Electro ceramic MEMS structure with controlled actuator gap

Information

  • Patent Grant
  • 6635158
  • Patent Number
    6,635,158
  • Date Filed
    Monday, July 30, 2001
    23 years ago
  • Date Issued
    Tuesday, October 21, 2003
    21 years ago
Abstract
In an array apparatus, each MEMS element, comprising an actuatable element and a supportive handle, is mounted over a plurality of electrodes wherein the air gap is controlled by the thickness of the electrodes and not primarily by the structure of the handle. The structure of electrostatic actuation electrodes in specific embodiments is disclosed. While the invention is primarily a technique for reducing the air gap without unduly limiting the thickness of the handle, the invention may also be used to establish an air gap greater than the thickness of the handle.
Description




BACKGROUND OF THE INVENTION




This invention relates to electro ceramic components such as MEMS arrays and methods for fabricating electro ceramic components with high density interconnects so that variable controlled air gaps may be achieved with high accuracy. Components constructed according to the invention are microelectromechanical systems arrays or other micromachined elements.




Conventional MEMS array structures comprise Silicon on Insulator (SOI) array structures on which is fabricated an integrated electrode array. One of the problems encountered is precise control of the distance from the top surface of the electrostatic actuation electrodes and the bottom surface of the MEMS actuation element (hereafter referred,to as the air gap) during fabrication due to limitations of minimum wafer thickness of a SOI wafer where the air gap is nominally set by wafer thickness.




What is needed is a solution that allows for variable controlled air gaps which determine the operating characteristics of a MEMS device that does not compromise the SOI wafer integrity.




SUMMARY OF THE INVENTION




According to the invention, in an array apparatus, each MEMS element, comprising an actuatable element and a supportive handle, is mounted over a plurality of electrodes wherein the air gap is controlled by the thickness of the electrodes and not primarily by the structure of the handle. The structure of electrostatic actuation electrodes in specific embodiments is disclosed. While the invention is primarily a technique for reducing the air gap without unduly limiting the thickness of the handle, the invention may also be used to establish an air gap greater than the thickness of the handle.




The invention will be better understood by reference to the following detailed description in connection with the accompanying illustrations.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a perspective view in cutaway of a first embodiment according to the invention.





FIG. 2

is a side cross-sectional view of a single array element according to a first embodiment of the invention.





FIG. 3

is a side cross-sectional view of a single array element according to a second embodiment of the invention.





FIG. 4

is a side cross-sectional view of a single array element according to a third embodiment of the invention.





FIG. 5

is a side cross-sectional view of a single array element according to a fourth embodiment of the invention.





FIG. 6

is a side cross-sectional view of a single array element according to a fifth embodiment of the invention.











DESCRIPTION OF SPECIFIC EMBODIMENTS




Reference is made to

FIG. 1

in which is shown a single element of a MEMS array element


10


according to the invention, with a MEMS-based mirror


12


fabricated in an integrated Silicon on Insulator structure (SOI)


22


and mounted on a (ceramic) substrate


24


. According to the invention, several adjacent electrodes


26


-


30


are mounted on or embedded in the substrate structure


24


with vias


32


-


34


to a control module (not shown). The structure is not specific to a particular material combination. The structure may be for example silicon mounted to ceramic, silicon to polyimide materials, silicon to FLEX circuit board materials, silicon to silicon, silicon to thick film on any substrate material, or silicon to thin film on any substrate material.




Electrodes


26


-


30


mounted directly on the substrate


24


are energized to actuate the mirror


12


through electrostatic force. The technique of construction according to the invention simplifies the fabrication and improves the construction yield of the mirrors by decoupling the control of the air gap size from control over the thickness of the MEMS structure


22


.




Referring to

FIG. 2

, the mirror


12


of the element


10


is positioned at a distance from the electrodes


26


,


27


that is not determined or limited by the required mechanical thickness of the MEMS handle


20


of the MEMS structure


22


. Rather the gap is determined by the thickness of the electrodes


26


,


27


against the height of the handle. Thus, thicker handles


20


can be accommodated, allowing for larger MEMS arrays due to structural fragility. The structure is thus more readily scalable. In the embodiment of

FIG. 2

, the electrodes


26


,


27


are constructed by electroforming, i.e., by depositing a seed metal at the position of the electrode and then promoting its growth by electroplating. This permits relatively thick electrodes to be formed.




In

FIG. 3

, for thinner electrode structures, the electrodes


26


,


27


of the element


100


may be formed in layers


26


,


27


;


26


′,


27


′;


26


″,


27


″ such as by multiple lithographic depositions or by multiple layer screen printing. The various deposition layers may be of differing conductive materials.




In

FIG. 4

, the element


200


may comprise a substrate


24


having wells etched out to receive the handle material


20


in lowered beds


21


. The accuracy of control over thickness of both the handle


20


and the wells


21


is thus an issue. However, the benefit of the invention is the greater allowable thickness of the handle without the need to build up the electrodes.




In

FIG. 5

, the handle


20


of an element


300


rests on a non-uniform dielectric layer


40


, which in turn rests on the substrate


24


in some locations and on trace pads


42


,


44


to which vias


32


,


34


are coupled. Electrodes


26


,


27


are built up by an appropriate deposition technique to define the mirror to electrode gap. The evident air gap


52


between the handle


20


and the dielectric


40


is not a significant cantilever since other traces (not shown) of an adjacent element (not shown) support the extension of the handle


20


.




In

FIG. 6

, an element


400


has electrodes


26


,


27


mounted on the substrate


24


. An additional spacer


54


is provided adjacent the electrodes and under the handle


20


in order to provide a greater electrode to mirror gap than would be established by the thickness of the handle


20


alone. The spacer


54


is for example a screen printed dielectric or a dielectric deposition.




The invention has been explained with reference to specific embodiments. Other embodiments will be evident to those of ordinary skill in the art. Therefore, it is not intended that this invention be limited, except as indicated by the appended claims.



Claims
  • 1. A microelectromechanical systems (MEMS) element comprising:a handle structure having a predetermined thickness; an actuatable element disposed at a cavity in said handle structure; a substrate mounted to said handle structure; and electrodes disposed on said substrate and aligned with said actuatable element, said electrodes being fabricated with a height calibrated to establish a gap with said actuatable element.
  • 2. The element according to claim 1 wherein the electrodes are electro-formed.
  • 3. The element according to claim 1 wherein the electrodes comprise at least one thick-film conductor deposition.
  • 4. The element according to claim 1 wherein the electrodes comprise at least one thin-film deposition.
  • 5. The element according to claim 1 wherein the electrodes comprise at least one screen-printed layer.
  • 6. The element according to claim 1 wherein said substrate has trenches at the periphery of the cavity such the handle structure is recessed within the substrate and for narrowing the gap between the top surface of the electrodes and the bottom surface of the actuatable element without reducing the thickness of the handle structure.
  • 7. The element according to claim 1 wherein traces coupled to said electrodes are disposed to extend beyond the cavity and wherein a dielectric layer is disposed over said traces, said electrodes being fabricated upon a portion of said traces with a height calibrated to establish a gap with said actuatable element.
  • 8. The element according to claim 1 wherein a dielectric layer is disposed on said substrate and said handle structure is mounted to said dielectric layer wherein the gap between the top surface of the electrodes and the bottom surface of the actuatable elements is increased.
US Referenced Citations (5)
Number Name Date Kind
4370215 Frudd Jan 1983 A
5441622 Langford Aug 1995 A
5904820 Brown et al. May 1999 A
6379510 Kane Apr 2002 B1
6583031 Lin Jun 2003 B2