to have, for example, a shape close to a perfect circle, and the precision of the shape is easily investigated. Thus, an excess concentration of stress can be suppressed and desired durability can be easily achieved. Furthermore, defective items with poor durability can be prevented from being shipped.
Moreover, a contact area larger than or equal to that in the case of welding can be easily achieved by disposing a conductive spacer between the connection portions of the plurality of electrodes having the same polarity. This can decrease the connection resistance between the electrodes.
To increase the capacitance, a metal porous body having a thickness (e.g., 0.1 to 10 mm) larger than or equal to a particular thickness is preferably used as the current collector. Also in this case, the deformation of the connection portions can be suppressed by disposing a conductive spacer between the connection portions of the plurality of electrodes. This can improve the durability of the electrode group.
More specifically, in the electrode group having the above-described stacked structure, the distance between the connection portions of the plurality of electrodes having the same polarity is, for example, 1 mm or more. Herein, if the connection portions are directly joined to each other by a fastening member, the deformation of the connection portions 116 increases as illustrated in
The first fastening member preferably contains the same metal element as the first current collector. This can suppress the erosion of the first fastening member caused by an electrolyte or the like. Thus, the durability of the electrode group can be improved.
For example, when the first electrode is a positive electrode for lithium ion capacitors or lithium ion batteries, preferably, the first current collector contains aluminum or an aluminum alloy and the first fastening member also contains aluminum or an aluminum alloy.
The second fastening member also preferably contains the same metal element as the second current collector. This can suppress the erosion of the second fastening member caused by an electrolyte or the like. Thus, the durability of the electrode group can be improved.
For example, when the second electrode is a negative electrode for lithium ion capacitors or lithium ion batteries, preferably, the second current collector contains copper or a copper alloy and the second fastening member also contains copper or a copper alloy.
The conductive spacer (first conductive spacer or second conductive spacer) may be formed of a material having sufficient conductivity and sufficient rigidity and toughness for spacers. However, the conductive spacer preferably has cushioning properties (stress relaxation effect). In this case, the adhesion between the conductive spacer and each connection portion can be improved by applying an appropriate fastening pressure to the spacer between the adjacent connection portions. This can reduce the connection resistance between the electrodes.
From this viewpoint, the conductive spacer preferably contains a metal porous body (third metal porous body or fourth metal porous body). Therefore, the third metal porous body or the fourth metal porous body can be formed of the same material as that of the first metal porous body or the second metal porous body. Alternatively, the third metal porous body or the fourth metal porous body may be a metal foam (refer to PTL 1) foamed by adding a foaming agent to a molten metal. The metal foam includes a large proportion of closed pores, and thus is not suitably used for current collectors. However, a metal foam including a large proportion of closed pores is useful for spacers that achieve good cushioning properties.
The compression ratio (minimum thickness after fastening with fastening member/average thickness before fastening) of the conductive spacer compressed between the connection portions is preferably 1/10 to 9/10 and more preferably 5/10 to 7/10. Alternatively, the stress exerted on the conductive spacer between the connection portions is preferably 0.01 to 1 MPa and more preferably 0.1 to 0.3 MPa on average.
The conductive spacer (first conductive spacer or second conductive spacer) preferably has a chamfered portion at a corner corresponding to at least one of sides that contact the connection portions. The radius of curvature R1 in the chamfered portion (refer to
The fastening member (first fastening member or second fastening member) for fastening the connection portions is preferably a rivet and particularly preferably a countersunk-head rivet. The use of the countersunk-head rivet can prevent the head portion (the large-diameter portion at one end in an axial direction) from protruding from the surface of the connection portions and spacers when the connection portions are fastened to each other. Herein, a countersunk hole having a shape corresponding to the shape of the head portion of the countersunk-head rivet is formed in the connection portions or the spacers.
The fastening member may be, for example, a bolt and a nut. However, the use of the rivet can easily miniaturize the fastening member. Although the use of a bolt and a nut may cause “looseness”, the use of the rivet does not cause “looseness”. As a result, a desired fastened state can be maintained for a long time. Furthermore, the use of the rivet makes it easy to achieve miniaturization of the head portion.
The fastening member is not limited to a shaft-shaped fastening member. For example, a clip-shaped member (elastic member) can also be used as the fastening member. That is, a plurality of connection portions can be fastened to each other by a clip-shaped fastening member so that the stacked body of the connection portions is nipped from the outside. In this case, the clip-shaped fastening member can be used as an electrode lead, and therefore the number of members can be reduced.
Examples of the electricity storage device include capacitors such as lithium ion capacitors and electric double layer capacitors and nonaqueous electrolyte secondary batteries such as lithium ion batteries and sodium ion batteries. A metal can or a packaging container formed of a lamination film can be used for the case of the electricity storage device.
In an embodiment of the electricity storage device serving as a lithium ion capacitor, the electrolyte contains a salt of a lithium ion and an anion. One of the first active material and the second active material is a first material (negative electrode active material) that intercalates and deintercalates lithium ions, and the other is a second material (positive electrode active material) that adsorbs and desorbs anions. The first material intercalates and deintercalates lithium ions through a Faradaic reaction. The first material is, for example, a carbon material such as graphite or an alloy-based active material such as Si, SiO, Sn, or SnO. The second material adsorbs and desorbs anions through a non-Faradaic reaction. The second material is, for example, a carbon material such as activated carbon or carbon nanotube. The second material (positive electrode active material) may be a material that causes a Faradaic reaction. Examples of the material include metal oxides such as manganese oxide, ruthenium oxide, and nickel oxide and conductive polymers such as polyacene, polyaniline, polythiol, and polythiophene. The capacitor in which the Faradaic reaction occurs in the first material and the second material is referred to as a redox capacitor.
In an embodiment of the electricity storage device serving as an electric double layer capacitor, the electrolyte contains a salt of an organic cation and an anion. One of the first active material and the second active material contains a third material that adsorbs and desorbs organic cations, and the other contains a fourth material that adsorbs and desorbs anions. Both the third material and the fourth material adsorb and desorb organic cations or anions through a non-Faradaic reaction. The third material and the fourth material are, for example, a carbon material such as activated carbon or carbon nanotube.
In an embodiment of the electricity storage device serving as a nonaqueous electrolyte secondary battery, the electrolyte contains a salt of an alkali metal ion and an anion. Both the first active material and the second active material contain a material that intercalates and deintercalates alkali metal ions. That is, a Faradaic reaction occurs in both the first active material and the second active material.
Hereafter, the details of embodiments of the present invention will be described with reference to the attached drawings.
The electricity storage device 10 illustrated in the drawings is, for example, a lithium ion capacitor and includes an electrode group 12, a case 14 that accommodates the electrode group 12 together with an electrolyte (not illustrated), and a sealing plate 16 that seals an open edge of the case 14. In the drawings, the case 14 has a rectangular shape. The electricity storage device according to an embodiment of the present invention can be most suitably applied to such a rectangular case illustrated in the drawings.
The electrode group 12 includes a plurality of sheet-shaped first electrodes 18 and a plurality of sheet-shaped second electrodes 20. The first electrodes 18 and the second electrodes 20 are alternately stacked on top of another with sheet-shaped separators 21 disposed therebetween. Each of the first electrodes 18 includes a first current collector 22 and a first active material. Each of the second electrodes 20 includes a second current collector 24 and a second active material.
One of the first electrode 18 and the second electrode 20 is a positive electrode and the other is a negative electrode. The positive electrode includes a positive electrode current collector and a positive electrode active material. The negative electrode includes a negative electrode current collector and a negative electrode active material. Therefore, one of the first current collector 22 and the second current collector 24 is a positive electrode current collector and the other is a negative electrode current collector. In
The first current collector 22 (positive electrode current collector) includes a first metal porous body and the second current collector 24 (negative electrode current collector) includes a second metal porous body. Herein, the first metal is preferably aluminum or an aluminum alloy and the second metal is preferably copper or a copper alloy. The positive electrode current collector preferably has a thickness of 0.1 to 10 mm. The negative electrode current collector also preferably has a thickness of 0.1 to 10 mm.
The first current collector 22 (positive electrode current collector) is particularly preferably Aluminum-Celmet (registered trademark of Sumitomo Electric Industries, Ltd.) because it has a high porosity (e.g., 90% or more), includes continuous pores, and substantially does not include closed pores. The second current collector 24 (negative electrode current collector) is also particularly preferably Celmet (registered trade of Sumitomo Electric Industries, Ltd.) of copper or nickel for the same reason. Celmet or Aluminum-Celmet will be described in detail later.
The first current collector 22 includes a tab-shaped first connection portion 26. Similarly, the second current collector 24 can include a tab-shaped second connection portion 28. Each of the connection portions is preferably made of the same material as that of a main body of the current collector and formed integrally with the main body. First conductive spacers 30 are disposed between the first connection portions 26 of the plurality of first current collectors 22. Similarly, second conductive spacers 32 can be disposed between the second connection portions 28 of the plurality of second current collectors 24.
Although not particularly limited, the ratio of the projected area of the first connection portion 26 (the area of the first connection portion viewed in a direction perpendicular to the principal surface of the first current collector) to the projected area of the entire first current collector 22 can be 0.1 to 10%. Alternatively, the projected area of the first connection portion 26 or the length of the borderline between the main body of the first current collector and the first connection portion can be determined in accordance with the capacitance of the electricity storage device. The borderline is, for example, a straight line extending along the same axis as that of the side, of the first current collector, along which the first connection portion is disposed. The shape of the first connection portion 26 is not particularly limited, and may be a square shape with rounded corners.
Each of the first conductive spacers 30 can be formed of a plate-shaped member containing a conductor (e.g., metal and carbon material). For the purpose of improving the adhesion with the first connection portion 26, however, the first conductive spacer 30 is preferably formed of a metal porous body (third metal porous body) and particularly preferably formed of the same material (e.g., Aluminum-Celmet) as that of the first current collector 22. Similarly, each of the second conductive spacers can also be formed of a plate-shaped member containing a conductor (e.g., metal and carbon material). The second conductive spacer 32 is also preferably formed of a metal porous body (fourth metal porous body) and particularly preferably formed of the same material (e.g., Celmet of copper) as that of the second current collector 24.
As illustrated in
As illustrated in
The first fastening member 34 is preferably formed of the same conductive material as that of the first current collector 22 in terms of achieving high corrosion resistance. Similarly, the second fastening member 38 is also preferably formed of the same conductive material as that of the second current collector 24.
The first connection portions 26 of the plurality of first electrodes 18 are arranged so as to overlap one another in the stacking direction of the electrode group 12, and therefore the through-holes 36 in the first connection portions 26 are also arranged in a straight line. The first conductive spacers 30 are also arranged so that the through-holes 37 are in line with the corresponding through-holes 36. The first fastening member 34 is inserted into the through-holes 36 and 37 arranged in a straight line, and the tip (head portion) of the first fastening member 34 is squashed onto the first connection portion 26 or the like. Thus, the plurality of first connection portions 26 are fastened to each other. Similarly, the plurality of second connection portions 28 are also fastened to each other by the second fastening member 38 inserted into the through-holes 36 and 37 arranged in a straight line.
The sealing plate 16 includes a first external terminal 40 electrically connected to the plurality of first electrodes 18 and a second external terminal 42 electrically connected to the plurality of second electrodes 20. A safety valve 44 is disposed in the center of the sealing plate 16, and a liquid stopper 48 for covering a liquid injection hole 46 is disposed on the sealing plate 16 at a position close to the first external terminal 40 (refer to
A first lead 62 for electrically connecting the first electrodes 18 and the first external terminal 40 is joined to an end of the third fastening member 52 located inside the case 14 (refer to
The second external terminal 42 is disposed at a position close to one end of a second terminal plate 50A made of, for example, a rectangular plate-shaped conductor. A through-hole is formed in the sealing plate 16, and a through-hole 54A is formed at a position close to the other end of the second terminal plate 50A so as to correspond to the through-hole. The second terminal plate 50A is fixed to the sealing plate 16 by a fourth fastening member (second rivet) 80 inserted into the through-hole 54A. The second terminal plate 50A and the fourth fastening member 80 are electrically insulated from the sealing plate 16 by a plate-shaped gasket 58A and a ring-shaped gasket 60A each having a through-hole into which the fourth fastening member 80 is to be inserted. The plate-shaped gasket 58A and the ring-shaped gasket 60A constitute a second gasket.
A second lead 64 for electrically connecting the second electrodes 20 and the second external terminal 42 is joined to an end of the fourth fastening member 80 located inside the case 14 (refer to
The first lead 62 in the drawings is an L-shaped member in cross-sectional view, and includes a plate-shaped first portion 62a and a second portion 62b which are perpendicular to each other. The first portion 62a is a portion provided in parallel with the sealing plate 16 and includes, in the center thereof, a joint region 62c where the first lead 62 is joined to the third fastening member 52. The first lead 62 includes a fitting hole 62d formed inside the joint region 62c. A protruding portion formed at the inner periphery of the case 14 is fitted to the fitting hole 62d. The third fastening member 52 before deformation and the joint region 62c of the first lead 62 are joined by performing, for example, welding. This results in the formation of a first connection member 70 including the third fastening member 52 before deformation and the first lead 62 and used for connecting the first electrodes 18 and the first external terminal 40. The first connection member 70 can be produced in a line different from an assembly line of the electricity storage device 10, and thus can be supplied as a single part.
The second portion 62b is a portion provided so as to be perpendicular to the sealing plate 16. Mainly, as a result of the contact of the second portion 62b with the first connection portion 26, the first lead 62 is electrically connected to the first electrodes 18. The second portion 62b includes at least one through-hole 62e into which the first fastening member 34 is to be inserted. The second portion 62b is fixed to the first connection portion 26 while being in contact with the first connection portion 26 by the first fastening member 34 inserted into the through-hole 62e. Consequently, the first lead 62 is fixed to the first connection portions 26 of the plurality of first electrodes 18. The opening area of the through-hole 62e can be, for example, 0.005 to 4 cm2. The opening shape is not particularly limited, and may be a circle or a polygon (e.g., regular hexagon). The number of through-holes 62e formed in the second portion 62b is not particularly limited, and may be in the range of 1 to 10. A single first fastening member 34 can be inserted into a corresponding single through-hole 62e to fix the first lead 62 to the first connection portions 26.
The first lead 62 preferably has a thickness of 0.1 to 2 mm. This can impart relatively high rigidity to the first lead 62. The first connection portion 26 has cushioning properties (ease of deformation). Therefore, the adhesion between the first connection portion 26 and the second portion 62b of the first lead 62 is easily ensured.
The third fastening member (first rivet) 52 includes a first large-diameter portion 52a located inside the sealing plate 16, a first expanding portion 52b inserted into the through-holes of the members (sealing plate 16, first terminal plate 50, and gaskets 58 and 60), and a first head portion 52c located outside the sealing plate 16. The third fastening member 52 rivets the sealing plate 16, the first terminal plate 50, and the first gasket (gaskets 58 and 60) all together while being inserted into the above-described through-holes. Thus, the first terminal plate 50 is fixed onto the outer surface of the sealing plate 16. In the riveting using the third fastening member 52, the cavity in the first expanding portion 52b expands and the diameter of the first expanding portion 52b increases. In the riveting using the third fastening member 52, for example, the first head portion 52c is squashed and deformed so that the first head portion 52c and the first large-diameter portion 52a sandwich the first terminal plate 50, the sealing plate 16, and the gaskets 58 and 60.
As described above, in the connection structure illustrated in
The above process is the same mechanical joint method as in the case where connection portions of electrodes having the same polarity are fastened to each other. Therefore, the electricity storage device 10 can be assembled without using a resistance welder at all in an assembly line of the electricity storage device 10. This can simplify the assembly line.
Hereafter, the fourth fastening member having the same structure as the third fastening member will be described in detail. The fourth fastening member (second rivet) 80 includes a second large-diameter portion 80a located inside the sealing plate 16, a second expanding portion 80b inserted into the through-holes of the members (sealing plate 16, second terminal plate 50A, and gaskets 58A and 60A), and a second head portion 80c located outside the sealing plate 16. The fourth fastening member 80 rivets the sealing plate 16, the second terminal plate 50A, and the second gasket (gaskets 58A and 60A) all together while being inserted into the above-described through-holes. Thus, the second terminal plate 50A is fixed onto the outer surface of the sealing plate 16. In the riveting using the fourth fastening member 80, the cavity in the second expanding portion 80b expands and the diameter of the second expanding portion 80b increases. In the riveting using the fourth fastening member 80, for example, the second head portion 80c is squashed and deformed so that the second head portion 80c and the second large-diameter portion 80a sandwich the second terminal plate 50A, the sealing plate 16, and the gaskets 58A and 60A. The effects produced are the same as those described regarding the first connection member.
Next, the sealing structure of the case according to this embodiment will be described in detail.
As described above, when the open edge of the case 14 and the peripheral portion of the sealing plate 16 are joined by welding the inclined surface 14a and the inclined surface 16a, they can be welded while sufficient adhesion is always achieved between the open edge of the case 14 and the peripheral portion of the sealing plate 16. For example, if a sealing plate 16 including a side surface (peripheral end surface) perpendicular to an outer surface (or inner surface) is welded to the inner surface of the open edge of the case 14 as illustrated in
In the joint structure illustrated in
When the angle θ1 is in the range of 5 (degrees)≦θ1≦85 (degrees), they can be welded by applying a laser from substantially vertically above the case 14 (in the direction of the normal to the outer surface of the sealing plate 16) but not from obliquely above the case 14. It is not easy to accurately apply a laser to a weld in an oblique direction because it is difficult to ensure the accuracy of image recognition and the accuracy of relative positions of the case and the sealing plate. When a laser is applied from vertically above, the end portion can be easily recognized and thus welding can be easily performed. Furthermore, by only two-dimensionally moving the case or a laser head, the entire peripheral portion of the sealing plate can be welded to the open edge of the case, which makes it easy to produce the electricity storage device.
Next, a metal porous body used as the first current collector 22 or the second current collector 24 will be described in detail.
The metal porous body preferably has a three-dimensional network hollow skeleton. A metal porous body with a skeleton having cavities therein has a bulky three-dimensional structure, but is extremely lightweight. Such a metal porous body can be formed by plating a resin porous body having continuous voids with a metal constituting a current collector and then decomposing or dissolving the internal resin by performing a heat treatment or the like. As a result of the plating treatment, a three-dimensional network skeleton is formed. As a result of the decomposition or dissolution of the resin, the inside of the skeleton can be made hollow.
Any resin porous body may be used as long as it has continuous voids. Examples of the resin porous body include resin foams and nonwoven fabrics made of a resin. After the heat treatment, residual components in the skeleton (e.g., resins, decomposition products, unreacted monomers, and additives contained in the resin) may be removed by performing washing or the like.
Examples of the resin constituting the resin porous body include thermosetting resins such as thermosetting polyurethane and melamine resin; and thermoplastic resins such as olefin resins (e.g., polyethylene and polypropylene) and thermoplastic polyurethane. When a resin foam is used, individual pores formed inside the foam are caused to have a cellular form, though depending on the types of resins and the production method of the foam. The cells are caused to communicate with each other, and thus continuous voids are formed. In such a foam, the size of cellular pores tends to be small and uniform. In particular, when thermosetting polyurethane or the like is used, the size and shape of pores tend to become more uniform.
Any plating treatment may be employed as long as a metal layer that functions as a current collector can be formed on the surface (including the surface in the continuous voids) of the resin porous body. A publicly known plating treatment method such as an electrolytic plating method or a molten salt plating method can be employed. As a result of the plating treatment, a three-dimensional network metal porous body having a shape corresponding to that of the resin porous body is formed. When the plating treatment is performed by an electrolytic plating method, a conductive layer is desirably formed prior to the electrolytic plating. The conductive layer may be formed by, for example, performing non-electrolytic plating, vapor deposition, sputtering, or the like on the surface of the resin porous body or applying a conductive agent. Alternatively, the conductive layer may be formed by immersing the resin porous body in a dispersion liquid containing a conductive agent.
After the plating treatment, the resin porous body is removed by performing heating, whereby cavities are formed inside the skeleton of the metal porous body and thus a hollow skeleton is formed. The width of the cavities inside the skeleton (the width wf of cavities in
The metal porous body has a three-dimensional network structure having a shape corresponding to the shape of the resin foam. Specifically, the current collector includes continuous voids formed by connecting a large number of cellular pores included in individual metal porous bodies. An opening (or window) is formed between the adjacent cellular pores. The pores are preferably made to communicate with each other through this opening. The shape of the opening (or window) is not particularly limited, and is, for example, a substantially polygonal shape (e.g., substantially triangular shape, substantially tetragonal shape, substantially pentagonal shape, and/or substantially hexagonal shape). The term “substantially polygonal shape” refers to a polygon and a shape similar to a polygon (e.g., a polygonal shape whose corners are rounded and a polygonal shape whose sides are curved lines).
The metal porous body has a very high porosity and a large specific surface area. That is, a large amount of active material can be attached in a large area including an area of the surface in the voids. Furthermore, since the contact area between the metal porous body and the active material and the porosity can be increased while the voids are filled with a large amount of active material, the active material can be effectively used. In the positive electrode for lithium ion capacitors or nonaqueous electrolyte secondary batteries, the conductivity is normally increased by adding a conductive assistant. When the above-described metal porous body is used as a positive electrode current collector, high conductivity is easily achieved even if the amount of the conductive assistant added is decreased. Therefore, the rate performance and energy density (and capacitance) of batteries can be effectively improved.
The specific surface area (BET specific surface area) of the metal porous body is, for example, 100 to 700 cm2/g, preferably 150 to 650 cm2/g, and more preferably 200 to 600 cm2/g.
The porosity of the metal porous body is, for example, 40 to 99 vol %, preferably 60 to 98 vol %, and more preferably 80 to 98 vol %. The average pore diameter (average diameter of cellular pores communicating with each other) in the three-dimensional network structure is, for example, 50 to 1000 μm, preferably 100 to 900 μm, and more preferably 350 to 900 μm. Herein, the average pore diameter is smaller than the thickness of the metal porous body (or electrode). The skeleton of the metal porous body is deformed by rolling, and the porosity and the average pore diameter change. The above-mentioned porosity and average pore diameter are a porosity and an average pore diameter of a metal porous body before rolling (before filling with a mixture).
The metal (the metal used for plating) constituting the positive electrode current collector for lithium ion capacitors or nonaqueous electrolyte secondary batteries is, for example, at least one selected from aluminum, an aluminum alloy, nickel, and a nickel alloy. The metal (the metal used for plating) constituting the negative electrode current collector for lithium ion capacitors or nonaqueous electrolyte secondary batteries is, for example, at least one selected from copper, a copper alloy, nickel, and a nickel alloy. The same metal (e.g., copper and copper alloy) as above can also be used for an electrode current collector for electric double layer capacitors.
The positive electrode or the negative electrode is formed by, for example, filling the voids of the metal porous body obtained as described above with an electrode mixture and optionally compressing a current collector in the thickness direction. The electrode mixture contains an active material as an essential component and may contain a conductive assistant and/or a binder as an optional component.
The thickness wm of the mixture layer formed by filling the cellular pores of the current collector with the mixture is, for example, 10 to 500 μm, preferably 40 to 250 μm, and more preferably 100 to 200 μm. In order to provide the voids surrounded by the mixture layer formed in the cellular pores, the thickness wm of the mixture layer is preferably 5% to 40% and more preferably 10% to 30% of the average pore diameter of the cellular pores.
A material that intercalates and deintercalates alkali metal ions can be used as a positive electrode active material for nonaqueous electrolyte secondary batteries. Examples of such a material include metal chalcogen compounds (e.g., sulfides and oxides), alkali metal-containing transition metal oxides (lithium-containing transition metal oxide and sodium-containing transition metal oxide), and alkali metal-containing transition metal phosphates (e.g., iron phosphate having an olivine structure). These positive electrode active materials can be used alone or in combination of two or more.
A material that intercalates and deintercalates alkali metal ions such as lithium ions can be used as a negative electrode active material for lithium ion capacitors or nonaqueous electrolyte secondary batteries. Examples of such a material include carbon materials, spinel-type lithium titanium oxide, spinel-type sodium titanium oxide, silicon oxide, silicon alloys, tin oxide, and tin alloys. Examples of the carbon material include graphite, graphitizable carbon (soft carbon), and non-graphitizable carbon (hard carbon).
A first carbon material that adsorbs and desorbs anions can be used as a positive electrode active material for lithium ion capacitors. A second carbon material that adsorbs and desorbs organic cations can be used as an active material for one electrode for electric double layer capacitors, and a third carbon material that adsorbs and desorbs anions can be used as an active material for the other electrode. Examples of the first to third carbon materials include carbon materials such as activated carbon, graphite, graphitizable carbon (soft carbon), and non-graphitizable carbon (hard carbon).
The type of conductive assistant is not particularly limited, and examples of the conductive assistant include carbon blacks such as acetylene black and Ketjenblack; conductive fibers such as carbon fibers and metal fibers; and nanocarbon such as carbon nanotube. The amount of the conductive assistant is not particularly limited, and is, for example, 0.1 to 15 parts by mass and preferably 0.5 to 10 parts by mass relative to 100 parts by mass of the active material.
The type of binder is not particularly limited, and examples of the binder include fluororesins such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene; chlorine-containing vinyl resins such as polyvinyl chloride; polyolefin resins; rubber polymers such as styrene-butadiene rubber; polyvinylpyrrolidone and polyvinyl alcohol; cellulose derivatives (e.g., cellulose ethers) such as carboxymethyl cellulose; and polysaccharides such as xanthan gum. The amount of the binder is not particularly limited, and is, for example, 0.5 to 15 parts by mass, preferably 0.5 to 10 parts by mass, and more preferably 0.7 to 8 parts by mass relative to 100 parts by mass of the active material.
The thickness of the first electrodes 18 and the second electrodes 20 is 0.2 mm or more, preferably 0.5 mm or more, and more preferably 0.7 mm or more. The thickness of the first electrodes 18 and the second electrodes 20 is 5 mm or less, preferably 4.5 mm or less, more preferably 4 mm or less or 3 mm or less. These lower limits and upper limits can be freely combined. The thickness of the first electrodes 18 and the second electrodes 20 may be 0.5 to 4.5 mm or 0.7 to 4 mm.
The separators 21 have ionic permeability and are disposed between the first electrodes 18 and the second electrodes 20 to prevent a short-circuit between the electrodes. Each of the separators 21 has a porous structure and retains an electrolyte in the pores, whereby ions permeate through the separator 21. The separator 21 is, for example, a microporous film or a nonwoven fabric (including paper). The separator 21 is made of, for example, polyolefin such as polyethylene or polypropylene; polyester such as polyethylene terephthalate; polyamide; polyimide; cellulose; or glass fiber. The thickness of the separator 21 is, for example, about 10 to 100 μm.
The electrolyte for lithium ion capacitors contains a salt of a lithium ion and an anion (first anion). Examples of the first anion include fluorine-containing acid anions (e.g., PF6− and BF4−), chlorine-containing acid anions (ClO4−), bis(oxalato)borate anions (BC4O8−), bis(sulfonyl)amide anions, and trifluoromethanesulfonic acid ions (CF3SO3−).
The electrolyte for electric double layer capacitors contains a salt of an organic cation and an anion (second anion). Examples of the organic cation include tetraethylammonium ions (TEA+), triethylmonomethylammonium ions (TEMA+), 1-ethyl-3-methylimidazolium ions (EMI+), and N-methyl-N-propylpyrrolidinium ions (MPPY+). The same anion as the first anion is used as the second anion.
The electrolyte for nonaqueous electrolyte secondary batteries contains a salt of an alkali metal ion and an anion (third anion). For example, the electrolyte for lithium ion batteries contains a salt of a lithium ion and an anion (third anion). The electrolyte for sodium ion batteries contains a salt of a sodium ion and an anion (third anion). The same anion as the first anion is used as the third anion.
The electrolyte may contain a nonionic solvent or water for dissolving the above salt or may be a molten salt containing the above salt. Examples of the nonionic solvent include organic solvents such as organic carbonates and lactones. When the electrolyte contains a molten salt, the content of the salt (an ionic substance constituted by an anion and a cation) in the electrolyte is preferably 90 mass % or more in view of improving heat resistance.
The cation constituting the molten salt is preferably an organic cation. Examples of the organic cation include nitrogen-containing cations; sulfur-containing cations; and phosphorus-containing cations. The anion constituting the molten salt is preferably a bis(sulfonyl)amide anion. Among the bis(sulfonyl)amide anions, for example, bis(fluorosulfonyl)amide anions (N(SO2F)2−, FSA−); bis(trifluoromethylsulfonyl)amide anions (N(SO2CF3)2−, TFSA−), and (fluorosulfonyl)(trifluoromethylsulfonyl)amide anions (N(SO2F)(SO2CF3)−) are preferred.
Examples of the nitrogen-containing cations include quaternary ammonium cations, pyrrolidinium cations, pyridinium cations, and imidazolium cations.
Examples of the quaternary ammonium cations include tetraalkylammonium cations (e.g., tetraC1-10alkylammonium cations) such as tetramethylammonium cations, ethyltrimethylammonium cations, hexyltrimethylammonium cations, tetraethyammonium cations (TEA+), and methyltriethylammonium cations (TEMA+).
Examples of the pyrrolidinium cations include 1,1-dimethylpyrrolidinium cations, 1,1-diethylpyrrolidinium cations, 1-ethyl-1-methylpyrrolidinium cations, 1-methyl-1-propylpyrrolidinium cations (MPPY+), 1-butyl-1-methylpyrrolidinium cations (MBPY+), and 1-ethyl-1-propylpyrrolidinium cations.
Examples of the pyridinium cations include 1-alkylpyridinium cations such as 1-methylpyridinium cations, 1-ethylpyridinium cations, and 1-propylpyridinium cations.
Examples of the imidazolium cations include 1,3-dimethylimidazolium cations, 1-ethyl-3-methylimidazolium cations (EMI+), 1-methyl-3-propylimidazolium cations, 1-butyl-3-methylimidazolium cations (BMI+), 1-ethyl-3-propylimidazolium cations, and 1-butyl-3-ethylimidazolium cations.
Examples of the sulfur-containing cations include tertiary sulfonium cations, e.g., trialkylsulfonium cations (e.g., triC1-10alkylsulfonium cations) such as trimethylsulfonium cations, trihexylsulfonium cations, and dibutylethylsulfonium cations.
Examples of the phosphorus-containing cations include quaternary phosphonium cations, e.g., tetraalkylphosphonium cations (e.g., tetraC1-10alkylphosphonium cations) such as tetramethylphosphonium cations, tetraethylphosphonium cations, and tetraoctylphosphonium cations; and alkyl(alkoxyalkyl)phosphonium cations (e.g., triC1-10alkyl(C1-5alkoxyC1-5alkyl)phosphonium cations) such as triethyl(methoxymethyl)phosphonium cations, diethylmethyl(methoxymethyl)phosphonium cations, and trihexyl(methoxyethyl)phosphonium cations.
The above description includes the following features.
An electricity storage device including:
an electrode group including a first electrode, a second electrode, and a separator that electrically insulates the first electrode and the second electrode;
an electrolyte;
a bottom-closed case having an open edge and accommodating the electrode group and the electrolyte; and
a sealing plate that seals the open edge of the case, the sealing plate having a first principal surface that faces an outside of the case and a second principal surface that faces an inside of the case,
wherein the first electrode includes a sheet-shaped first current collector and a first active material carried on the first current collector,
the second electrode includes a sheet-shaped second current collector and a second active material carried on the second current collector,
the first electrode and the second electrode are stacked with the separator disposed between the first electrode and the second electrode,
the sealing plate includes a peripheral portion that fits the open edge of the case and a first inclined surface, in at least part of the peripheral portion, that forms an acute angle θ1 with the first principal surface,
the open edge of the case includes a second inclined surface that contacts the first inclined surface, and
the peripheral portion of the sealing plate and the open edge of the case are joined by welding the first inclined surface and the second inclined surface.
A method for producing an electricity storage device including:
a first electrode including a sheet-shaped first current collector and a first active material carried on the first current collector,
a second electrode including a sheet-shaped second current collector and a second active material carried on the second current collector,
a separator that electrically insulates the first electrode and the second electrode,
an electrolyte,
a bottom-closed case having an open edge and accommodating the electrode group and the electrolyte, and
a sealing plate that seals the open edge and that includes a first principal surface that faces an outside of the case, a second principal surface that faces an inside of the case, and a peripheral portion which fits the open edge of the case, the method including:
(i) a step of forming a first inclined surface that forms an acute angle θ1 with the first principal surface in at least part of the peripheral portion of the sealing plate;
(ii) a step of forming a second inclined surface that contacts the first inclined surface at the open edge of the case; and
(iii) a step of welding the peripheral portion of the sealing plate and the open edge of the case by applying laser light to a portion of the sealing plate in which the first inclined surface has been formed in a direction of 90 degrees±5 degrees relative to the first principal surface while the first inclined surface and the second inclined surface are in contact with each other.
The method for producing an electricity storage device according to Appendix 2, wherein the angle θ1 is 5 to 85 degrees.
The electricity storage device according to Appendix 1, wherein a portion of the case that is adjacent to the second inclined surface has a thickness of 0.1 to 3 mm.
The electricity storage device according to Appendix 1, wherein a portion of the sealing plate that is adjacent to the first inclined surface has a thickness of 0.1 to 4 mm.
The method for producing an electricity storage device according to Appendix 2, wherein a portion of the case that is adjacent to the second inclined surface has a thickness of 0.1 to 3 mm.
The method for producing an electricity storage device according to Appendix 2, wherein a portion of the sealing plate that is adjacent to the first inclined surface has a thickness of 0.1 to 4 mm.
A method for producing an electricity storage device including:
a first electrode including a sheet-shaped first current collector and a first active material carried on the first current collector,
a second electrode including a sheet-shaped second current collector and a second active material carried on the second current collector,
a separator that electrically insulates the first electrode and the second electrode,
an electrolyte,
a bottom-closed case having an open edge and accommodating the electrode group and the electrolyte, and
a sealing plate that seals the open edge, the sealing plate having a first principal surface that faces an outside of the case and a second principal surface that faces an inside of the case, the method including:
(i) a step of preparing the sealing plate that includes a peripheral portion which fits the open edge of the case and a first inclined surface which forms an acute angle θ1 with the first principal surface in at least part of the peripheral portion;
(ii) a step of preparing the case that includes a second inclined surface which contacts the first inclined surface at the open edge; and
(iii) a step of welding the peripheral portion of the sealing plate and the open edge of the case by applying laser light to a portion of the sealing plate in which the first inclined surface has been formed in a direction of 90 degrees±5 degrees relative to the first principal surface while the first inclined surface and the second inclined surface are in contact with each other.
The present invention can be widely applied to electricity storage devices such as lithium ion batteries, sodium ion batteries, lithium ion capacitors, and electric double layer capacitors.
Number | Date | Country | Kind |
---|---|---|---|
2013-193565 | Sep 2013 | JP | national |
2013-197132 | Sep 2013 | JP | national |
2013-210482 | Oct 2013 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2014/073928 | 9/10/2014 | WO | 00 |