The object of the present invention is therefore to alleviate the above-mentioned problems and thus accomplish improved pressure profiles in terms of a well-defined location, distribution and magnitude of the pressure that is applied to the outside a human body part.
According to one aspect of the invention, the object is achieved by the initially described device, wherein the device includes a pressure transition system, which is located relative to the body part, the first and second segments and has such mechanical properties that the pressure transition system is adapted to redistribute the basic pressure profiles between the first and second segments. The pressure redistribution is such that a control signal in respect of the first segment causes the pressure transition system to apply a first adjusted pressure profile to at least a part of the second portion of the body part, and correspondingly, a control signal in respect of the second segment causes the pressure transition system to apply a second adjusted pressure profile to at least a part of the first portion of the body part.
An important advantage attained thereby is that very flexible and well-controlled pressure profiles may be accomplished, which are adapted to suit the needs of various treatments. The proposed pressure transition system also facilitates pressure application in regions of the body not amendable to direct application from actuators, e.g. elbows and wrists. Thus, as a further consequence, patient mobility is facilitated during treatment. Also individual patient needs may be handled, such as in cases where the skin is extremely vulnerable. Since the pressure profiles associated with each segment are smoothed out, so that the patient senses relatively fuzzy pressures, the patient comfort during the treatment is generally enhanced. More important, however, the efficacy of the treatment is improved across joints and other complicated body regions where actuators cannot directly apply pressure.
According to one preferred embodiment of this aspect of the invention, a change of the actuator morphology is instigated by the electrical control signal. Moreover, each actuator is adapted to maintain a thus changed morphology on the basis of an electrical control signal which supplies charge replenishment to the actuator. Consequently, it is practically only necessary to add or remove charges when adjusting an actuator. The charge replenishment represents very small quantities of energy that compensate for charge leakage due to minor conductive effects in the electroactive-material. Since the altered morphology remains also after that the control signal ceased, the invention according to this embodiment is very power efficient, particularly with respect to static or quasi-static pressure profiles.
According to another preferred embodiment of this aspect of the invention, the pressure transition system is adapted to be positioned between the first and second segments when the device is fitted on the body part. This location of the pressure transition system is advantageous, since it enables pressure bridging between the segments. At the same time, the device may have a comparatively thin cross section.
According to yet another preferred embodiment of this aspect of the invention, the pressure transition system is adapted to be positioned between a first surface defined by the first and second segments and a second surface defined by the body part. The pressure transition system here extends over the first and second portions of the body part when the device is fitted on the body part. Consequently, a pressure profile generated by the first segment may efficiently “leak over” to the second portion of the body part via the pressure transition system, and vice versa.
Preferably the pressure transition system also has a low-friction surface towards the first and second segments. The surface is thereby adapted to allow a smooth tangential movement of the first and second segments relative to the pressure transition system. This design is advantageous because it mitigates any undesired effects on the body part, such as friction, caused by relative movements created by the segments' actuators.
According to still another preferred embodiment of this aspect of the invention, the first and second segments are arranged such that a portion of the first segment covers a portion of the second segment when the device is fitted on the body part. Thereby, an alternative, or complementary, means is provided for accomplishing a pressure profile leak-over between different segments and to attain smoothed-out/fuzzy pressure profiles.
According to another preferred embodiment of this aspect of the invention, the pressure transition system includes a number of collapsible ribs, which are adapted to extend along a general central axis of the body part. The ribs are positioned between at least one segment and a particular portion of the body part when the device is fitted on the body part. An actuator in each of the at least one segment is adapted to cause a tangential movement of the segment relative to the body part and the collapsible ribs are adapted to fold in response to this movement, such that when folded the ribs exert a radial pressure on the particular portion of the body part. Such a transformation between a tangential movement and a radial pressure is desirable because it allows a design with a very slim device profile.
Alternatively, or as a complement thereto, the pressure transition system may include at least one flexible chamber, which is adapted to be positioned between at least one of the segments and a particular portion of the body part when the device is fitted on the body part. An actuator in each of the at least one segment is adapted to cause a tangential movement of segment relative to the body part, and the at least one chamber is adapted to transform this movement into a resulting radial pressure on the particular portion of the body part.
According to yet another preferred embodiment of this aspect of the invention, the flexible chamber has an elastic wall of an anisotropic material, and the chamber is arranged relative to the body part when the device is fitted on the body part, such that the chamber is relatively stretchable in a circumferential direction of the body part and relatively stiff in a direction along a general central axis of the body part. Thus, any tension forces generated by the actuators may efficiently be transformed into desired pressure profiles with respect to the body part.
According to still another preferred embodiment of this aspect of the invention, the pressure transition system includes a number of protrusions adapted to be positioned between at least one of the segments and a particular portion of the body part when the device is fitted on the body part. The protrusions, in turn, are adapted to convert the basic pressure profile of the at least one segment into a non-uniform pressure profile to the particular portion of the body part. For example, the protrusions may be cylindrical bulges. However, the protrusions may also include at least one rigid rib, which is adapted to extend along a general central axis of the body part when the device is fitted on the body part. Then, as the segment exerts a pressure profile, a respective peak pressure ridge is defined by a positioning of each of the at least one rib relative to the body part. Consequently, an increased pressure can be attained at one or more desired areas.
According to yet another preferred embodiment of this aspect of the invention, the device includes a control unit adapted to produce a respective control signal to each of segment. The control unit is adapted to vary the control signal over time, so that a particular treatment profile is implemented with respect to the body part. Preferably, the treatment profile involves producing repeated cycles of variations between relatively high and relatively low basic pressure profiles by means of each segment. Hence, the device may perform an intermittent compression therapy and/or adjust (e.g. increase) the applied pressure gradually, and/or produce quasi-static pressure profiles.
According to still another preferred embodiment of this aspect of the invention, the pressure transition system includes a number of moisture passages adapted to receive exudates from the body part. Furthermore, the moisture passages (e.g. in the cells of an open-celled foam) may be adapted to transport (or milk) any received exudates from the body part to one or more liquid receptacles concomitantly with the repeating pressure cycles. Thereby, sweat can be removed from the patient's skin and exudates can be drawn from wounds.
According to another preferred embodiment of this aspect of the invention, the pressure transition system includes a number of air channels which are adapted to allow air to pass to the body part (e.g. via the cells of an open-celled foam). Preferably, also the air channels are adapted to exchange air between the body part and a local environment outside the device concomitantly with the repeating pressure cycles to improve the ventilation of the patient's skin.
According to yet another preferred embodiment of this aspect of the invention, the pressure transition system includes at least one sensor element adapted to register a physiological parameter of the body part. A data signal reflecting this parameter is transmitted to the control unit. Thereby, the control unit may survey and analyze the medical condition of the body part, and if necessary, trigger an alarm and/or alter the treatment profile.
According to still another preferred embodiment of this aspect of the invention, the pressure transition system includes at least one sensor element adapted to register a parameter expressing an environmental condition in proximity to the body part. A data signal reflecting this parameter is transmitted to the control unit. Thereby, the control unit may survey and analyze the environmental conditions for the body part, and if necessary, alter the treatment profile and/or trigger an alarm.
According to another preferred embodiment of this aspect of the invention, the pressure transition system includes at least one pocket adapted to contain a drug substance. The pressure transition system is also adapted to administer a transport of this substance to the body part. Thus, a pressure/massage treatment may be combined with a drug therapy. The drug substance may also be an antibacterial agent, so that the risk of infections and other sanitation related conditions could be reduced.
According to yet another preferred embodiment of this aspect of the invention, the drug substance is a gel adapted to perform a thermotherapy on the body part (i.e. either cryotherapy or heat therapy). Moreover, the gel may be adapted to facilitate activation of the actuator. Namely, if the actuator is of a conducting-polymer type, a gel-based electrolyte may both facilitate actuation of the actuator and accomplish the thermotherapy.
According to other preferred embodiments of this aspect of the invention, at least one of the actuators includes an electroactive material in the form of an electroactive polymer or ceramic, which is either a field activated electroactive material adapted to operate based on Maxwell stress effects, electrostrictive or piezoelectric effects, or an ionic electroactive material, for example a conducting polymer. Videlicet, due to their intrinsic characteristics, all these materials enable very compact and slim device designs that are suitable for many purposes, particularly within the medical field.
According to another aspect of the invention, the object is achieved by the initially described therapeutic garment, wherein the garment includes at least one of the proposed devices. Of course, such a garment is advantageous for the same reasons as the above-described device.
Hence, by means of the invention, a cost efficient solution is attained for applying an external pressure to a human body part, which also is highly flexible. The invention may be optimized for various medical purposes, and for instance be used for treatment or prophylaxis of lymphoedema, deep venous thrombosis, venous leg ulcers, venous insufficiency, arterial ulcers, arterial insufficiency, diabetic foot ulcers, cardiovascular diseases, claudication, burns and sports injuries. The proposed solution may also be used in stress therapy, massage therapy enhanced external counter pulsation therapy and blood pressure monitoring.
Further advantages, advantageous features and applications of the present invention will be apparent from the following description and the dependent claims.
The present invention is now to be explained more closely by means of preferred embodiments, which are disclosed as examples, and with reference to the attached drawings.
According to one embodiment of the invention, the pressure transition system PTS is an underlayer that is located between the segment S1 and the body part 100. Further, the pressure transition system PTS may include an auxetic-foam composite or alternative deformable microcellular structure, and have one or more walls of a stretchy fabric, which allow the system PTS to expand in the circumferential and/or axial directions, so that the external basic pressure profile P1 causes a deformation of the system PTS, and as a result an adjusted pressure profile P1adj is exerted on the body part 100.
The pressure transition system PTS may also include drug containing pockets (here generally illustrated by means of white circles). In this case, the system PTS is also adapted to administer a transport of any drug substance in these pockets to the body part 100, for instance in connection with an applied basic pressure profile P1. The drug substance may contain various topical agents for slow release application to the body part 100. Such topical agents may soften or moisturize the tissues in the body part 100 to prevent cracking and maintain or improve the overall health of the patient's skin. Alternatively, the drug substance may contain benzopyrones, flavonoids, coumarin, terpenses etc. for slow release into the underlying body part 100. Moreover, the drug substance may be an antibacterial agent, which helps in preventing infection of a wound site in the body part 100.
According to one embodiment of the invention, the drug substance is a gel, which is adapted to perform a thermotherapy on the body part 100 (e.g. a cryotherapy for pain relief, or a heat therapy to promote tissue healing). If the actuator A1 is based on an active material that requires an electrolyte and if a thermotherapy of the body part 100 is desired, it is preferable to let a gel based electrolyte play dual rolls in both operating the actuator A1 and accomplishing the cryotherapy.
According to one embodiment of the invention, the pressure transition system PTS is adapted to apply a bias pressure profile to the body part, such that the body part 100 is exerted to an initial pressure profile also before any of the basic pressure profiles P1 or P2 are applied. The bias pressure profile may be attained passively due to the pressure transition system PTS being stretchy. Then, the segments S1 and S2 may operate “on top of” this bias pressure profile to provide adjustments and/or dynamic therapies. Thereby, the pressure transition system PTS not only redistributes the basic pressure profiles P1 or P2 but also modifies the magnitude of the average pressure. For example, the segments S1 and S2 may apply basic pressure profiles P1 and P2 of 20 mmHg to the pressure transition system PTS, which already applies 20 mmHg to the body part 100. As a result, a pressure in the order of 40 mmHg is applied to the body part 100.
As can be seen in the
As mentioned above, according to the invention, each segment S1 and S2 includes an actuator A1 and A2 respectively. Here, the segments S1 and S2 include a respective strap member 240 and 250, and the actuators A1 and A2 are located at one end of each segment. The actuators A1 and A2 are further attached to the strap members 240 and 250, which at least partially enclose the body part 100. In response to control signals, the actuators A1 and A2 are adapted to pull the strap members 240 and 250, thus accomplish tension forces relative to the body part 100. According to the invention, many different forms of actuators the segments S1 and S2 include a respective strap member 240 and 250, and the actuators A1 and A2 are located at one end of each segment. The actuators A1 and A2 are further attached to the strap members 240 and 250, which at least partially enclose the body part 100. In response to control signals, the actuators A1 and A2 are adapted to pull the strap members 240 and 250, thus accomplish tension forces relative to the body part 100. According to the invention, many different forms of actuators may produce such tension forces. For example bending, spring, wrinkle, bellows, laminates, friction drives, linear stack piezoceramic (or c-block) and knitted fiber actuators may be used.
Nevertheless, in response to a respective control signal, the actuators A1 and A2 of
According to a first alternative embodiment of the invention, the pressure transition system PTS is exclusively positioned between the segments S1 and S2. This design is preferable if a very slim device profile is important. However, according to a second alternative embodiment of the invention, the pressure transition system PTS also extends underneath the segments S1 and S2. In this case it is further preferable if the pressure transition system PTS has a low-friction surface towards the segments S1 and S2, so that smooth tangential movements of the segments' strap members are enabled.
According to this second alternative embodiment of the invention, the pressure transition system PTS may include sensor elements 210 and 220, which are adapted to register relevant parameters, and transmit data signals reflecting these parameters to a control unit for analysis.
For example, the sensor elements 210 and 220 may be adapted to register pressure, and in this case the elements can take the form of thin film force sensors (e.g. capacitive, piezoresistive, piezoelectric, varying contact or Quantum Tunneling Composite—QTC). If, on the other hand, the sensor elements 210 and 220 are intended to monitor the local circumference of the body part 100, the sensor element 230 may instead take the form of a resistive strip, an interdigitated electrode with contacts, or similar sensor which surrounds the body part 100. The sensor elements 210 and 220 may also be responsible for measuring physiological parameters, such as heart rate, galvanic skin response, electromyogram—EMG, blood oxygen levels, exudates extraction rates.
In the embodiment illustrated in
Here, the pressure transition system PTS includes a number of collapsible ribs 410 which are positioned between at least one segment S1 and a particular portion of the body part 100 when the device is fitted on the body part 100. Preferably, a cover layer 420 separates the ribs 410 from the body part 100. The ribs 410 extend along a general central axis of the body part 100. Hence, in these cross-section views, we only see the section profile of the ribs 410. In response to a control signal, an actuator A1 of the segment S1 is adapted to cause a tangential movement T of the segment S1 relative to the body part 100 (see
Generally, the tension-force to pressure transduction embodiments illustrated in the
The treatment profile, in turn, may be adaptive in response to a manipulation signal that either is an external signal, or is produced by the device itself. For example, as mentioned above with reference to the
According to preferred embodiment of the invention, the control signals C(i) are electrical signals, and the segments S1, S2, . . . , Sn have actuators whose morphology is electrically adjustable. Moreover, the adjustments of the actuator morphologies are preferably only instigated by the control signals C(i) (i.e. no control signal is necessary to maintain an adjusted morphology). Naturally, according to the invention, the control unit 640 may be connected to any of the proposed segments and pressure transition systems, i.e. not only the elements of embodiment shown in
According to one preferred embodiment of the invention, the pressure transition system PTS includes one or more liquid receptacles 715, and the moisture passages 710 are adapted to transport any received exudates from the body part 100 this/these receptacle/s 715 concomitantly with repeating cycles of a treatment profile executed by means of segments S1 and S2 associated with the pressure transition system PTS. Preferably, the moisture passages 710 and liquid receptacles 715 are accomplished by means of air pockets of an open-celled foam. Thus, these elements' physical configuration is quite dissimilar from what is illustrated in
According to another preferred embodiment of the invention, the pressure transition system PTS includes a number of air channels 720 which are adapted to allow air to pass to the body part 100. Analogous with the moisture passages 710 and the liquid receptacles 715, the air channels 720 may also be adapted to operate concomitantly with the repeating cycles of the treatment profile executed by means of the segments S1 and S2, so that air is exchanged more efficiently between the body part 100 and a local environment outside thereof. Moreover, open-celled foam openings may also constitute the air channels 720.
The shape change of the EAM 820 arises due to a variety of physical reasons when a non-zero charge is supplied to the electrodes 810 and 811, for example via a power supply or a control signal. In response to such a charge, the EAM 820 attempts to undergo a change in shape. The magnitude of the shape change depends on the material properties of the EAM 820, the frequency of the charge application/removal and mechanical boundary conditions of the material. Typically, the change in shape is related to the amount of charge accumulated on the surrounding electrodes 810 and 811.
In all dielectric materials, charge accumulation on adjacent electrodes creates mechanical stress in the material due to attraction and repulsion of the adjacent charges. Such stresses are referred to as Maxwell stresses. In soft materials, e.g. dielectric elastomers and gels, these stresses are sufficient to cause a significant shape change of the material.
Also in crystallographic materials, such as ceramics and ferroelectric polymers, an appreciable change in properties occurs with shape change of the material. This phenomenon is referred to electrostriction. Due to electrostrictive effects, the material will strive at changing the shape in response to an applied charge (in addition to Maxwell stress effects). Furthermore, an initial polarization may be frozen into some EAMs during manufacture. In materials capable of maintaining an initial polarization, the applied charge elicits a change in shape referred to as the reverse piezoelectric effect. Piezoelectric effects generally demonstrate a linear relationship between material strain and resulting electric field. Electrostrictive effects, on the other hand, generally demonstrate a quadratic relationship between material strain and applied electric field under linear boundary conditions. Under certain circumstances, these effects are reversible. Therefore, when the electroactive material undergoes a shape change, an electrical response occurs. This allows electric energy to be captured from the moving electroactive material. It also enables for the materials to operate as sensors.
Another important property of the EAMs is that a deformation (i.e. a changed morphology) resulting from an applied charge will be maintained if the electrodes are left open-circuited. Nevertheless, due to slight conductive effects, the thus separated charges will slowly leak through the EAM. Therefore, in practice, some replenishment/maintenance charge is necessary to top up the existing charge, and maintain a desired deformation.
A multilayer cylindrical actuator of the type shown in the
Moreover, according to the invention, layers of passive materials may also be laminated along with the active material. These extra layers are often useful when interfacing with the surroundings, improving adhesion between adjacent active material layers, and creating favorable residual stresses in the active material during manufacturing.
In similarity with field activated EAMs, ionic electroactive material reactions are reversible. Therefore, actuators based on ionic EAMs can also be used as various types of sensors and energy accumulators.
Returning now to
The working electrode 1510 may likewise include a composite of active materials and passive materials. In such cases, the passive materials are normally included to improve the conductive properties of the working electrode 1510 while not impeding movement of the electrode during operation. Also here, conductive nanocomposites represent a viable option for lamination with the conducting polymer material.
In some cases, a reference electrode 1530 is present in the electrolyte 1550 to ensure that desired voltage potentials are maintained at appropriate levels at the other electrodes 1510 and 1520 during operation of the actuator 1505. When the voltage potentials of the electrodes 1510 and 1520 are varied, the electroactive polymer can undergo oxidation or reduction reactions. Large electric fields are generated at the interfaces between the electrodes 1510 and 1520 respectively and the electrolyte 1550. This causes ion migration across the interfaces. Ions within the EAM can initiate conformational change of the crystallographic structures of the material, or they may take up interstitial spaces in the material and cause it to swell. If ions are extracted from the EAM in the working electrode 1510 due to migration, the working electrode 1510 may shrink. Depending on the counter electrode material, reactions at the electrode 1520 may or may not result in another usable shape change in respect of this electrode. The details of the entire actuator system (such as the specific EAMs, electrolyte and counter electrode properties) together dictate the final response of the system during operation.
In the case of carbon nanotubes, the presence of carbon nanotubes dramatically increases the surface area of the electrode. This, in turn, increases the strength of the electromagnetic field during a reduction or oxidation process. Consequently, an increased ion migration occurs and therefore an amplified mechanical response can be obtained. The formation of gas can arise intimately with the electrode during a reaction (often due to electrolysis of water). Of course, the expansion of such gases may also result in an increased response.
In addition to the actuator morphologies shown in the
Here, a first actuator A11 includes a first working electrode 18101 and a first counter electrode 18201; a second actuator A12 includes a second working electrode 18102 and a second counter electrode 18202; and a third actuator A13 includes a third working electrode 18103 and a third counter electrode 18203. Further, the first actuator A11 is connected to the second actuator A12, which in turn, is connected to the third actuator A12 according to the configuration of
Preferably, a pressure transition system PTS is arranged as an interface between the actuators Al1, Al2, and Al3 and the body part 100. The pressure transition system PTS is adapted to redistribute a basic pressure profile of the actuators Al1, Al2, and Al3, such that when the actuators are activated, an adjusted pressure profile different from the basic pressure profile is applied to the body part 100. Thereby, a smoother (or more fuzzy) pressure profile P can be applied to the body part, which is desirable in many medical applications.
According to another preferred embodiment of the invention, any voids between the actuators Al1, Al2, and Al3 and the pressure transition system PTS are filled with an open-celled foam (not shown). Namely, this further assists in redistributing pressure from the actuators Al1, Al2, and Al3 to the body part 100 without overly affecting the breath ability of the device.
In similarity with the
For proper function, the outer layer 2110 should be made of a rigid and strong fabric, so that it does not stretch appreciably during activation of the actuators A21 and A22. Therefore, the outer layer 2110 is preferably a knitted anisotropic material, which includes fibers (e.g. of Kevlar) that are strong in the circumferential direction (i.e. around the body part 100), and relatively soft in the axial direction (i.e. along the body part 100). Moreover, the outer layer 2110 fabric preferably has an open weave to ensure that the breath ability of the device is not compromised.
The term “comprises/comprising” when used in this specification is taken to specify the presence of stated features, integers, steps or components. However, the term does not preclude the presence or addition of one or more additional features, integers, steps or components or groups thereof.
The invention is not restricted to the described embodiments in the figures, but may be varied freely within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
04445107 | Oct 2004 | EP | regional |
04445108 | Oct 2004 | EP | regional |
The present invention relates generally to the application of pressure profiles to living tissues. More particularly the invention relates to a device for exerting an external pressure to a human body part according to the preamble of claim 1 and a therapeutic garment according to the preamble of claim 34. External pressure profiles may be applied to living tissues, e.g. of a person's limb, in order to attain various effects with respect to these tissues. Perhaps the most well known example is the so-called G-suit worn by a pilot to restrict the blood circulation in his/her lower body parts under certain conditions, and thus reduce the risk that an insufficient amount of blood is fed to the pilot's head. However, also in the medical field there are many examples of situations in which it is relevant/desirable to apply an external pressure to a part of the human body, in order to cure or mitigate a disease or condition. For instance, lymphoedema is a condition where the lymphatic system of a patient has been compromised, thereby resulting in a buildup of lymphatic fluids and proteins in one or more extremities. So far, various approaches have been attempted to control the swelling of the afflicted extremities. The compression-based treatment of lymphoedema is primarily dealt with in three ways, which may be combined to achieve an improved result, compression bandaging, pneumatic compression pumps and massage. The compression bandaging may be further divided into two general approaches: multi-layered lymphatic bandaging and elastic compression garments/bandages. Both these methods are used to statically compress the afflicted limbs, whereas pneumatic compression pumps and massage represent dynamic treatments. Multi-layered lymphatic bandages are applied to a patient in order to reshape one or more of the patient's limbs. The bandages consist of absorbent layers, padding and short-stretch bandages. The absorbent layers must be custom made by a technician to fit the patient. Moreover, the underlying pressure is unknown after application, and the bandages are there to prevent the limb from further expanding and to breakup proteins with the help of patient movement. Nevertheless, these bandages are associated with numerous problems. During the treatment the bandages must be adjusted many times, for example because the bandages have a static shape and the shape of the limb varies over time. The bandages are also bulky and hot to wear due to the many layers applied to the limb, and therefore the bandages cannot be worn under clothing. Naturally, the therapy for the patient is limited in that the multi-layered lymphatic bandages cannot actively pressurize the body. Elastic compression bandages are used to statically pressurize an afflicted limb. Here, a caregiver wraps the afflicted limb with a combination of elastic bandages and absorbent layers. The bandages are arranged so as to apply a graduated pressure to the limb. The pressure gradient along the limb is structured such that the highest pressure is at the distal end, and the lowest pressure is located at the proximal end of the limb. Hence, also in this case, the pressure application is static and a qualified person must apply the bandages to ensure that an appropriate pressure is accomplished, particularly since there is no convenient way to accurately measure the pressure applied to the limb. Normally, a constant bandage tension is applied while wrapping the limb, and the pressure graduation is typically a consequence of the limb being thinner at the distal part than at the proximal part. As the limb changes size due to the pressure, and as the bandages creep, the pressure application will decrease. This is true already within hours of applying the bandages. A pneumatic compression pump device is used to dynamically pressurize limbs of patients. Here, dynamic pressurization is employed both to pump lymphatic fluids from the limb in wave-like, or graduated, pressure profiles and to breakup proteins that collect and harden in the afflicted limb. To generate the wave-like and graduated pressure profiles along the limb, a sleeve portion of the device must have multiple chambers. Each chamber is pressurized at the appropriate time as determined by the treatment prescription. However, the pneumatic compression pump devices are relatively inefficient, and therefore cannot operate from batteries for any significant length of time. In fact, it is normally required that the device be connected to mains power, and as a further consequence that the patient be stationary during the treatment. Since the pneumatic compression pump device is airtight, heat produced by the patient is accumulated in the device. Thus, the device can only be used for comparatively short durations before it becomes too uncomfortable for the patient. Although the device can dramatically reduce edema during treatment, after use, static compression bandages (or equivalent) must be applied to prevent the fluids from draining back into the afflicted limb. Additionally, the device is noisy, the air-pressure measurements used to infer pressure applied to the limb can be inaccurate, and unintentionally high pressure levels may harm the patient. A qualified massage therapist/clinician may also apply various forms of massage to a patient. Such massage techniques are highly technical and require significant training to perform. Thus, the outcome of the treatment depends very much on the skill of the clinician. U.S. Pat. No. 5,997,465 describes a device for exerting an external pressure on a human body, wherein the device surrounds a body part with a comfortable fit. The device includes memory material components, which alter their shape in response to an electric signal. Thereby, in a contracted state, these components may squeeze the body part, for example to prevent pooling of blood in the body part of a pilot when subjected to G-forces. Then, in a non-contracted state (i.e. when no electric signal is present) the memory material components resume their original shape, and the squeezing ceases. The electrical control proposed in this document overcomes some of the shortcomings associated with the above-described dynamic procedures, i.e. the pneumatic compression pump devices and massage forms. However, the solution is still inadequate for many medical applications. For instance, the skin of a patient is often compromised due to various medical conditions. In addition, the health of the patient's skin may lack elasticity, strength and resilience. Therefore, extreme care must be given to ensure that the pressure profile applied to the patient is medically safe. For instance, if highly localized pressures are applied for long periods of time, the tissues can tear and/or pressure ulcers may be formed. Moreover, if subjected to repeated rubbing, the skin can chafe, or even rip. Additionally, the medical treatments often require that the garments be worn for prolonged periods of time during which pressure and/or repeated pressure pulsation may be applied. Such activities further increase the risk of damage being caused to the patient's skin. Some medical applications may also require that the pressure profiles be variable over a very wide range, for example to promote fluid flow in superficial and interstitial tissues. Sometimes it is desired that the pressure profile emulate the naturally occurring function of a healthy body part. The document EP 1 324 403 describes a motion augmentation solution, wherein an electroactive elastic actuator assists a patient to bend or unbend a joint. Although the document also briefly touches upon massage applications, there is no teaching or suggestion as how the actuators' pressure profiles may be modified, adjusted or by other means be smoothed out to meet various medical criteria. The published U.S. patent application No. 2003/0212306 discloses electroactive polymer-based artificial muscle patches to be implanted adjacent to a patient's heart. The document also describes artificial sphincters to be implanted around the urethra, the anal canal, or the lower esophagus. Thus, the solutions exclusively aim at body internal pressure applications. Naturally therefore, the pressure transition issues are quite different from any implementations wherein pressures are applied to the outside of the body. For example, inside the body, due to the absence of nerves the patient cannot normally feel discomfort. Instead, it is here more important to prevent tissue death and calous formation near the edges of the patches. U.S. Pat. No. 6,123,681 describes a polymer stocking for applying compressive forces to inhibit the development of thrombophlebitis. Interestingly, this document does not address the way in which pressure application is smoothed out over the limb. Instead, it appears most likely that the proposed polymer strips, which are relatively far spaced from one another risk to cause pressure ulcers and tissue damages. Moreover, improper materials are selected for the intended application because none of the polymer strips are capable of providing the high forces required in the thrombophlebitis treatment.
Number | Name | Date | Kind |
---|---|---|---|
3826249 | Lee et al. | Jul 1974 | A |
4013069 | Hasty | Mar 1977 | A |
4029087 | Dye et al. | Jun 1977 | A |
4030488 | Hasty | Jun 1977 | A |
4054540 | Michalchik | Oct 1977 | A |
4091804 | Hasty | May 1978 | A |
4207876 | Annis | Jun 1980 | A |
4256094 | Kapp | Mar 1981 | A |
4269175 | Dillon | May 1981 | A |
4292261 | Kotani et al. | Sep 1981 | A |
4320746 | Arkans | Mar 1982 | A |
4374518 | Villanueva | Feb 1983 | A |
4396010 | Arkans | Aug 1983 | A |
4402312 | Villari | Sep 1983 | A |
4408599 | Nummert | Oct 1983 | A |
4573453 | Tissot et al. | Mar 1986 | A |
4762121 | Shienfeld | Aug 1988 | A |
4996511 | Ohkawa et al. | Feb 1991 | A |
5007411 | Dye | Apr 1991 | A |
5014681 | Neeman | May 1991 | A |
5022387 | Hasty | Jun 1991 | A |
5031604 | Dye | Jul 1991 | A |
5052377 | Frajdenrajch et al. | Oct 1991 | A |
5108455 | Telikicherla | Apr 1992 | A |
5113887 | Herman, Jr. | May 1992 | A |
5117812 | McWhorter | Jun 1992 | A |
5172689 | Wright | Dec 1992 | A |
5175214 | Takaya et al. | Dec 1992 | A |
5179941 | Siemssen | Jan 1993 | A |
5186163 | Dye | Feb 1993 | A |
5193549 | Bellin | Mar 1993 | A |
5263473 | McWhorter | Nov 1993 | A |
5302936 | Yaniger | Apr 1994 | A |
5324317 | Reiss | Jun 1994 | A |
5370133 | Darby | Dec 1994 | A |
5372575 | Sebastian | Dec 1994 | A |
5374283 | Flick | Dec 1994 | A |
5383894 | Dye | Jan 1995 | A |
5437610 | Cariapa | Aug 1995 | A |
5443440 | Tumey | Aug 1995 | A |
5452878 | Gravesen et al. | Sep 1995 | A |
5453081 | Hansen | Sep 1995 | A |
5453653 | Zumeris | Sep 1995 | A |
5575762 | Peeler | Nov 1996 | A |
5583303 | Franz | Dec 1996 | A |
5591200 | Cone | Jan 1997 | A |
5596241 | Seki et al. | Jan 1997 | A |
5626556 | Tobler | May 1997 | A |
5643331 | Katz | Jul 1997 | A |
5653244 | Shaw et al. | Aug 1997 | A |
5725581 | Branemark | Mar 1998 | A |
5759164 | Pacey | Jun 1998 | A |
5795312 | Dye | Aug 1998 | A |
5843007 | McEwen et al. | Dec 1998 | A |
5876359 | Bock et al. | Mar 1999 | A |
5897517 | Laghi | Apr 1999 | A |
5904145 | Reid | May 1999 | A |
5906206 | Shaw et al. | May 1999 | A |
5916183 | Reid | Jun 1999 | A |
5918602 | Shaw et al. | Jul 1999 | A |
5951502 | Peeler et al. | Sep 1999 | A |
5957867 | Lloyd | Sep 1999 | A |
5997465 | Savage | Dec 1999 | A |
6007559 | Arkans | Dec 1999 | A |
6010471 | Ben-Noon | Jan 2000 | A |
6041243 | Davidson et al. | Mar 2000 | A |
6062244 | Arkans | May 2000 | A |
6076013 | Brennan et al. | Jun 2000 | A |
6109267 | Shaw et al. | Aug 2000 | A |
6121870 | Ariga et al. | Sep 2000 | A |
6123681 | Brown | Sep 2000 | A |
6179796 | Waldridge | Jan 2001 | B1 |
6196231 | Reid | Mar 2001 | B1 |
6198204 | Pottenger | Mar 2001 | B1 |
6231532 | Watson | May 2001 | B1 |
6254554 | Turtzo | Jul 2001 | B1 |
6267744 | Roberts | Jul 2001 | B1 |
6282448 | Katz | Aug 2001 | B1 |
6290662 | Morris et al. | Sep 2001 | B1 |
6291568 | Lussey | Sep 2001 | B1 |
6296617 | Peeler et al. | Oct 2001 | B1 |
6315745 | Kloecker | Nov 2001 | B1 |
6332091 | Burns et al. | Dec 2001 | B1 |
6338723 | Carpenter et al. | Jan 2002 | B1 |
6355008 | Nakao | Mar 2002 | B1 |
6388556 | Imai et al. | May 2002 | B1 |
6436064 | Kloecker | Aug 2002 | B1 |
6436448 | Yue | Aug 2002 | B1 |
6437485 | Johansson | Aug 2002 | B1 |
6440093 | McEwen et al. | Aug 2002 | B1 |
6463934 | Johnson, Jr. et al. | Oct 2002 | B1 |
6488677 | Bowman | Dec 2002 | B1 |
6491652 | Hata | Dec 2002 | B1 |
6494852 | Barak | Dec 2002 | B1 |
6506206 | Guzman et al. | Jan 2003 | B1 |
6544202 | McEwen et al. | Apr 2003 | B2 |
6558338 | Wasserman | May 2003 | B1 |
6613350 | Zhang et al. | Sep 2003 | B1 |
6620116 | Lewis | Sep 2003 | B2 |
6656141 | Reid | Dec 2003 | B1 |
6714019 | Kiribayashi et al. | Mar 2004 | B2 |
6749556 | Banik | Jun 2004 | B2 |
6765335 | Wischnewskiy | Jul 2004 | B2 |
6846295 | Ben-Nun | Jan 2005 | B1 |
6870304 | Magnussen | Mar 2005 | B2 |
6960159 | Chung et al. | Nov 2005 | B2 |
6988423 | Bolam et al. | Jan 2006 | B2 |
7001384 | Berish et al. | Feb 2006 | B2 |
7022093 | Smith et al. | Apr 2006 | B2 |
7044924 | Roth et al. | May 2006 | B1 |
7056297 | Dohno et al. | Jun 2006 | B2 |
7074200 | Lewis | Jul 2006 | B1 |
7080562 | Knowles et al. | Jul 2006 | B2 |
7214847 | Flick | May 2007 | B1 |
7257051 | Thoemius et al. | Aug 2007 | B2 |
7327637 | Chambers et al. | Feb 2008 | B2 |
7329232 | Lipshaw et al. | Feb 2008 | B2 |
7354410 | Perry et al. | Apr 2008 | B2 |
7442175 | Meyer et al. | Oct 2008 | B2 |
7481782 | Scott et al. | Jan 2009 | B2 |
7491185 | Couvillon, Jr. | Feb 2009 | B2 |
7548015 | Benslimane et al. | Jun 2009 | B2 |
7569974 | D'Almeida et al. | Aug 2009 | B2 |
7573064 | Benslimane et al. | Aug 2009 | B2 |
7618384 | Nardi et al. | Nov 2009 | B2 |
7637879 | Barak et al. | Dec 2009 | B2 |
7637922 | Johnson et al. | Dec 2009 | B2 |
7732999 | Clausen et al. | Jun 2010 | B2 |
7785905 | Benslimane | Aug 2010 | B2 |
7857777 | Larson et al. | Dec 2010 | B2 |
7868221 | Munch-Fals et al. | Jan 2011 | B2 |
7880371 | Benslimane et al. | Feb 2011 | B2 |
7895728 | Benslimane et al. | Mar 2011 | B2 |
7976924 | Stanford, Jr. et al. | Jul 2011 | B2 |
7992217 | Hyde et al. | Aug 2011 | B2 |
8029451 | Meyer et al. | Oct 2011 | B2 |
8079969 | Rousso et al. | Dec 2011 | B2 |
8079970 | Meyer et al. | Dec 2011 | B2 |
8083644 | Purdy et al. | Dec 2011 | B2 |
8100841 | Rousso | Jan 2012 | B2 |
8100842 | Rousso | Jan 2012 | B2 |
8105252 | Rousso | Jan 2012 | B2 |
8257289 | Vess | Sep 2012 | B2 |
8388557 | Moomiaie-Qajar et al. | Mar 2013 | B2 |
8394042 | Mirza | Mar 2013 | B1 |
8491514 | Creighton et al. | Jul 2013 | B2 |
8578939 | Kimani Mwangi et al. | Nov 2013 | B1 |
8764689 | Toth | Jul 2014 | B2 |
20010002840 | Casserino et al. | Jun 2001 | A1 |
20020074901 | Johansson | Jun 2002 | A1 |
20020091344 | Thomas et al. | Jul 2002 | A1 |
20020173735 | Lewis | Nov 2002 | A1 |
20030176825 | Yavnai | Sep 2003 | A1 |
20030212306 | Banik | Nov 2003 | A1 |
20040073146 | Weintraub | Apr 2004 | A1 |
20040167365 | Chuang | Aug 2004 | A1 |
20040181179 | Hwang | Sep 2004 | A1 |
20050043657 | Couvillon, Jr. | Feb 2005 | A1 |
20050159690 | Barak et al. | Jul 2005 | A1 |
20050187503 | Tordella et al. | Aug 2005 | A1 |
20060074362 | Rousso et al. | Apr 2006 | A1 |
20060111655 | Cook et al. | May 2006 | A1 |
20060258964 | Biondo et al. | Nov 2006 | A1 |
20060287672 | McEwen et al. | Dec 2006 | A1 |
20070029197 | DiFoggio et al. | Feb 2007 | A1 |
20080039752 | Rousso | Feb 2008 | A1 |
20080188782 | Carkner et al. | Aug 2008 | A1 |
20080195018 | Larson et al. | Aug 2008 | A1 |
20080255494 | Rousso et al. | Oct 2008 | A1 |
20080281240 | Wright | Nov 2008 | A1 |
20090018474 | Nakao | Jan 2009 | A1 |
20090064476 | Cross et al. | Mar 2009 | A1 |
20090118651 | Rousso et al. | May 2009 | A1 |
20090234265 | Reid, Jr. et al. | Sep 2009 | A1 |
20090299249 | Wilkes et al. | Dec 2009 | A1 |
20100010404 | Nardi et al. | Jan 2010 | A1 |
20100010406 | Nardi et al. | Jan 2010 | A1 |
20100036299 | Gough | Feb 2010 | A1 |
20100056966 | Toth | Mar 2010 | A1 |
20100204803 | Tozzi et al. | Aug 2010 | A1 |
20100305484 | Grollier et al. | Dec 2010 | A1 |
20110009795 | Graham et al. | Jan 2011 | A1 |
20110066093 | Vess | Mar 2011 | A1 |
20110082401 | Iker et al. | Apr 2011 | A1 |
20110119812 | Genz et al. | May 2011 | A1 |
20110125183 | Lipshaw et al. | May 2011 | A1 |
20110131839 | Ballin et al. | Jun 2011 | A1 |
20110156530 | Yamamoto et al. | Jun 2011 | A1 |
20110162200 | Benslimane et al. | Jul 2011 | A1 |
20110196269 | Arkans | Aug 2011 | A1 |
20110245743 | Eddy | Oct 2011 | A1 |
20130184622 | Farrow | Jul 2013 | A1 |
20130283500 | Lipshaw et al. | Oct 2013 | A1 |
20130345610 | Larson et al. | Dec 2013 | A1 |
Number | Date | Country |
---|---|---|
10 2010 021 902 | Dec 2011 | DE |
0 210 002 | Jan 1987 | EP |
0 329 470 | Aug 1989 | EP |
0 475 752 | Mar 1992 | EP |
1 018 329 | Jul 2000 | EP |
1 324 403 | Feb 2003 | EP |
1 324 406 | Feb 2003 | EP |
1 533 678 | Nov 2003 | EP |
1 596 794 | Nov 2005 | EP |
1 645 254 | Apr 2006 | EP |
1245312 | Jul 1986 | JP |
1999-009633 | Jun 1997 | JP |
2002-336320 | May 2001 | JP |
2003-062023 | Aug 2001 | JP |
0245697 | Jun 2002 | WO |
02055005 | Jul 2002 | WO |
03105946 | Dec 2003 | WO |
2004084790 | Oct 2004 | WO |
2004091463 | Oct 2004 | WO |
2004093763 | Nov 2004 | WO |
2005092401 | Oct 2005 | WO |
2009114676 | Sep 2009 | WO |
2011022305 | Feb 2011 | WO |
2013025481 | Feb 2013 | WO |
2013033669 | Mar 2013 | WO |
2013138394 | Sep 2013 | WO |
Entry |
---|
Bar-Cohen, “Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges,” 2nd Ed., Chapter 1, SPIE Press, Bellingham; 2004. |
Grayline Inc., Polyurethane Tubing; http://www.graylineinc.com/tubing-materials/polyurethane.html. |
Herbert et al., “Electroceramics: Materials, Properties, Applications,” 2nd Ed., John Wiley & Sons, West Sussex; 2003. |
Humbeeck et al., “Characteristics of Shape Memory Alloys,” Shampe Memory Materials, Chapter 7, Cambridge University Press, Cambridge; 1999. |
International Search Report dated Feb. 16, 2006, for International Application No. PCT/EP2005/010886. |
International Preliminary Report on Patentability dated Apr. 23, 2007, for International Application No. PCT/EP2005/010886. |
International Search Report dated May 10, 2006, for International Application No. PCT/EP2006/000276, published as WO 2007/079777 A1. |
International Search Report dated Apr. 17, 2007, in Europe, Patent Application No. PCT/GB2007/000244. 4 pages. |
Written Opinion dated Jan. 24, 2007, in Europe, Patent Application No. PCT/GB2007/000244. 5 pages. |
International Preliminary Report on Patentability dated Jul. 29, 2008, in Europe, Patent Application No. PCT/GB2007/000244. 6 pages. |
Toshiiku et al., “An Introduction to Ultrasonic Motors,” Chapter 1, Claredon Press, Oxford; 1993. |
Zhang et al., “Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges,” 2nd Ed., Chapter 4, SPIE Press, Bellingham; 2004. |
Number | Date | Country | |
---|---|---|---|
20150025426 A1 | Jan 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11576936 | US | |
Child | 12950310 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13975732 | Aug 2013 | US |
Child | 14340130 | US | |
Parent | 12950310 | Nov 2010 | US |
Child | 13975732 | US |