This document relates to the technical field of (and is not limited to) an electro-anatomic mapping system, a non-transitory computer-readable medium for utilization by an electro-anatomic mapping system, and/or a method of utilizing an electro-anatomic mapping system.
Known electro-anatomic mapping (EAM) systems are configured to facilitate the mapping of the interior of a patient, such as the heart of the patient and/or a medical procedure, such as a cardiac ablation procedure. Cardiac ablation is a procedure that is used to scar small areas in the heart of a patient.
It will be appreciated that there exists a need to mitigate (at least in part) at least one problem associated with the existing or known anatomical mapping systems (also called the existing technology). After much study of, and experimentation with, the existing or known anatomical mapping systems, an understanding (at least in part) of the problem and its solution have been identified (at least in part) and are articulated (at least in part) as follows: An electro-anatomic mapping system (EAM system) enables real-time three-dimensional (3D) visualization of intravascular catheters in the heart (preferably without exposure to radiation, for the safety). However, catheter probe tracking may be disrupted when sufficient electromagnetic noise is introduced into the environment, such as during electromagnetic puncture or ablation (such as radio frequency puncture, etc.).
Signal processing dictates that an input consists of signal and noise. Subtraction of the noise from the input leaves only the desired signal. The challenge is usually determining the noise to perform this subtraction. In the case of EAM, a sensor in a fixed position may have a predictable signal, thus any noise added to it can easily be isolated. If the noise originated from a known source of finite duration, it may have a similar effect on all sensors nearby, fixed or otherwise.
It may be desirable to provide an electro-anatomic mapping system with a reference sensor that is fixed in place relative to the heart anatomy. Because it does not move, the signal measured by the sensor is predictable, and any new and/or unexpected received inputs may be isolated as noise. The noise component can be fed into the EAM system to determine the optimal filter for removing said noise in the other catheter signals.
It may be desirable to provide an electro-anatomic mapping system configured to reduce signal noise and thereby improve, at least in part, image quality.
It may be desirable to provide an electro-anatomic mapping system with medical devices (such as catheters with sensors configured to detect electromagnetic signals) along with a noise filtering device or method, etc.
It may be desirable to provide an electro-anatomic mapping system configured to provide spatial tracking of the sensors. The noise filtering method or device may be included in the electro-anatomic mapping system. The medical devices may include a catheter, and/or an intracardiac catheter with distal coils configured to receive electromagnetic signals from the electro-anatomic mapping system. The catheter may be connected to the electro-anatomic mapping system such that received signals may be fed directly back to the electro-anatomic mapping system. The catheter may be part of the clinical workflow for a procedure. For instance, the medical device may include any type of catheter compatible with the electro-anatomic mapping system. This may include, and is not limited to, a sheath, a dilator, a needle, a probe, a wire and/or an external patch device, etc. The electro-anatomic mapping system is configured to receive measurements from a reference sensor for the purpose of isolating a noise component (an unwanted signal). The electro-anatomic mapping system is configured to receive a (clean) signal in the absence of noise from another medical device (such as, a radio frequency puncture device or RF puncture device). The signal may be predictable as long as the sensor position remains relatively stationary. It will be appreciated that adaptive noise cancellation may be utilized on the signals, as may be described in a document titled: ADAPTIVE NOISE CANCELLING: PRINCIPLES AND APPLICATIONS (B. Widrow et al., Proceedings of the IEEE, vol. 63, no. 12, pp. 1692-1716, Dec. 1975,). The reference input may be created by, for instance, a subtraction method (operation), etc.
To mitigate, at least in part, at least one problem associated with the existing technology, there is provided (in accordance with a major aspect) an apparatus. The apparatus comprises an electro-anatomic mapping system, including a processor assembly. A non-transitory computer-readable storage medium includes computer-executable instructions executable by the processor assembly (this is done in such a way that the processor assembly is urged to perform operations). The operations may include waiting for confirmation that a first medical device is positioned at the first stationary position located proximate to a biological wall of a patient. The operations may further include transmitting, once the confirmation has been received, a first reference signal to the first medical device while the first medical device is kept positioned at the first stationary position The operations may further include receiving a first reference response signal from the first medical device while the first medical device is kept positioned at the first stationary position. The first medical device transmits, in use, the first reference response signal to the electro-anatomic mapping system in response to the first medical device receiving, in use, the first reference signal from the electro-anatomic mapping system. The first reference response signal is configured to be utilized by the electro-anatomic mapping system for formation of a first medical image (to be depicted on a display device of the electro-anatomic mapping system). The electro-anatomic mapping system is configured to superimpose the location of the sensors onto an existing (pre-existing) medical image of the anatomy (of a patient), similar to the manner in which a computerized tomography (CT) scanner may acquire (before the procedure is started). Therefore, it will be appreciated that the term “formation of a medical image” may include the superimposition of the location (the detected location) of the sensors onto an existing (pre-existing) medical image of the anatomy, similar to the manner in which a computerized tomography (CT) scanner may acquire (before the procedure is started). The operations may further include waiting for confirmation that a second medical device is positioned, and activated, at a noise-source position located relative to the first stationary position and located relative to the biological wall of the patient (while the first medical device is kept positioned at the first stationary position). The operations may further include waiting for confirmation that the second medical device transmitted, in use, a second medical-device signal toward the first medical device while the first medical device is kept positioned at the first stationary position and while the second medical device is kept positioned at the noise-source position.
To mitigate, at least in part, at least one problem associated with the existing technology, there is provided (in accordance with a major aspect) an apparatus. The apparatus includes a non-transitory computer-readable medium having (including) computer-executable instructions that, when executed by a processor assembly of an electro-anatomic mapping system, causes the processor assembly to perform operations. The operations include waiting for confirmation that a first medical device is positioned at the first stationary position located proximate to a biological wall of a patient. The operations further include transmitting, once the confirmation has been received, a first reference signal to the first medical device while the first medical device is kept positioned at the first stationary position. The operations further include receiving a first reference response signal from the first medical device while the first medical device is kept positioned at the first stationary position. The first medical device transmits, in use, the first reference response signal to the electro-anatomic mapping system in response to the first medical device receiving, in use, the first reference signal from the electro-anatomic mapping system. The first reference response signal is configured to be utilized by the electro-anatomic mapping system for formation of a first medical image (to be depicted on a display device of the electro-anatomic mapping system). The operations further include waiting for confirmation that a second medical device is positioned, and activated, at a noise-source position located relative to the first stationary position and located relative to the biological wall of the patient (while the first medical device is kept positioned at the first stationary position). The operations further include waiting for confirmation that the second medical device transmitted, in use, a second medical-device signal toward the first medical device while the first medical device is kept positioned at the first stationary position and while the second medical device is kept positioned at the noise-source position.
To mitigate, at least in part, at least one problem associated with the existing technology, there is provided (in accordance with a major aspect) a method. The method is for utilizing an electro-anatomic mapping system. The method includes waiting for confirmation that a first medical device is positioned at the first stationary position located proximate to a biological wall of a patient. The method also includes transmitting, once the confirmation has been received, a first reference signal to the first medical device while the first medical device is kept positioned at the first stationary position. The method also includes receiving a first reference response signal from the first medical device while the first medical device is kept positioned at the first stationary position, in which the first medical device transmits, in use, the first reference response signal to the electro-anatomic mapping system in response to the first medical device receiving, in use, the first reference signal from the electro-anatomic mapping system. The first reference response signal is configured to be utilized by the electro-anatomic mapping system for formation of a first medical image to be depicted on a display device of the electro-anatomic mapping system. The method also includes waiting for confirmation that a second medical device is positioned, and activated, at a noise-source position located relative to the first stationary position and located relative to the biological wall of the patient (while the first medical device is kept positioned at the first stationary position). The method also includes waiting for confirmation that the second medical device transmitted, in use, a second medical-device signal toward the first medical device while the first medical device is kept positioned at the first stationary position and while the second medical device is kept positioned at the noise-source position.
To mitigate, at least in part, at least one problem associated with the existing technology, there is provided (in accordance with a major aspect) an apparatus. The apparatus comprises an electro-anatomic mapping system, including a processor assembly; and a non-transitory computer-readable storage medium including computer-executable instructions being executable by the processor assembly in such a way that the processor assembly, of the electro-anatomic mapping system, is urged to perform operations, including: a transmitting operation including transmitting (in use) a first reference signal to a first medical device; and in response, the first medical device transmits a first reference response signal back to the electro-anatomic mapping system; and a receiving operation including receiving, in use, the first reference response signal from the first medical device; and a computing operation, including computing a reference signal model A, in which the reference signal model A represents the first reference response signal; and a transmitting operation including transmitting the first reference signal to the first medical device, in which a second medical device is positioned proximate to the biological wall of the patient, and in which the second medical device is activated for forming a hole through the biological wall, and in which the second medical device transmits, once activated, a second medical-device signal to the first medical device while the first reference signal continues to be transmitted to the first medical device, and the first medical device receives both the first reference signal from the electro-anatomic mapping system and the second medical-device signal from the second medical device, and in response to receiving both signals, the first medical device transmits a second reference response signal back to the electro-anatomic mapping system; and a receiving operation including receiving, in use, the second reference response signal from the first medical device; and a reading operation including reading, in response to the second medical device being activated, the reference signal model A; and a computing operating including computing the noise-correction datum by evaluating the second reference response signal with the reference signal model A. The apparatus may further be adapted such that a computing operating includes computing a noise filter (F) based on the noise-correction datum, in which the noise filter (F) is configured to remove, at least in part, the contribution of the second medical-device signal from the medical image to be formed or generated and displayed by the electro-anatomic mapping system. The apparatus may further be adapted such that the computer-executable instructions further urge the processor assembly to perform an applying operation including applying the filter (F) to remove the noise originating from the second medical device and transmitted through other medical device assemblies.
Other aspects are identified in the claims. Other aspects and features of the non-limiting embodiments may now become apparent to those skilled in the art upon review of the following detailed description of the non-limiting embodiments with the accompanying drawings. This Summary is provided to introduce concepts in simplified form that are further described below in the Detailed Description. This Summary is not intended to identify potentially key features or possible essential features of the disclosed subject matter, and is not intended to describe each disclosed embodiment or every implementation of the disclosed subject matter. Many other novel advantages, features, and relationships will become apparent as this description proceeds. The figures and the description that follow more particularly exemplify illustrative embodiments.
The non-limiting embodiments may be more fully appreciated by reference to the following detailed description of the non-limiting embodiments when taken in conjunction with the accompanying drawings, in which:
The drawings are not necessarily to scale and may be illustrated by phantom lines, diagrammatic representations and fragmentary views. In certain instances, details unnecessary for an understanding of the embodiments (and/or details that render other details difficult to perceive) may have been omitted. Corresponding reference characters indicate corresponding components throughout the several figures of the drawings. Elements in the several figures are illustrated for simplicity and clarity and have not been drawn to scale. The dimensions of some of the elements in the figures may be emphasized relative to other elements for facilitating an understanding of the various disclosed embodiments. In addition, common, and well-understood, elements that are useful in commercially feasible embodiments are often not depicted to provide a less obstructed view of the embodiments of the present disclosure.
The following detailed description is merely exemplary and is not intended to limit the described embodiments or the application and uses of the described embodiments. As used, the word “exemplary” or “illustrative” means “serving as an example, instance, or illustration.” Any implementation described as “exemplary” or “illustrative” is not necessarily to be construed as preferred or advantageous over other implementations. All of the implementations described below are exemplary implementations provided to enable persons skilled in the art to make or use the embodiments of the disclosure and are not intended to limit the scope of the disclosure. The scope of the disclosure is defined by the claims. For the description, the terms “upper,” “lower,” “left,” “rear,” “right,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the examples as oriented in the drawings. There is no intention to be bound by any expressed or implied theory in the preceding Technical Field, Background, Summary or the following detailed description. It is also to be understood that the devices and processes illustrated in the attached drawings, and described in the following specification, are exemplary embodiments (examples), aspects and/or concepts defined in the appended claims. Hence, dimensions and other physical characteristics relating to the embodiments disclosed are not to be considered as limiting, unless the claims expressly state otherwise. It is understood that the phrase “at least one” is equivalent to “a”. The aspects (examples, alterations, modifications, options, variations, embodiments and any equivalent thereof) are described regarding the drawings. It should be understood that the disclosure is limited to the subject matter provided by the claims, and that the disclosure is not limited to the particular aspects depicted and described. It will be appreciated that the scope of the meaning of a device configured to be coupled to an item (that is, to be connected to, to interact with the item, etc.) is to be interpreted as the device being configured to be coupled to the item, either directly or indirectly. Therefore, “configured to” may include the meaning “either directly or indirectly” unless specifically stated otherwise.
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiments as depicted in
Referring to the embodiment as depicted in
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
Referring to the embodiment as depicted in
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
Referring to the embodiment as depicted in
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
Referring to the embodiment as depicted in
Referring to the embodiments as depicted in
Referring to the embodiments as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
Referring to the embodiment as depicted in
The following is offered as further description of the embodiments, in which any one or more of any technical feature (described in the detailed description, the summary and the claims) may be combinable with any other one or more of any technical feature (described in the detailed description, the summary and the claims). It is understood that each claim in the claims section is an open ended claim unless stated otherwise. Unless otherwise specified, relational terms used in these specifications should be construed to include certain tolerances that the person skilled in the art would recognize as providing equivalent functionality. By way of example, the term perpendicular is not necessarily limited to 90.0 degrees, and may include a variation thereof that the person skilled in the art would recognize as providing equivalent functionality for the purposes described for the relevant member or element. Terms such as “about” and “substantially”, in the context of configuration, relate generally to disposition, location, or configuration that are either exact or sufficiently close to the location, disposition, or configuration of the relevant element to preserve operability of the element within the disclosure which does not materially modify the disclosure. Similarly, unless specifically made clear from its context, numerical values should be construed to include certain tolerances that the person skilled in the art would recognize as having negligible importance as they do not materially change the operability of the disclosure. It will be appreciated that the description and/or drawings identify and describe embodiments of the apparatus (either explicitly or inherently). The apparatus may include any suitable combination and/or permutation of the technical features as identified in the detailed description, as may be required and/or desired to suit a particular technical purpose and/or technical function. It will be appreciated that, where possible and suitable, any one or more of the technical features of the apparatus may be combined with any other one or more of the technical features of the apparatus (in any combination and/or permutation). It will be appreciated that persons skilled in the art would know that the technical features of each embodiment may be deployed (where possible) in other embodiments even if not expressly stated as such above. It will be appreciated that persons skilled in the art would know that other options may be possible for the configuration of the components of the apparatus to adjust to manufacturing requirements and still remain within the scope as described in at least one or more of the claims. This written description provides embodiments, including the best mode, and also enables the person skilled in the art to make and use the embodiments. The patentable scope may be defined by the claims. The written description and/or drawings may help to understand the scope of the claims. It is believed that all of the crucial aspects of the disclosed subject matter have been provided in this document. It is understood, for this document, that the word “includes” is equivalent to the word “comprising” in that both words are used to signify an open-ended listing of assemblies, components, parts, etc. The term “comprising”, which is synonymous with the terms “including,” “containing,” or “characterized by,” is inclusive or open-ended and does not exclude additional, unrecited elements or method steps. Comprising (comprised of) is an “open” phrase and allows coverage of technologies that employ additional, unrecited elements. When used in a claim, the word “comprising” is the transitory verb (transitional term) that separates the preamble of the claim from the technical features of the disclosure. The foregoing has outlined the non-limiting embodiments (examples). The description is made for particular non-limiting embodiments (examples). It is understood that the non-limiting embodiments are merely illustrative as examples.
Number | Name | Date | Kind |
---|---|---|---|
175254 | Oberly | Mar 1876 | A |
827626 | Gillet | Jul 1906 | A |
848711 | Weaver | Apr 1907 | A |
1072954 | Junn | Sep 1913 | A |
1279654 | Charlesworth | Sep 1918 | A |
1918094 | Geekas | Jul 1933 | A |
1996986 | Weinberg | Apr 1935 | A |
2021989 | De Master | Nov 1935 | A |
2146636 | Lipchow | Feb 1939 | A |
3429574 | Williams | Feb 1969 | A |
3448739 | Stark et al. | Jun 1969 | A |
3575415 | Fulp et al. | Apr 1971 | A |
3595239 | Petersen | Jul 1971 | A |
4129129 | Amrine | Dec 1978 | A |
4244362 | Anderson | Jan 1981 | A |
4401124 | Guess et al. | Aug 1983 | A |
4639252 | Kelly et al. | Jan 1987 | A |
4641649 | Walinsky et al. | Feb 1987 | A |
4669467 | Willett et al. | Jun 1987 | A |
4682596 | Bales et al. | Jul 1987 | A |
4790311 | Ruiz | Dec 1988 | A |
4790809 | Kuntz | Dec 1988 | A |
4793350 | Mar et al. | Dec 1988 | A |
4807620 | Strul et al. | Feb 1989 | A |
4832048 | Cohen | May 1989 | A |
4840622 | Hardy | Jun 1989 | A |
4863441 | Lindsay et al. | Sep 1989 | A |
4884567 | Elliott et al. | Dec 1989 | A |
4892104 | Ito et al. | Jan 1990 | A |
4896671 | Cunningham et al. | Jan 1990 | A |
4928693 | Goodin et al. | May 1990 | A |
4936281 | Stasz | Jun 1990 | A |
4960410 | Pinchuk | Oct 1990 | A |
4977897 | Hurwitz | Dec 1990 | A |
4998933 | Eggers et al. | Mar 1991 | A |
5006119 | Acker et al. | Apr 1991 | A |
5019076 | Yamanashi et al. | May 1991 | A |
5047026 | Rydell | Sep 1991 | A |
5081997 | Bosley et al. | Jan 1992 | A |
5098431 | Rydell | Mar 1992 | A |
5112048 | Kienle | May 1992 | A |
5154724 | Andrews | Oct 1992 | A |
5201756 | Horzewski et al. | Apr 1993 | A |
5209741 | Spaeth | May 1993 | A |
5211183 | Wilson | May 1993 | A |
5221256 | Mahurkar | Jun 1993 | A |
5230349 | Langberg | Jul 1993 | A |
5281216 | Klicek | Jan 1994 | A |
5300068 | Rosar et al. | Apr 1994 | A |
5300069 | Hunsberger et al. | Apr 1994 | A |
5314418 | Takano et al. | May 1994 | A |
5318525 | West et al. | Jun 1994 | A |
5327905 | Avitall | Jul 1994 | A |
5364393 | Auth et al. | Nov 1994 | A |
5372596 | Klicek et al. | Dec 1994 | A |
5380304 | Parker | Jan 1995 | A |
5397304 | Truckai | Mar 1995 | A |
5403338 | Milo | Apr 1995 | A |
5423809 | Klicek | Jun 1995 | A |
5425382 | Golden et al. | Jun 1995 | A |
5490859 | Mische et al. | Feb 1996 | A |
5497774 | Swartz et al. | Mar 1996 | A |
5507751 | Goode et al. | Apr 1996 | A |
5509411 | Littmann et al. | Apr 1996 | A |
5540681 | Strul et al. | Jul 1996 | A |
5545200 | West et al. | Aug 1996 | A |
5555618 | Winkler | Sep 1996 | A |
5571088 | Lennox et al. | Nov 1996 | A |
5575766 | Swartz et al. | Nov 1996 | A |
5575772 | Lennox | Nov 1996 | A |
5599347 | Hart et al. | Feb 1997 | A |
5605162 | Mirzaee et al. | Feb 1997 | A |
5617878 | Taheri | Apr 1997 | A |
5622169 | Golden et al. | Apr 1997 | A |
5624430 | Eton et al. | Apr 1997 | A |
5667488 | Lundquist et al. | Sep 1997 | A |
5673695 | Mcgee et al. | Oct 1997 | A |
5674208 | Berg et al. | Oct 1997 | A |
5683366 | Eggers et al. | Nov 1997 | A |
5720744 | Eggleston et al. | Feb 1998 | A |
5741249 | Moss et al. | Apr 1998 | A |
5766135 | Terwilliger | Jun 1998 | A |
5779688 | Imran et al. | Jul 1998 | A |
5810764 | Eggers et al. | Sep 1998 | A |
5814028 | Swartz et al. | Sep 1998 | A |
5830214 | Flom et al. | Nov 1998 | A |
5836875 | Webster, Jr. | Nov 1998 | A |
5849011 | Jones et al. | Dec 1998 | A |
5851210 | Torossian | Dec 1998 | A |
5885227 | Finlayson | Mar 1999 | A |
5888201 | Stinson et al. | Mar 1999 | A |
5893848 | Negus et al. | Apr 1999 | A |
5893885 | Webster, Jr. | Apr 1999 | A |
5904679 | Clayman | May 1999 | A |
5916210 | Winston | Jun 1999 | A |
5921957 | Killion et al. | Jul 1999 | A |
5931818 | Werp et al. | Aug 1999 | A |
5944023 | Johnson et al. | Aug 1999 | A |
5951482 | Winston et al. | Sep 1999 | A |
5957842 | Littmann et al. | Sep 1999 | A |
5964757 | Ponzi | Oct 1999 | A |
5967976 | Larsen et al. | Oct 1999 | A |
5989276 | Houser et al. | Nov 1999 | A |
6007555 | Devine | Dec 1999 | A |
6009877 | Edwards | Jan 2000 | A |
6013072 | Winston et al. | Jan 2000 | A |
6017340 | Cassidy et al. | Jan 2000 | A |
6018676 | Davis et al. | Jan 2000 | A |
6030380 | Auth et al. | Feb 2000 | A |
6032674 | Eggers et al. | Mar 2000 | A |
6048349 | Winston et al. | Apr 2000 | A |
6053870 | Fulton, III | Apr 2000 | A |
6053904 | Scribner et al. | Apr 2000 | A |
6056747 | Saadat et al. | May 2000 | A |
6063093 | Winston et al. | May 2000 | A |
6093185 | Ellis et al. | Jul 2000 | A |
6106515 | Winston et al. | Aug 2000 | A |
6106520 | Laufer et al. | Aug 2000 | A |
6117131 | Taylor | Sep 2000 | A |
6142992 | Cheng et al. | Nov 2000 | A |
6146380 | Racz et al. | Nov 2000 | A |
6155264 | Ressemann et al. | Dec 2000 | A |
6156031 | Aita et al. | Dec 2000 | A |
6171305 | Sherman | Jan 2001 | B1 |
6179824 | Eggers et al. | Jan 2001 | B1 |
6193676 | Winston et al. | Feb 2001 | B1 |
6193715 | Wrublewski et al. | Feb 2001 | B1 |
6210408 | Chandrasekaran et al. | Apr 2001 | B1 |
6217575 | Devore et al. | Apr 2001 | B1 |
6221061 | Engelson et al. | Apr 2001 | B1 |
6228076 | Winston et al. | May 2001 | B1 |
6245054 | Fuimaono et al. | Jun 2001 | B1 |
6267758 | Daw et al. | Jul 2001 | B1 |
6283983 | Makower et al. | Sep 2001 | B1 |
6292678 | Hall et al. | Sep 2001 | B1 |
6293945 | Parins et al. | Sep 2001 | B1 |
6296615 | Brockway et al. | Oct 2001 | B1 |
6296636 | Cheng et al. | Oct 2001 | B1 |
6302898 | Edwards et al. | Oct 2001 | B1 |
6304769 | Arenson et al. | Oct 2001 | B1 |
6315777 | Comben | Nov 2001 | B1 |
6328699 | Eigler et al. | Dec 2001 | B1 |
6360128 | Kordis et al. | Mar 2002 | B2 |
6364877 | Goble et al. | Apr 2002 | B1 |
6385472 | Hall et al. | May 2002 | B1 |
6394976 | Winston et al. | May 2002 | B1 |
6395002 | Ellman et al. | May 2002 | B1 |
6419674 | Bowser et al. | Jul 2002 | B1 |
6428551 | Hall et al. | Aug 2002 | B1 |
6450989 | Dubrul et al. | Sep 2002 | B2 |
6475214 | Moaddeb | Nov 2002 | B1 |
6485485 | Winston et al. | Nov 2002 | B1 |
6508754 | Liprie et al. | Jan 2003 | B1 |
6524303 | Garibaldi | Feb 2003 | B1 |
6530923 | Dubrul et al. | Mar 2003 | B1 |
6554827 | Chandrasekaran et al. | Apr 2003 | B2 |
6562031 | Chandrasekaran et al. | May 2003 | B2 |
6562049 | Norlander et al. | May 2003 | B1 |
6565562 | Shah et al. | May 2003 | B1 |
6607529 | Jones et al. | Aug 2003 | B1 |
6632222 | Edwards et al. | Oct 2003 | B1 |
6639999 | Cookingham et al. | Oct 2003 | B1 |
6650923 | Lesh et al. | Nov 2003 | B1 |
6651672 | Roth | Nov 2003 | B2 |
6662034 | Segner et al. | Dec 2003 | B2 |
6663621 | Winston et al. | Dec 2003 | B1 |
6702811 | Stewart et al. | Mar 2004 | B2 |
6709444 | Makower | Mar 2004 | B1 |
6723052 | Mills | Apr 2004 | B2 |
6733511 | Hall et al. | May 2004 | B2 |
6740103 | Hall et al. | May 2004 | B2 |
6752800 | Winston et al. | Jun 2004 | B1 |
6755816 | Ritter et al. | Jun 2004 | B2 |
6811544 | Schaer | Nov 2004 | B2 |
6814733 | Schwartz et al. | Nov 2004 | B2 |
6820614 | Bonutti | Nov 2004 | B2 |
6834201 | Gillies et al. | Dec 2004 | B2 |
6842639 | Winston et al. | Jan 2005 | B1 |
6852109 | Winston et al. | Feb 2005 | B2 |
6855143 | Davison et al. | Feb 2005 | B2 |
6860856 | Ward et al. | Mar 2005 | B2 |
6869431 | Maguire et al. | Mar 2005 | B2 |
6911026 | Hall et al. | Jun 2005 | B1 |
6951554 | Johansen et al. | Oct 2005 | B2 |
6951555 | Suresh et al. | Oct 2005 | B1 |
6955675 | Jain | Oct 2005 | B2 |
6970732 | Winston et al. | Nov 2005 | B2 |
6980843 | Eng et al. | Dec 2005 | B2 |
7029470 | Francischelli et al. | Apr 2006 | B2 |
7056294 | Khairkhahan et al. | Jun 2006 | B2 |
7083566 | Tornes et al. | Aug 2006 | B2 |
7112197 | Hartley et al. | Sep 2006 | B2 |
7335197 | Sage et al. | Feb 2008 | B2 |
7618430 | Scheib | Nov 2009 | B2 |
7651492 | Wham | Jan 2010 | B2 |
7666203 | Chanduszko et al. | Feb 2010 | B2 |
7678081 | Whiting et al. | Mar 2010 | B2 |
7682360 | Guerra | Mar 2010 | B2 |
7828796 | Wong et al. | Nov 2010 | B2 |
7900928 | Held et al. | Mar 2011 | B2 |
8192425 | Mirza et al. | Jun 2012 | B2 |
8257323 | Joseph et al. | Sep 2012 | B2 |
8388549 | Paul et al. | Mar 2013 | B2 |
8500697 | Kurth et al. | Aug 2013 | B2 |
11339579 | Stearns | May 2022 | B1 |
20010012934 | Chandrasekaran et al. | Aug 2001 | A1 |
20010021867 | Kordis et al. | Sep 2001 | A1 |
20020019644 | Hastings et al. | Feb 2002 | A1 |
20020022781 | Mclntire et al. | Feb 2002 | A1 |
20020022836 | Goble et al. | Feb 2002 | A1 |
20020035361 | Houser et al. | Mar 2002 | A1 |
20020087153 | Roschak et al. | Jul 2002 | A1 |
20020087156 | Maguire et al. | Jul 2002 | A1 |
20020111618 | Stewart et al. | Aug 2002 | A1 |
20020123749 | Jain | Sep 2002 | A1 |
20020147485 | Mamo et al. | Oct 2002 | A1 |
20020169377 | Khairkhahan et al. | Nov 2002 | A1 |
20020188302 | Berg et al. | Dec 2002 | A1 |
20020198521 | Maguire | Dec 2002 | A1 |
20030032929 | Mcguckin | Feb 2003 | A1 |
20030040742 | Underwood et al. | Feb 2003 | A1 |
20030144658 | Schwartz et al. | Jul 2003 | A1 |
20030158480 | Tornes et al. | Aug 2003 | A1 |
20030163153 | Scheib | Aug 2003 | A1 |
20030225392 | Mcmichael et al. | Dec 2003 | A1 |
20040015162 | Mcgaffigan | Jan 2004 | A1 |
20040024396 | Eggers | Feb 2004 | A1 |
20040030328 | Eggers et al. | Feb 2004 | A1 |
20040044350 | Martin et al. | Mar 2004 | A1 |
20040073243 | Sepetka et al. | Apr 2004 | A1 |
20040077948 | Violante et al. | Apr 2004 | A1 |
20040116851 | Johansen et al. | Jun 2004 | A1 |
20040127963 | Uchida et al. | Jul 2004 | A1 |
20040133113 | Krishnan | Jul 2004 | A1 |
20040133130 | Ferry et al. | Jul 2004 | A1 |
20040143256 | Bednarek | Jul 2004 | A1 |
20040147950 | Mueller et al. | Jul 2004 | A1 |
20040181213 | Gondo | Sep 2004 | A1 |
20040230188 | Cioanta et al. | Nov 2004 | A1 |
20050004585 | Hall et al. | Jan 2005 | A1 |
20050010208 | Winston et al. | Jan 2005 | A1 |
20050049628 | Schweikert et al. | Mar 2005 | A1 |
20050059966 | Mcclurken et al. | Mar 2005 | A1 |
20050065507 | Hartley et al. | Mar 2005 | A1 |
20050085806 | Auge et al. | Apr 2005 | A1 |
20050096529 | Cooper et al. | May 2005 | A1 |
20050101984 | Chanduszko et al. | May 2005 | A1 |
20050119556 | Gillies et al. | Jun 2005 | A1 |
20050137527 | Kunin | Jun 2005 | A1 |
20050149012 | Penny et al. | Jul 2005 | A1 |
20050203504 | Wham et al. | Sep 2005 | A1 |
20050203507 | Truckai et al. | Sep 2005 | A1 |
20050261607 | Johansen et al. | Nov 2005 | A1 |
20050288631 | Lewis et al. | Dec 2005 | A1 |
20060041253 | Newton et al. | Feb 2006 | A1 |
20060074398 | Whiting et al. | Apr 2006 | A1 |
20060079769 | Whiting et al. | Apr 2006 | A1 |
20060079787 | Whiting et al. | Apr 2006 | A1 |
20060079884 | Manzo et al. | Apr 2006 | A1 |
20060085054 | Zikorus et al. | Apr 2006 | A1 |
20060089638 | Carmel et al. | Apr 2006 | A1 |
20060106375 | Werneth et al. | May 2006 | A1 |
20060135962 | Kick et al. | Jun 2006 | A1 |
20060142756 | Davies et al. | Jun 2006 | A1 |
20060189972 | Grossman | Aug 2006 | A1 |
20060241586 | Wilk | Oct 2006 | A1 |
20060247672 | Vidlund et al. | Nov 2006 | A1 |
20060264927 | Ryan | Nov 2006 | A1 |
20060276710 | Krishnan | Dec 2006 | A1 |
20070060879 | Weitzner et al. | Mar 2007 | A1 |
20070066975 | Wong et al. | Mar 2007 | A1 |
20070118099 | Trout, III | May 2007 | A1 |
20070123964 | Davies et al. | May 2007 | A1 |
20070167775 | Kochavi et al. | Jul 2007 | A1 |
20070208256 | Marilla | Sep 2007 | A1 |
20070225681 | House | Sep 2007 | A1 |
20070270791 | Wang et al. | Nov 2007 | A1 |
20080039865 | Shaher et al. | Feb 2008 | A1 |
20080042360 | Veikley | Feb 2008 | A1 |
20080086120 | Mirza et al. | Apr 2008 | A1 |
20080097213 | Carlson et al. | Apr 2008 | A1 |
20080108987 | Bruszewski et al. | May 2008 | A1 |
20080146918 | Magnin et al. | Jun 2008 | A1 |
20080171934 | Greenan et al. | Jul 2008 | A1 |
20080208121 | Youssef et al. | Aug 2008 | A1 |
20080275439 | Francischelli et al. | Nov 2008 | A1 |
20090105742 | Kurth et al. | Apr 2009 | A1 |
20090138009 | Viswanathan et al. | May 2009 | A1 |
20090163850 | Betts et al. | Jun 2009 | A1 |
20090177114 | Chin et al. | Jul 2009 | A1 |
20090264977 | Bruszewski et al. | Oct 2009 | A1 |
20100087789 | Leeflang et al. | Apr 2010 | A1 |
20100125282 | Machek et al. | May 2010 | A1 |
20100168684 | Ryan | Jul 2010 | A1 |
20100179632 | Bruszewski et al. | Jul 2010 | A1 |
20100191142 | Paul et al. | Jul 2010 | A1 |
20100194047 | Sauerwine | Aug 2010 | A1 |
20110046619 | Ducharme | Feb 2011 | A1 |
20110152716 | Chudzik et al. | Jun 2011 | A1 |
20110160592 | Mitchell | Jun 2011 | A1 |
20110190763 | Urban et al. | Aug 2011 | A1 |
20120232546 | Mirza et al. | Sep 2012 | A1 |
20120265055 | Melsheimer et al. | Oct 2012 | A1 |
20120330156 | Brown et al. | Dec 2012 | A1 |
20130184551 | Paganelli et al. | Jul 2013 | A1 |
20130184735 | Fischell et al. | Jul 2013 | A1 |
20130282084 | Mathur | Oct 2013 | A1 |
20130293578 | Leung | Nov 2013 | A1 |
20130304407 | George | Nov 2013 | A1 |
20140206987 | Urbanski et al. | Jul 2014 | A1 |
20140296769 | Hyde et al. | Oct 2014 | A1 |
20150066007 | Srivastava | Mar 2015 | A1 |
20150150472 | Harlev | Jun 2015 | A1 |
20160220741 | Garrison et al. | Aug 2016 | A1 |
20190021763 | Zhou et al. | Jan 2019 | A1 |
20190247035 | Gittard et al. | Aug 2019 | A1 |
Number | Date | Country | |
---|---|---|---|
20210307671 A1 | Oct 2021 | US |
Number | Date | Country | |
---|---|---|---|
63006391 | Apr 2020 | US |