Claims
- 1. An electrically energized actuator assembly comprising electrical field coil means, armature means at least partly situated generally within said field coil means, resilient means, a fluid, and fluid-flow restriction means, wherein said electrical field coil means is effective upon being electrically energized to move said armature means in a first direction, wherein said armature means in moving in said first direction moves against resilient resistance of said resilient means, wherein upon said electrical field coil means becoming electrically de-energized said resilient means is effective to move said armature means in a second direction opposite to said first direction, wherein said armature means in moving in said second direction causes said fluid to flow through said fluid-flow restriction means, wherein said fluid-flow restriction means is effective to govern the speed at which said armature means moves in said second direction in accordance with the rate of flow of said fluid through said fluid-flow restriction means, and further comprising reservoir means for the containment and flow out of and into of said fluid, wherein said fluid comprises a liquid, first and second conduit means respectively comprising calibrated restriction means and check-valve means and communicating with said reservoir means, wherein said calibrated restriction means comprises said fluid-flow restriction means, wherein when said armature means moves in said first direction said armature means causes said liquid to flow through said check-valve means and into said reservoir means, and wherein when said armature means moves in said second direction said armature means causes said liquid to flow from said reservoir means and through said calibrated restriction means.
- 2. An electrically energized actuator assembly comprising electrical field coil means, armature means at least partly situated generally within said field coil means, resilient means, a fluid, and fluid-flow restriction means, wherein said electrical field coil means is effective upon being electrically energized to move said armature means in a first direction, wherein said armature means in moving in said first direction moves against resilient resistance of said resilient means, wherein upon said electrical field coil means becoming electrically de-energized said resilient means is effective to move said armature means in a second direction opposite to said first direction, wherein said armature means in moving in said second direction causes said fluid to flow through said fluid-flow restriction means, wherein said fluid-flow restriction means is effective to govern the speed at which said armature means moves in said second direction in accordance with the rate of flow of said fluid through said fluid-flow restriction means, and further comprising axially extending bobbin means, wherein said bobbin means is comprised of dielectric material and comprises a generally intermediate axially extending cylindrically tubular body portion, a generally radially outwardly extending flange carried by said cylindrically tubular body portion, a transverse body portion carried by said cylindrically tubular body portion as to be axially spaced from said flange, wherein said field coil means is formed on and about said cylindrically tubular body portion and axially contained between said flange and said transverse body portion, a generally cylindrical passageway formed axially through said cylindrically tubular body portion, a generally cylindrically tubular sleeve, said sleeve comprising a generally cylindrical axially extending outer surface and a generally cylindrical axially extending passage, wherein said tubular sleeve is at least for the most part situated in said cylindrical passageway, wherein said armature means comprises a generally cylindrically elongated armature body, and wherein said armature body is slidably received by said axially extending passage of said tubular sleeve.
- 3. An electrically energized actuator according to claim 2 wherein said cylindrically tubular sleeve is comprised of material other than the material of which said bobbin means is comprised.
- 4. An electrically energized actuator according to claim 2 wherein said cylindrically tubular sleeve is comprised of a metal unresponsive to magnetic flux.
- 5. An electrically energized actuator according to claim 2 wherein said cylindrically tubular sleeve is comprised of brass.
- 6. An electrically energized actuator according to claim 2 wherein said cylindrically tubular sleeve is tightly held within said cylindrical passageway of said bobbin means so that said tubular sleeve does not undergo motion relative to said bobbin means as said armature body is caused to move in said first and second directions.
- 7. An electrically energized actuator according to claim 2 wherein said dielectric material comprises a plastics material capable of exhibiting at least a minor degree of resilient deformation, wherein said generally cylindrical passageway is comprised of an axially extending generally cylindrical inner wall surface, and further comprising a plurality of spaced protuberances generally carried by and projecting from said cylindrical inner wall surface inwardly thereof, wherein said cylindrically tubular sleeve is received by said cylindrical passageway of said bobbin means in a manner whereby at least some of said protuberances are engaged by said tubular sleeve so that such protuberances effectively hold said tubular sleeve against motion relative to said bobbin means when said armature body is caused to move in said first and second directions.
- 8. An electrically energized actuator according to claim 7 wherein said plurality of spaced protuberances are formed integrally with and to said cylindrical inner wall surface, and wherein when said cylindrically tubular sleeve is received by said cylindrical passageway of said bobbin means said tubular sleeve causes at least some of said protuberances to undergo resilient deflection.
- 9. An electrically energized actuator according to claim 2 wherein said dielectric material comprises a plastics material capable of exhibiting at least a minor degree of resilient deformation, wherein said generally cylindrical passageway is comprised of an axially extending generally cylindrical inner wall surface, and further comprising a plurality of generally axially extending rib-like portions generally carried by and projecting from said cylindrical inner wall surface radially inwardly thereof, wherein said plurality of rib-like portions are angularly spaced about the axis of said cylindrical passageway, wherein said cylindrically tubular sleeve is received by said cylindrical passageway of said bobbin means in a manner whereby at least some of said rib-like portions are engaged by said tubular sleeve so that such rib-like portions effectively hold said tubular sleeve against motion relative to said bobbin means when said armature means is caused to move in said first and second directions.
- 10. An electrically energized actuator according to claim 9 wherein said plurality of angularly spaced rib-like portions are formed integrally with and to said cylindrical inner wall surface, and wherein when said cylindrically tubular sleeve is received by said cylindrical passageway of said bobbin means said tubular sleeve causes at least some of said rib-like portions to undergo resilient deflection.
- 11. An electrically energized actuator according to claim 9 wherein when viewed as in cross-section which is transverse to the axis of said cylindrical passageway of said bobbin means at least some of said rib-like portions have a generally triangular configuration with the apex thereof being furthermost displaced from said cylindrical inner wall surface.
- 12. An electrically energized actuator according to claim 2 and further comprising resiliently deflectable abutment means carried generally about said cylindrical passageway and as to be generally against said radiating flange, said resiliently deflectable abutment means being disposed as to be at an axial side of said radiating flange which axial side is opposite to that side of said flange which axially contains said field coil means, and wherein when said bobbin means is assembled to a cooperating flux conducting body said resiliently deflectable abutment means is effective to operatively engage said flux conducting body so as to assure an effectively tight fit with said flux conducting body and axially of said bobbin means.
- 13. An electrically energized actuator according to claim 2 and further comprising generally internally situated abutment means within said cylindrical passageway, said internally situated abutment means being situated axially closer to said radiating flange than to said transverse body portion, and wherein when said tubular sleeve is inserted into said cylindrical passageway of said bobbin means said internally situated abutment means is effective to operatively abut against said tubular sleeve and preclude further motion of said tubular sleeve in the direction of said internally situated abutment means.
- 14. An electrically energized actuator according to claim 13 wherein said bobbin means is comprised of dielectric plastics material capable of exhibiting at least a minor degree of resilient deflection, wherein said internally situated abutment means is integrally formed as to comprise an integral portion of said bobbin means.
- 15. An electrically energized actuator according to claim 2 wherein said armature body is comprised of differing materials, wherein a major portion of said armature body is comprised of magnetically responsive material, wherein a minor portion of said armature body is comprised of dielectric material, and wherein said major portion and said minor portion of said armature body are operatively connected to each other for movement in unison with each other.
- 16. An electrically energized actuator according to claim 2 wherein said fluid-flow restriction means comprises a restrictor body which carries said fluid-flow restriction means, wherein said restrictor body is received in said cylindrical passageway of said bobbin means, and wherein said fluid-flow restriction means comprises calibrated passage means communicating with an area generally axially between said restrictor body and said armature body.
- 17. An electrically energized actuator according to claim 16 wherein said calibrated passage means comprises a member of selected porosity for permitting flow therethrough in accordance with pre-established flow parameters.
- 18. An electrically energized actuator according to claim 2 and further comprising resiliently deflectable abutment means carried at an axial end of said bobbin means, wherein when said bobbin means is assembled to a cooperating flux conducting body said resiliently deflectable abutment means is effective to resiliently operatively engage said flux conducting body so as to assure an effectively tight fit with said flux conducting body and axially of said bobbin means.
- 19. An electrically energized actuator assembly comprising electrical field coil means, armature means at least partly situated generally within said field coil means, resilient means, a fluid, and fluid-flow restriction means, wherein said electrical field coil means is effective upon being electrically energized to move said armature means in a first direction, wherein said armature means in moving in said first direction moves against resilient resistance of said resilient means, wherein upon said electrical field coil means becoming electrically de-energized said resilient means is effective to move said armature means in a second direction opposite to said first direction, wherein said armature means in moving in said second direction causes said fluid to flow through said fluid-flow restriction means, wherein said fluid-flow restriction means is effective to govern the speed at which said armature means moves in said second direction in accordance with the rate of flow of said fluid through said fluid-flow restriction means, and further comprising axially extending bobbin means, wherein said bobbin means comprises a generally intermediate axially extending cylindrically tubular body portion, a generally radially outwardly extending flange carried by said cylindrically tubular body portion, a transverse body portion carried by said cylindrically tubular body portion as to be axially spaced from said flange, wherein said field coil means is formed on and about said cylindrically tubular body portion and axially contained between said flange and said transverse body portion, a flux conducting body, a generally cylindrical passageway formed through said cylindrically tubular body portion, a stop member received in said cylindrical passageway and operatively connected to a wall of said flux conducting body, wherein said armature means comprises a generally cylindrically elongated armature body also received by said cylindrical passageway, wherein said stop member is effective to stop movement of said elongated armature body in a direction toward said stop member, wherein said fluid-flow restriction means extends through said stop member and is in communication with a fluid reservoir, fluid sealing means carried by said elongated armature body, wherein when said armature body is positioned away from said stop member a space exists between said armature body and said stop member, wherein when said armature body moves toward said stop member fluid as is contained within said space is forced through said fluid-flow restriction means and to said reservoir with comparatively little restriction to flow of said fluid, and wherein when said armature body is moving away from said stop member fluid flowing from said reservoir through said fluid-flow restriction means and to said space between said stop member and said armature body experiences comparatively high restriction to flow of said fluid.
- 20. An electrically energized actuator assembly comprising electrical field coil means, armature means at least partly situated generally within said field coil means, resilient means, a fluid, and fluid-flow restriction means, wherein said electrical field coil means is effective upon being electrically energized to move said armature means in a first direction, wherein said armature means in moving in said first direction moves against resilient resistance of said resilient means, wherein upon said electrical field coil means becoming electrically de-energized said resilient means is effective to move said armature means in a second direction opposite to said first direction, wherein said armature means in moving in said second direction causes said fluid to flow through said fluid-flow restriction means, wherein said fluid-flow restriction means is effective to govern the speed at which said armature means moves in said second direction in accordance with the rate of flow of said fluid through said fluid-flow restriction means, and further comprising axially extending bobbin means, wherein said bobbin means comprises a generally intermediate axially extending cylindrically tubular body portion, a generally radially outwardly extending flange carried by said cylindrically tubular body portion, a transverse body portion carried by said cylindrically tubular body portion as to be axially spaced from said flange, wherein said field coil means is formed on and about said cylindrically tubular body portion and axially contained between said flange and said transverse body portion, a flux conducting body, a generally cylindrical passageway formed through said cylindrically tubular body portion, a stop member received in said cylindrical passageway and operatively connected to a wall of said flux conducting body, wherein said armature means comprises a generally cylindrically elongated armature body also received by said cylindrical passageway, wherein said stop member is effective to stop movement of said elongated armature body in a direction toward said stop member, wherein said fluid-flow restriction means is carried by said stop member, and fluid sealing means carried by said elongated armature body, wherein said fluid sealing means permits the flow of said fluid therepast when said elongated armature body is moving axially in one direction in said cylindrical passage, wherein said fluid sealing means seals against the flow of said fluid therepast when said elongated armature body is moving axially in said cylindrical passage in a second direction opposite to said one direction, wherein said cylindrical passageway comprises a first cylindrical passageway portion of a first diameter and a second cylindrical passageway portion of a second diameter larger than said first diameter, wherein said first cylindrical passageway portion and said second cylindrical passageway portion are in series communication with each other, wherein said cylindrically elongated armature body comprises a first cylindrical armature body portion of a first diameter and a second cylindrical armature body portion of a second diameter larger than said first diameter of said first cylindrical armature body portion, wherein said first cylindrical armature body portion is slidably received in said first cylindrical passageway portion and wherein said second cylindrical armature body portion is slidably received in said second cylindrical passageway portion, wherein said fluid sealing means is carried by said first cylindrical armature body portion, and wherein when said armature body is moved axially to a distance whereby said fluid sealing means is within said second cylindrical passageway portion said fluid sealing means ceases to provide a sealing function.
- 21. An electrically energized actuator assembly comprising electrical field coil means, armature means at least partly situated generally within said field coil means, resilient means, a fluid, and fluid-flow restriction means, wherein said electrical field coil means is effective upon being electrically energized to move said armature means in a first direction, wherein said armature means in moving in said first direction moves against resilient resistance of said resilient means, wherein upon said electrical field coil means becoming electrically de-energized said resilient means is effective to move said armature means in a second direction opposite to said first direction, wherein said armature means in moving in said second direction causes said fluid to flow through said fluid-flow restriction means, wherein said fluid-flow restriction means is effective to govern the speed at which said armature means moves in said second direction in accordance with the rate of flow of said fluid through said fluid-flow restriction means, and further comprising axially extending bobbin means, wherein said bobbin means comprises a generally intermediate axially extending cylindrically tubular body portion, a generally radially outwardly extending flange carried by said cylindrically tubular body portion, a transverse body portion carried by said cylindrically tubular body portion as to be axially spaced from said flange, wherein said field coil means is formed on and about said cylindrically tubular body portion and axially contained between said flange and said transverse body portion, a flux conducting body, a generally cylindrical passageway formed through said cylindrically tubular body portion, a stop member received in said cylindrical passageway and operatively connected to a wall of said flux conducting body, wherein said armature means comprises a generally cylindrically elongated armature body also received by said cylindrical passageway, wherein said stop member is effective to stop movement of said elongated armature body in a direction toward said stop member, fluid sealing means carried by said elongated armature body, wherein said fluid sealing means permits the flow of said fluid therepast when said elongated armature body is moving axially in one direction in said cylindrical passage, and wherein said fluid sealing means seals against the flow of said fluid therepast when said elongated armature body is moving axially in said cylindrical passage in a second direction opposite to said one direction, and wherein said fluid-flow restriction means comprises a flow passage formed by said stop member and a valving member carried by said armature body, wherein as said armature body moves toward said stop member said valving member is received by said flow passage as to thereby alter the effective flow area of said flow passage.
- 22. An electrically energized actuator assembly comprising electrical field coil means, armature means at least partly situated generally within said field coil means, resilient means, a fluid, and fluid-flow restriction means, wherein said electrical field coil means is effective upon being electrically energized to move said armature means in a first direction, wherein said armature means in moving in said first direction moves against resilient resistance of said resilient means, wherein upon said electrical field coil means becoming electrically de-energized said resilient means is effective to move said armature means in a second direction opposite to said first direction, wherein said armature means in moving in said second direction causes said fluid to flow through said fluid-flow restriction means, wherein said fluid-flow restriction means is effective to govern the speed at which said armature means moves in said second direction in accordance with the rate of flow of said fluid through said fluid-flow restriction means, and further comprising axially extending bobbin means, wherein said bobbin means comprises a generally intermediate axially extending cylindrically tubular body portion, a generally radially outwardly extending flange carried by said cylindrically tubular body portion, a transverse body portion carried by said cylindrically tubular body portion as to be axially spaced from said flange, wherein said field coil means is formed on and about said cylindrically tubular body portion and axially contained between said flange and said transverse body portion, a flux conducting body, a generally cylindrical passageway formed through said cylindrically tubular body portion, a stop member received in said cylindrical passageway and operatively connected to a wall of said flux conducting body, wherein said armature means comprises a generally cylindrically elongated armature body also received by said cylindrical passageway, wherein said stop member is effective to stop movement of said elongated armature body in a direction toward said stop member, wherein said fluid-flow restriction means comprises a dash-pot, wherein said dash-pot comprises a chamber of variable volume for containing said fluid, wherein said chamber is defined at least in part by a movable wall, wherein said fluid-flow restriction means further comprises a calibrated flow-passage communicating with said chamber, and wherein when said armature body is caused to move toward said chamber said movable wall moves to reduce the volume of said chamber to thereby force any of said fluid in said chamber out through said calibrated flow-passage.
- 23. An electrically energized actuator assembly comprising electrical field coil means, an armature at least partly situated generally within said field coil means, resilient means, a fluid, and fluid-flow restriction means, wherein said electrical field coil means is effective upon being electrically energized to move said armature in a first direction, wherein said armature in moving in said first direction moves against resilient resistance of said resilient means, wherein upon said electrical field coil means becoming electrically de-energized said resilient means is effective to move said armature in a second direction opposite to said first direction, wherein said armature in moving in said second direction causes said fluid to flow through said fluid-flow restriction means, wherein said fluid-flow restriction means is effective to govern the speed at which said armature moves in said second direction in accordance with the rate of flow of said fluid through said fluid-flow restriction means, and further comprising an axially extending bobbin, wherein said bobbin comprises a generally axially extending cylindrically tubular body portion, wherein said field coil means is formed on and about said cylindrically tubular body portion, a generally cylindrical passageway formed axially through said cylindrically tubular body portion, a generally cylindrically tubular sleeve, said sleeve comprising a generally cylindrical axially extending outer surface and a generally cylindrical axially extending passage, wherein said tubular sleeve is at least for the most part situated in said cylindrical passageway, wherein said armature comprises a generally cylindrical armature body, and wherein said armature body is slidably received by said axially extending passage of said tubular sleeve.
- 24. An electrically energized actuator according to claim 23 and further comprising resiliently deflectable abutment means carried at an axial end of said bobbin, wherein when said bobbin is assembled to a cooperating flux conducting body said resiliently deflectable abutment means is effective to resiliently operatively engage said flux conducting body so as to assure an effectively tight fit with said flux conducting body and axially of said bobbin.
- 25. An electrically energized actuator assembly comprising electrical field coil means, armature means at least partly situated generally within said field coil means, resilient means, a fluid, fluid-flow restriction means, wherein said electrical field coil means is effective upon being electrically energized to move said armature means in a first direction, wherein said armature means in moving in said first direction moves against resilient resistance of said resilient means, wherein upon said electrical field coil means becoming electrically de-energized said resilient means is effective to move said armature means in a second direction opposite to said first direction, wherein said armature means in moving in said second direction causes said fluid to flow through said fluid-flow restriction means, and wherein said fluid-flow restriction means is effective to govern the speed at which said armature means moves in said second direction with such governed speed being in accordance with the rate of flow of said fluid through said fluid-flow restriction means, wherein the speed at which said armature means moves in said second direction is relatively slow compared to the speed at which said armature means moves in said first direction, and further comprising vent means, said vent means being effective to at times augment the total rate of said fluid-flow by having said fluid also flow through said vent means when said armature means moves in said second direction and after a preselected extent of movement of said armature means in said second direction serves to open said vent to the flow of said fluid through said open vent, and whereby when a flow of fluid through said vent augments the flow of said fluid through said fluid-flow restriction means the speed of movement of said armature means quickly increases to a speed substantially greater than said relatively slow speed.
- 26. An electrically energized actuator assembly according to claim 25 wherein said fluid comprises ambient air.
- 27. An electrically energized actuator assembly according to claim 25 wherein the speed at which said armature means moves in said second direction for a preselected distance is less than the speed at which said armature means moves in said first direction, and wherein said armature means when reaching said preselected distance moves at a speed greater than the speed at which the armature means moved in said second direction prior to arriving at said preselected distance.
- 28. An electrically energized actuator assembly comprising electrical field coil means, armature means at least partly situated generally within said field coil means, resilient means, a fluid, fluid-flow restriction means, wherein said electrical field coil means is effective upon being electrically energized to move said armature means in a first direction, wherein said armature means in moving in said first direction moves against resilient resistance of said resilient means, wherein upon said electrical field coil means becoming electrically de-energized said resilient means is effective to move said armature means in a second direction opposite to said first direction, wherein said armature means in moving in said second direction causes said fluid to flow through said fluid-flow restriction means, and wherein said fluid-flow restriction means is effective to govern the speed at which said armature means moves in said second direction with such governed speed being in accordance with the rate of flow of said fluid through said fluid-flow restriction means, wherein the speed at which said armature means moves in said second direction is relatively slow compared to the speed at which said armature means moves in said first direction, and further comprising vent means, said vent means being effective to at times augment the total rate of said fluid-flow by having said fluid also flow through said vent means when said armature means moves in said second direction and after a preselected extent of movement of said armature means in said second direction serves to open said vent to the flow of said fluid through said open vent, and whereby when a flow of fluid through said vent augments the flow of said fluid through said fluid-flow restriction means the speed of movement of said armature means quickly increases to a speed substantially greater than said relatively slow speed, wherein said fluid comprises a liquid.
- 29. An electrically energized actuator assembly comprising electrical field coil means, armature means at least partly situated generally within said field coil means, resilient means, a fluid, fluid-flow restriction means, wherein said electrical field coil means is effective upon being electrically energized to move said armature means in a first direction, wherein said armature means in moving in said first direction moves against resilient resistance of said resilient means, wherein upon said electrical field coil means becoming electrically de-energized said resilient means is effective to move said armature means in a second direction opposite to said first directions. Wherein said armature means in moving in said second direction causes said fluid to flow through said fluid-flow restriction means, and wherein said fluid-flow restriction means is effective to govern the speed at which said armature means moves in said second direction with such governed speed being in accordance with the rate of flow of said fluid through said fluid-flow restriction means, wherein the speed at which said armature means moves in said second direction is relatively slow compared to the speed at which said armature means moves in said first direction, and further comprising vent means, said vent means being effective to at times augment the total rate of said fluid-flow by having said fluid also flow through said vent means when said armature means moves in said second direction and after a preselected extent of movement of said armature means in said second direction serves to open said vent to the flow of said fluid through said open vent, and whereby when a flow of fluid through said vent augments the flow of said fluid through said fluid-flow restriction means the speed of movement of said armature means quickly increases to a speed substantially greater than said relatively slow speed, wherein said fluid comprises a liquid, and wherein said liquid comprises water.
- 30. An electrically energized actuator assembly comprising electrical field coil means, armature means at least partly situated generally within said field coil means, resilient means, a fluid, fluid-flow restriction means, wherein said electrical field coil means is effective upon being electrically energized to move said armature means in a first direction, wherein said armature means in moving in said first direction moves against resilient resistance of said resilient means, wherein upon said electrical field coil means becoming electrically de-energized said resilient means is effective to move said armature means in a second direction opposite to said first direction, wherein said armature means in moving in said second direction causes said fluid to flow through said fluid-flow restriction means, and wherein said fluid-flow restriction means is effective to govern the speed at which said armature means moves in said second direction with such governed speed being in accordance with the rate of flow of said fluid through said fluid-flow restriction means, wherein the speed at which said armature means moves in said second direction is relatively slow compared to the speed at which said armature means moves in said first direction, and further comprising vent means, said vent means being effective to at times augment the total rate of said fluid-flow by having said fluid also flow through said vent means when said armature means moves in said second direction and after a preselected extent of movement of said armature means in said second direction serves to open said vent to the flow of said fluid through said open vent, and whereby when a flow of fluid through said vent augments the flow of said fluid through said fluid-flow restriction means the speed of movement of said armature means quickly increases to a speed substantially greater than said relatively slow speed, wherein said fluid comprises a liquid, and wherein said liquid comprises oil.
- 31. An electrically energized actuator assembly comprising electrical field coil means, armature means at least partly situated generally within said field coil means, resilient means, a fluid, and fluid-flow restriction means, wherein said electrical field coil means is effective upon being electrically energized to move said armature means in a first direction, wherein said armature means in moving in said first direction moves against resilient resistance of said resilient means, wherein upon said electrical field coil means becoming electrically de-energized said resilient means is effective to move said armature means in a second direction opposite to said first direction, wherein said armature means in moving in said second direction causes said fluid to flow through said fluid-flow restriction means, wherein said fluid-flow restriction means is effective to govern the speed at which said armature means moves in said second direction in accordance with the rate of flow of said fluid through said fluid-flow restriction means, further comprising axially extending bobbin means, wherein said bobbin means comprises a generally intermediate axially extending cylindrically tubular body portion, wherein said field coil means is formed on and about said cylindrically tubular body portion, a flux conducting body, a generally cylindrical passage formed through said cylindrically tubular body portion, a stop member received in said cylindrical passage, wherein said armature means comprises a generally cylindrically elongated armature body also received by said cylindrical passage, wherein said stop member is effective to stop movement of said elongated armature body in a direction toward said stop member, wherein said fluid-flow restriction means is carried by said stop member, fluid sealing means carried by said elongated armature body, wherein said fluid sealing means comprises a resiliently flexible sealing member carried generally circumferentially by and about said generally cylindrically elongated armature body as to move in unison with said armature body and relative to said cylindrical passage, wherein said fluid sealing means permits the flow of said fluid between said cylindrical passage and said flexible sealing member when said elongated armature body is moving axially in one direction in said cylindrical passage, and wherein said fluid sealing means seals against the flow of said fluid between said cylindrical passage and said flexible sealing member when said elongated armature body is moving axially in said cylindrical passage in a second direction opposite to said one direction.
- 32. An electrically energized actuator assembly comprising electrical field coil means, armature means at least partly situated generally within said field coil means, resilient means, a fluid, and fluid-flow restriction means, wherein said electrical field coil means is effective upon being electrically energized to move said armature means in a first direction, wherein said armature means in moving in said first direction moves against resilient resistance of said resilient means, wherein upon said electrical field coil means becoming electrically de-energized said resilient means is effective to move said armature means in a second direction opposite to said first direction, wherein said armature means in moving in said second direction causes said fluid to flow through said fluid-flow restriction means, wherein said fluid-flow restriction means is effective to govern the speed at which said armature means moves in said second direction in accordance with the rate of flow of said fluid through said fluid-flow restriction means, and further comprising axially extending bobbin means, wherein said bobbin means is comprised of dielectric material and comprises a generally intermediate axially extending cylindrically tubular body portion, a first generally radially outwardly extending flange carried by said cylindrically tubular body portion, a second generally radially outwardly extending flange carried by said cylindrically tubular body portion as to be axially spaced from said first flange, wherein said field coil means is formed on and about said cylindrically tubular body portion and axially contained between said first flange and said second flange, a generally cylindrical passageway formed axially through said cylindrically tubular body portion, a generally cylindrically tubular sleeve, said sleeve comprising a generally cylindrical axially extending outer surface and a generally cylindrical axially extending passage, wherein said tubular sleeve is at least for the most part situated in said cylindrical passageway, wherein said armature means comprises a generally cylindrically elongated armature body, wherein said armature body is slidably received by said axially extending passage of said tubular sleeve, and passage means carried by said tubular sleeve and at times traversed by said armature means, said passage means communicating with a source of said fluid and depending on the position of said armature means being effective to supply said fluid as to in essence combine with the fluid flow through said restriction means and thereby effectively diminish the degree of control previously delivered by said fluid flowing through said restriction means as to result in a substantial increase in speed of movement of said armature means in said second direction.
- 33. An electrically energized actuator according to claim 32 wherein said cylindrically tubular sleeve is comprised of material other than the material of which said bobbin means is comprised, wherein said passage means comprises vent like openings formed in said tubular sleeve so that the fluid to flow therethrough is made able to effectively bypass a portion of said armature means and to effectively augment the rate of flow of said fluid through said fluid-flow restriction means thereby substantially increasing the speed at which said armature means moves in said second direction.
- 34. An electrically energized actuator according to claim 32 wherein said cylindrically tubular sleeve is comprised of a metal unresponsive to magnetic flux.
- 35. An electrically energized actuator according to claim 32 wherein said cylindrically tubular sleeve is comprised of brass.
- 36. An electrically energized actuator according to claim 32 wherein said cylindrically tubular sleeve is tightly held within said cylindrical passageway of said bobbin means so that said tubular sleeve does not undergo motion relative to said bobbin means as said armature body is caused to move in said first and second directions, and further comprising keying means collectively carried by said bobbin means and said tubular sleeve, said keying means assuring that said tubular sleeve can be correctly assembled to said bobbin means when said tubular sleeve has attained a preselected physical relationship with respect to said bobbin means.
- 37. An electrically energized actuator according to claim 32 wherein said fluid-flow restriction means comprises a restrictor body which carries said fluid-flow restriction means, wherein said restrictor body is received in said cylindrical passageway of said bobbin means, and wherein said fluid-flow restriction means comprises calibrated passage means communicating with an area generally axially between said restrictor body and said armature body.
- 38. An electrically energized actuator according to claim 37 wherein said calibrated passage means comprises a member of selected porosity for permitting flow therethrough in accordance with pre-established flow parameters.
- 39. An electrically energized actuator assembly comprising electrical field coil means, armature means at least partly situated generally within said field coil means, resilient means, a source of a fluid, and fluid-flow restriction means, wherein said electrical field coil means is effective upon being electrically energized to move said armature means in a first direction toward a first extreme position of said armature means, wherein said armature means in moving in said first direction moves against resilient resistance of said resilient means, wherein upon said electrical field coil means becoming electrically de-energized said resilient means is effective to move said armature means in a second direction opposite to said first direction toward a second extreme position of said armature means, wherein said armature means in moving in said second direction causes said fluid to flow through said fluid-flow restriction means, wherein said fluid-flow restriction means is effective to govern the speed at which said armature means moves in said second direction in accordance with the rate of flow of said fluid through said fluid-flow restriction means, axially extending bobbin means, wherein said bobbin means comprises a generally intermediate axially extending cylindrically tubular body portion, a generally radially outwardly extending flange carried by said cylindrically tubular body portion, a transverse body portion carried by said cylindrically tubular body portion as to be axially spaced from said flange, wherein said field coil means is formed on and about said cylindrically tubular body portion and axially contained between said flange and said transverse body portion, a generally cylindrical passageway formed through said cylindrically tubular body portion, wherein said armature means comprises a generally cylindrically elongated armature body comprising a first axial end and received by said cylindrical passageway, fluid sealing means carried generally peripherally about said elongated armature body and in sliding contact with said cylindrical passageway, wherein when said armature body is moving in said first direction said sealing means permits the relatively unrestricted flow of said fluid between itself and said cylindrical passageway, and wherein when said armature body is moving in said second direction fluid flowing from said source of fluid through said fluid-flow restriction means normally is applied against said first axial end of said armature body thereby causing said armature body to have its speed of movement in said second direction retarded.
- 40. An electrically energized actuator assembly according to claim 39 and further comprising vent means communicating with said source of said fluid, wherein said armature body while moving in said second direction is effective at a preselected location while moving in said second direction to enable said vent means to supply a rate of flow of said fluid to be applied against said first axial end of said armature body, the rate of flow of said fluid effectively augmenting the otherwise normal rate of flow of said fluid through said fluid-flow restriction means and thereby significantly increasing the speed of movement of said armature body to a magnitude greater than the speed of movement of said armature body would have been in said second direction if controlled only by the rate of flow of said fluid flowing from said fluid-flow restriction means and applied to said first axial end of said armature body.
- 41. An electrically energized actuator assembly according to claim 40 wherein said vent means is so situated that said armature body experiences said increasing speed of movement as said armature body approaches and continues in its movement toward and to said second extreme position.
- 42. An electrically energized actuator assembly comprising electrical field coil means, armature means at least partly situated generally within said field coil means, resilient means, a source of a fluid, and fluid-flow restriction means, wherein said electrical field coil means is effective upon being electrically energized to move said armature means in a first direction toward a first extreme position of said armature means, wherein said armature means in moving in said first direction moves against resilient resistance of said resilient means, wherein upon said electrical field coil means becoming electrically de-energized said resilient means is effective to move said armature means in a second direction opposite to said first direction toward a second extreme position of said armature means, wherein said armature means in moving in said second direction causes said fluid to flow through said fluid-flow restriction means, wherein said fluid-flow restriction means is effective to govern the speed at which said armature means moves in said second direction in accordance with the rate of flow of said fluid through said fluid-flow restriction means, axially extending bobbin means, wherein said bobbin means comprises a generally intermediate axially extending cylindrically tubular body portion, a generally radially outwardly extending flange carried by said cylindrically tubular body portion, a transverse body portion carried by said cylindrically tubular body portion as to be axially spaced from said flange, wherein said field coil means is formed on and about said cylindrically tubular body portion and axially contained between said flange and said transverse body portions a generally cylindrical passageway formed through said cylindrically tubular body portion, wherein said armature means comprises a generally cylindrically elongated armature body comprising a first axial end and received by said cylindrical passageway, fluid sealing means carried by said elongated armature body, wherein when said armature body is moving in said first direction said sealing means permits the relatively unrestricted flow of said fluid therepast, and wherein when said armature body is moving in said second direction fluid flowing from said source of fluid through said fluid-flow restriction means normally is applied against said first axial end of said armature body thereby causing said armature body to have its speed of movement in said second direction retarded, and further comprising vent means communicating with said source of said fluid, wherein said armature body while moving in said second direction is effective at a preselected location while moving in said second direction to enable said vent means to supply a rate of flow of said fluid to be applied against said first axial end of said armature body, the rate of flow of said fluid effectively augmenting the otherwise normal rate of flow of said fluid through said fluid-flow restriction means and thereby significantly increasing the speed of movement of said armature body to a magnitude greater than the speed of movement of said armature body would have been in said second direction if controlled only by the rate of flow of said fluid flowing from said fluid-flow restriction means and applied to said first axial end of said armature body, and further comprising a cylindrical tubular sleeve received by said cylindrical passageway, wherein said armature body is received by said cylindrical tubular sleeve, and wherein said vent means is formed in said cylindrical tubular sleeve.
- 43. An electrically energized actuator assembly comprising electrical field coil means, armature means at least partly situated generally within said field coil means, resilient means, a source of a fluid, and fluid-flow restriction means, wherein said electrical field coil means is effective upon being electrically energized to move said armature means in a first direction toward a first extreme position of said armature means, wherein said armature means in moving in said first direction moves against resilient resistance of said resilient means, wherein upon said electrical field coil means becoming electrically de-energized said resilient means is effective to move said armature means in a second direction opposite to said first direction toward a second extreme position of said armature means, wherein said armature means in moving in said second direction causes said fluid to flow through said fluid-flow restriction means, wherein said fluid-flow restriction means is effective to govern the speed at which said armature means moves in said second direction in accordance with the rate of flow of said fluid through said fluid-flow restriction means, axially extending bobbin means, wherein said bobbin means comprises a generally intermediate axially extending cylindrically tubular body portion, a generally radially outwardly extending flange carried by said cylindrically tubular body portion, a transverse body portion carried by said cylindrically tubular body portion as to be axially spaced from said flange, wherein said field coil means is formed on and about said cylindrically tubular body portion and axially contained between said flange and said transverse body portion, a generally cylindrical passageway formed through said cylindrically tubular body portion, wherein said armature means comprises a generally cylindrically elongated armature body comprising a first axial end and received by said cylindrical passageway, fluid sealing means carried by said elongated armature body, wherein when said armature body is moving in said first direction said sealing means permits the relatively unrestricted flow of said fluid therepast, and wherein when said armature body is moving in said second direction fluid flowing from said source of fluid through said fluid-flow restriction means normally is applied against said first axial end of said armature body thereby causing said armature body to have its speed of movement in said second direction retarded, and further comprising vent means communicating with said source of said fluid, wherein said armature body while moving in said second direction is effective at a preselected location while moving in said second direction to enable said vent means to supply a rate of flow of said fluid to be applied against said first axial end of said armature body, the rate of flow of said fluid effectively augmenting the otherwise normal rate of flow of said fluid through said fluid-flow restriction means and thereby significantly increasing the speed of movement of said armature body to a magnitude greater than the speed of movement of said armature body would have been in said second direction if controlled only by the rate of flow of said fluid flowing from said fluid-flow restriction means and applied to said first axial end of said armature body, wherein said vent means is so situated that said armature body experiences said increasing speed of movement as said armature body approaches and continues in its movement toward and to said second extreme position, and further comprising a cylindrical tubular sleeve received by said cylindrical passageway, wherein said armature body is received by said cylindrical tubular sleeve, and wherein said vent means is formed in said cylindrical tubular sleeve.
- 44. An electrically energized actuator assembly comprising electrical field coil means, armature means at least partly situated generally within said field coil means, resilient means, a source of a fluid, and fluid-flow restriction means, wherein said electrical field coil means is effective upon being electrically energized to move said armature means in a first direction toward a first extreme position of said armature means, wherein said armature means in moving in said first direction moves against resilient resistance of said resilient means, wherein upon said electrical field coil means becoming electrically de-energized said resilient means is effective to move said armature means in a second direction opposite to said first direction toward a second extreme position of said armature means, wherein said armature means in moving in said second direction causes said fluid to flow through said fluid-flow restriction means, wherein said fluid-flow restriction means is effective to govern the speed at which said armature means moves in said second direction in accordance with the rate of flow of said fluid through said fluid-flow restriction means, axially extending bobbin means, wherein said bobbin means comprises a generally intermediate axially extending cylindrically tubular body portion, a generally radially outwardly extending flange carried by said cylindrically tubular body portion, a transverse body portion carried by said cylindrically tubular body portion as to be axially spaced from said flange, wherein said field coil means is formed on and about said cylindrically tubular body portion and axially contained between said flange and said transverse body portions a generally cylindrical passageway formed through said cylindrically tubular body portion, wherein said armature means comprises a generally cylindrically elongated armature body comprising a first axial end and received by said cylindrical passageway, fluid sealing means carried by said elongated armature body, wherein when said armature body is moving in said first direction said sealing means permits the relatively unrestricted flow of said fluid therepast, and wherein when said armature body is moving in said second direction fluid flowing from said source of fluid through said fluid-flow restriction means normally is applied against said first axial end of said armature body thereby causing said armature body to have its speed of movement in said second direction retarded, and further comprising vent means communicating with said source of said fluid, wherein said armature body while moving in said second direction is effective at a preselected location while moving in said second direction to enable said vent means to supply a rate of flow of said fluid to be applied against said first axial end of said armature body, the rate of flow of said fluid effectively augmenting the otherwise normal rate of flow of said fluid through said fluid-flow restriction means and thereby significantly increasing the speed of movement of said armature body to a magnitude greater than the speed of movement of said armature body would have been in said second direction if controlled only by the rate of flow of said fluid flowing from said fluid-flow restriction means and applied to said first axial end of said armature body, wherein said vent means comprises at least first and second vents each of which communicates with said source of said fluid, wherein said first and second vents are effectively axially spaced from each other as to be respectively situated at first and second locations, and wherein said armature body in moving from said first extreme position toward said second extreme position sequentially enables said second vent at said second location and subsequently said first vent at said first location to supply said fluid from said source of fluid and cause its application to said first axial end of said armature body thereby increasing the speed of movement of said armature body at generally each of said first and second locations while axially between such locations becoming totally controlled in its speed of movement by said flow of fluid from said fluid-flow restriction means and thereby significantly reducing the speed of movement of said armature body in its movement toward said second extreme position.
- 45. An electrically energized actuator assembly according to claim 44 and further comprising a cylindrical tubular sleeve received by said cylindrical passageway, wherein said armature body is received by said cylindrical tubular sleeve, and wherein said first and second vents are formed in said cylindrical tubular sleeve.
- 46. An electrically energized actuator assembly, comprising an electrically energizable field coil, an armature movable in response to energization of said field coil, an electrical circuit, wherein when said electrical circuit is closed said field coil is energized as to cause said armature to move in a first direction toward a first extreme position, resilient means for resiliently resisting the movement of said armature in said first direction, wherein when said electrical circuit is opened said field coil is de-energized permitting said resilient means to move said armature in a second direction toward a second extreme position, and delay means, said delay means being effective to retard the movement of said armature in said second direction whereby in comparison the speed of movement of said armature in said first direction against the resilient resistance of said resilient means is purposely faster than the speed of movement of said armature in said second direction, and additional means which become operative upon said armature attaining a preselected location in its movement toward said second extreme position to override the otherwise normal operation of said delay means and thereby significantly increase the speed of movement of said armature in said second direction.
- 47. An electrically energized actuator assembly comprising electrical field coil means, armature means at least partly situated generally within said field coil means, resilient means, a fluid, and fluid-flow restriction means, wherein said electrical field coil means is effective upon being electrically energized to move said armature means in a first direction, wherein said armature means in moving in said first direction moves against resilient resistance of said resilient means, wherein upon said electrical field coil means becoming electrically de-energized said resilient means is effective to move said armature means in a second direction opposite to said first direction, wherein said armature means in moving in said second direction causes said fluid to flow through said fluid-flow restriction means, wherein said fluid-flow restriction means is effective to govern the speed at which said armature means moves in said second direction in accordance with the rate of flow of said fluid through said fluid-flow restriction means, and further comprising axially extending bobbin means, wherein said bobbin means comprises a generally intermediate axially extending cylindrically tubular body portion, a first generally radially outwardly extending flange portion operatively carried by said cylindrically tubular body portion, a second generally radially outwardly extending flange portion operatively carried by said cylindrically tubular body portion as to be axially spaced from said first flange portion, wherein said field coil means is formed on and about said cylindrically tubular body portion and axially contained between said first and second flange portions, a flux conducting frame body, a generally cylindrical passage formed through said cylindrically tubular body portion, a stop member, a tubular sleeve comprising a generally cylindrical axially extending outer surface and a generally cylindrical axially extending passage, wherein said tubular sleeve is at least for the most part situated in said cylindrical passageway, wherein said armature means comprises a generally cylindrically elongated armature body, wherein said armature body is slidably received by said axially extending passage of said tubular sleeve, wherein said stop member is effective to stop movement of said elongated armature body in a direction toward said stop member, wherein said fluid-flow restriction means is carried by said stop member, fluid sealing means carried by said elongated armature body, wherein said fluid sealing means permits the flow of said fluid therepast when said elongated armature body is moving axially in said first direction in said cylindrical passage, and wherein said fluid sealing means seals against the flow of said fluid therepast when said elongated armature body is moving axially in said cylindrical passage in said second direction opposite to said first direction.
- 48. An electrically energized actuator assembly comprising electrical field coil means, armature means at least partly situated generally within said field coil means, resilient means, a source of fluid, and fluid-flow restriction means, wherein said electrical field coil means is effective upon being electrically energized to move said armature means in a first direction toward a first extreme position of said armature means, wherein said armature means in moving in said first direction moves against resilient resistance of said resilient means, wherein upon said electrical field coil means becoming electrically de-energized said resilient means is effective to move said armature means in a second direction opposite to said first direction toward a second extreme position of said armature means, wherein said armature means in moving in said second direction causes said fluid to flow through said fluid-flow restriction means, wherein said fluid-flow restriction means is effective to govern the speed at which said armature means moves in said second direction in accordance with the rate of flow of said fluid through said fluid-flow restriction means, axially extending bobbin means, wherein said bobbin means comprises a generally intermediate axially extending tubular body portion, a generally radially outwardly extending first flange carried by said tubular body portion, a generally radially outwardly extending second flange carried by said tubular body portion as to be axially spaced from said first flange, wherein said field coil means is formed on and about said tubular body portion and axially contained between said first and second flanges, a generally cylindrical passageway formed through said tubular body portion, wherein said armature means comprises a generally cylindrically elongated armature body comprising a first axial end and received by said cylindrical passageway, fluid sealing means carried by said elongated armature body, wherein when said armature body is moving in said first direction said sealing means permits the relatively unrestricted flow of said fluid therepast, and wherein when said armature body is moving in said second direction fluid flowing from said source of fluid through said fluid-flow restriction means normally is applied against said first axial end of said armature body thereby causing said armature body to have its speed of movement in said second direction retarded, and further comprising vent means communicating with said source of said fluid, wherein said armature body while moving in said second direction is effective at a preselected location while moving in said second direction to enable said vent means to supply a rate of flow of said fluid to be applied against said first axial end of said armature body, the rate of flow of said fluid effectively augmenting the otherwise normal rate of flow of said fluid through said fluid-flow restriction means and thereby significantly increasing the speed of movement of said armature body to a magnitude greater than the speed of movement of said armature body would have been in said second direction if controlled only by the rate of flow of said fluid flowing from said fluid-flow restriction means and applied to said first axial end of said armature body, wherein said vent means comprises at least first and second vents each of which communicates with said source of said fluid, wherein said first and second vents are effectively axially spaced from each other as to be respectively situated at first and second locations, and wherein said armature body in moving from said first extreme position toward said second extreme position sequentially enables said second vent at said second location and subsequently said first vent at said first location to supply said fluid from said source of fluid and cause its application to said first axial end of said armature body thereby increasing the speed of movement of said armature body at generally each of said first and second locations.
- 49. An electrically energized actuator assembly comprising electrical field coil means, armature means at least partly situated generally within said field coil means, resilient means, a source of fluid, and fluid-flow restriction means, wherein said electrical field coil means is effective upon being electrically energized to move said armature means in a first direction toward a first extreme position of said armature means, wherein said armature means in moving in said first direction moves against resilient resistance of said resilient means, wherein upon said electrical field coil means becoming electrically de-energized said resilient means is effective to move said armature means in a second direction opposite to said first direction toward a second extreme position of said armature means, wherein said armature means in moving in said second direction causes said fluid to flow through said fluid-flow restriction means, wherein said fluid-flow restriction means is effective to govern the speed at which said armature means moves in said second direction in accordance with the rate of flow of said fluid through said fluid-flow restriction means, axially extending bobbin means, wherein said bobbin means comprises a generally intermediate axially extending tubular body portion, a generally radially outwardly extending first flange carried by said tubular body portion, a generally radially outwardly extending second flange carried by said tubular body portion as to be axially spaced from said first flange, wherein said field coil means is formed on and about said tubular body portion and axially contained between said first and second flanges, a generally cylindrical passageway formed through said tubular body portion, wherein said armature means comprises a generally cylindrically elongated armature body comprising a first axial end and received by said cylindrical passageway, fluid sealing means carried by said elongated armature body, wherein when said armature body is moving in said first direction said sealing means permits the relatively unrestricted flow of said fluid therepast, and wherein when said armature body is moving in said second direction fluid flowing from said source of fluid through said fluid-flow restriction means normally is applied against said first axial end of said armature body thereby causing said armature body to have its speed of movement in said second direction retarded, and further comprising vent means communicating with said source of said fluid, wherein said armature body while moving in said second direction is effective at a preselected location while moving in said second direction to enable said vent means to supply a rate of flow of said fluid to be applied against said first axial end of said armature body, the rate of flow of said fluid effectively augmenting the otherwise normal rate of flow of said fluid through said fluid-flow restriction means and thereby significantly increasing the speed of movement of said armature body to a magnitude greater than the speed of movement of said armature body would have been in said second direction if controlled only by the rate of flow of said fluid flowing from said fluid-flow restriction means and applied to said first axial end of said armature body, wherein said vent means comprises at least first and second vents each of which communicates with said source of said fluid, wherein said first and second vents are effectively axially spaced from each other as to be respectively situated at first and second locations, and wherein said armature body in moving from said first extreme position toward said second extreme position sequentially enables said second vent at said second location and subsequently said first vent at said first location to supply said fluid from said source of fluid and cause its application to said first axial end of said armature body thereby increasing the speed of movement of said armature body at generally each of said first and second locations while axially between such locations becoming totally controlled in its speed of movement by said flow of fluid from said fluid-flow restriction means and thereby significantly reducing the speed of movement of said armature body in its movement toward said second extreme position.
Parent Case Info
This application is a Continuation-in-Part of my application Ser. No. 07/922,069 filed Jul. 29, 1992, for "Electro-Fluid Actuator and System", now abandoned.
US Referenced Citations (7)
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
922069 |
Jul 1992 |
|