This invention relates to ambulance cots and more particularly to an ambulance cot having an electro-hydraulically, operated collapsible frame structure to facilitate loading of the ambulance cot from the ground and into an ambulance by a single operator.
In order to situate a conventional non-powered ambulance cot into the back of an ambulance, two or more attendants often must lift the cot from a relatively low height of approximately 15 cm (about 6 inches) from the ground to a height of almost 1 meter (about 39 inches). Unfortunately, lifting or raising a loaded ambulance cot from this low height increases the risk to these attendants obtaining a back injury or exacerbating an existing one. This problem is exacerbated when handling and transporting a bariatric patient.
It is against the above background, that the present invention provides a hydraulic lift system to an ambulance cot which will be used to assume all or most of the effort required to lift and/or lower the cot and patient carried thereon. The present invention by providing a power lift ambulance cot for emergency medical services and ambulance-related services addresses the problems associated with the physical strain of raising and lowering a loaded ambulance cot. Accordingly, the present invention has the potential to reduce work related injuries and to reduce the amount of lost work time, as well as therapeutic costs.
Although the present invention is not limited to following specific advantages, it is noted that the present invention allows an attendant to raise or lower a patient with only the touch of a button to activate the hydraulic lift system. When using the hydraulic lift system of the present invention, the cot will lift a patient up to about 363 kilograms (about 700 pounds), thereby addressing scenarios where attendants may be put into a situation where they can injure their back while handling a bariatric patient.
The present invention uses an x-frame design with two hydraulic lift cylinders for raising and lowering the patient, and for providing a smooth and balanced lift operation to the cot. Since the weight of the patient is taken off the attendants and put onto the hydraulic lift system, both attendants now have the ability to assist in holding the weight at the trailing (operator) end of the cot as it's being loaded into a vehicle. Being able to situate the two attendants at the trailing end of the cot allows for an easier loading of the cot into the vehicle, especially one's with floors higher than about 0.7 meters (about 30 inches). It is also to be appreciated that the present invention has an infinite height adjustment range to meet all of the attendant's needed loading positions in order to transfer a patient to and from the cot.
In one embodiment, an electro-hydraulically powered lift ambulance cot comprising a wheeled base having a first slide member slidably supported by a longitudinally extending lower guide is disclosed. A support frame has a second slide member slidably supported by a longitudinally extending upper guide, and is disposed above the wheeled base. A support mechanism, which supports the support frame relative to the wheeled base, is pivotably connected to the support frame, the wheeled base, the first slide member, and the second slide member. A hydraulic lift system is pivotably mounted at a first end to the first slide member, and at a second end to the support mechanism. A motor is mounted to the cot to pump hydraulic fluid under pressure to the lift system in order to assist relative movement between the support frame and the wheeled base. Pilot operated check valves “lock” hydraulic cylinders of the lift system in place when the pump is de-energized to maintain the cot in its desired position. A manual override is also provided to conserve battery power and as a back-up in no-power situations. It is to be appreciated that the above described manual override mode may be used when raising or lowering the cot without power assist, dropping the undercarriage when unloading from a vehicle, and lifting the undercarriage when loading into a vehicle.
These and other features and advantages of the invention will be more fully understood from the following description of a preferred embodiment of the invention taken together with the accompanying drawings. It is noted that the scope of the claims is defined by the recitations therein and not by the specific discussion of features and advantages set forth in the present description.
The following detailed description of the embodiments of the present invention can be best understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:
Skilled artisans appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiment(s) of the present invention. Additionally, parts and portion of some elements may be removed to help improve understanding of the embodiments of the present invention.
With reference to
Referring to
The hydraulic lift system 10 also hydraulically raises the cot 2 from the lowered position to the raised position, and an infinite number of positions therebetween. Pressure in the hydraulic lift system 10 may also be manually released to cause the cot 2 to be lowered from the raised position to the lowered position, and an infinite number of positions therebetween, to conserve battery power and as a back-up in no-power situations. It is also to be appreciated that the above described manual mode may also be used when raising the cot without power assist, dropping the undercarriage when unloading from a vehicle, and lifting the undercarriage when loading into a vehicle.
The undercarriage, generally indicated by symbol 11, of the cot 2 comprises an upper frame 12, a lower frame 14, and a support mechanism shown generally as 16 disposed therebetween for supporting the upper frame 12 relative to the lower frame 14. The upper frame 12 is generally rectangular, and in the illustrated embodiment shown by
In the illustrated embodiment, the leading end frame member 18 is coupled rotatably to the opposed side frame members 20, 20′ and is a drop frame, such as the type disclosed by U.S. Pat. No. 6,701,545, a patent commonly assigned to Ferno Washington, Inc., and the disclosure of which is herein fully incorporated by reference. The loading wheels 8 are provided to the leading end frame member 18.
In one embodiment, the upper frame 12 includes a patient bed shown generally as 24 in
In one embodiment, an electrical connection is made through the use of an extension cord (not shown). In another embodiment, such as illustrated by
The battery 30, which in one embodiment provides 24 VDC, 25 amps, provides enough energy to lift and lower the upper frame 12 relative to the lower frame 14 while supporting a patient weighing about 227 kilograms (about 500 pounds) about 20 times before needing a recharge. The number of cycles can be increased by utilizing the manual override, and gravity, to conserve power when lowering the cot from an elevated position (
As shown by
In another embodiment, the upper frame 12 is a support platform for releasably receiving a multipurpose roll-in cot shown generally as 34 in
As best illustrated by
The support mechanism 16 is an x-frame that includes a first pair of parallel legs 44, 44′ and a second pair of parallel legs 46, 46′. Respective ones of the pairs of legs 44, 46 and 44′, 46′ are pivotably connected at an intermediate location by a pivot brace or connection 48. The upper frame 12 is connected to each of the first pair of legs 44, 44′ by a pivot 50 (the pivots on both sides of the frame 12 are the same), which is best shown in
With reference to
The hydraulic lift system 10 is also pivotably mounted between the second pair of legs 46, 46′ and the first slide member 52. As best illustrated by
Accordingly, in one exemplary embodiment, based upon utilizing a pair of 2.54 cm (1-inch) diameter hydraulic cylinders with about 25.4 cm (about 10 inches) of stroke and a working pressure of about 13.8 MPa (about 2000 psi), the cot 2 is able to lift a patient weighing about 317.5 kilograms (about 700 pounds). As also best illustrated by
As can be seen in the
In the first branch 92 of the control circuit 86, which extends from the power unit 78 to the extension side of the cylinders 72, 72′, a high pressure relief valve 100 is positioned, which is set to relieve line pressures in excess of 13.8 MPa (2000 psi). Downstream from the high pressure relief valve 100 is positioned an adjustable compensating feed valve 102. The feed valve 102 provides a wide range of advance and retract feeds, thereby ensuring that the hydraulic fluid is provided to the cylinders 72, 72′ in at a controlled and safe rate. However, a bypass check valve 103 is provided around feed valve 102 to ensure that suitable fluid flow is provided to the extension side of the hydraulic cylinders 72, 72′, thereby ensuring a smooth extension of cylinders 72, 72′ when lifting under power a patient situated on the cot 10.
Additionally, the bypass check valve 103 ensures a vacuum does not form on the extension side of the hydraulic cylinders 72, 72′ when manually raising the cot 2 which is explained more fully in a later section. The hydraulic cylinders 72, 72′ are under power when the motor 80 is operated to supply fluid under pressure to the first branch 92 in order to extend the cylinders 72, 72′, thereby raising the upper frame 12 of the cot 2 relative to the lower frame 14. In one embodiment, the rate of the hydraulic fluid supply to the first branch 92 from the power unit 78 is about 3 liters per minute (about 0.80 GPM).
In the second branch 94, which is parallel to said first branch 92 and which extends between the retraction side of the cylinders 72, 72′ and the power unit 78, a high pressure relief valve 105 is positioned, which is set to relieve line pressures in excess of 13.8 MPa (2000 psi). Downstream from the high pressure relief valve 105 is positioned pilot controlled check valve 98′. The motor 80 is operated to supply fluid under pressure to the second branch 94 in order to retract the cylinders 72, 72′, thereby lowering the upper frame 12 relative to the lower frame 14. In one embodiment, the rate of the hydraulic fluid supply to the second branch 94 from the power unit 78 is about 2.3 liters per minute (about 0.6 GPM).
Between the first branch 92 and the second branch 94, are located a pair of hand operated spring-return valves 106, 106′, used to manually lower or raise the cot 2. The outlets of the hand-operated spring-return valves 106, 106′ dump to the reservoir 84. A check valve 108, which flows only in the feed direction of the second branch 94, ensures a vacuum does not form on the bottom side of the hydraulic cylinders 72, 72′ when manually lowering the cot 2 via operating the hand-operated spring-return valves 106, 106′.
Talking as an initial position of the cot 2 at the lowered position thereof, the pump 82 of the power unit 78 pumps the fluid into the first branch 92, through the associated pilot control check valve 98, to the pressure compensated feed valve 102 and through the bypass check value 103. It is to be appreciated that supplying hydraulic fluid to the first branch 92 also opens the check valve 98′ in the second branch 94 to permit the hydraulic fluid to flow from the bottom of the cylinders 72, 72′ back to the inlet of the pump 82.
When the pressure required for lifting the cylinders 72, 72′ has been reached, the cylinders 72, 72′ will be accelerated continuously and slowly until it has reached its maximum speed depending on the properties of the fluid flow and pressure drop. In the course of this process, the pressure in the first branch 92 up to the inlet of the feed valve 102 and through bypass check valve 103 will exceeds the pressure in the cylinders 72, 72′ as the amount of fluid delivered by the pump 82 is larger than the maximum amount of fluid flowing through the feed valve 102 and bypass check value 103. Accordingly, the excessive amount of fluid in the first branch 92 is then discharged into the reservoir 84 by being dumped via feed valve 102. It follows that a constant lifting movement is carried out until the power unit 78 is switched off.
A short time after switching off the power unit 78, such as when reaching the desired level for the upper frame 12 of the cot 2, the pilot operated check valve 98 in the first branch 92 remains closed as long as the pressure at its inlet does not exceed the pressure in the cylinder or is opened by operating the power unit in the opposite direction. Hence, the cylinders 72, 72′, are prevented from retracting. Exactly the opposite takes place in the second branch 94 when lowering the upper frame 12 by operating power unit in the reverse direction.
Turning to
Provided to the trailing end frame member 22 is an on/off button 212 used to energize the motor 80 in the power unit 78 (
While the invention has been described by reference to certain preferred embodiments, it should be understood that numerous changes could be made within the spirit and scope of the inventive concepts described. For example, all relief valves may be variably adjusted, and that although in one embodiment the above mentioned pressures are suitable, other system pressures may be used without departing from the scope and spirit of the invention. Accordingly, it is intended that the invention not be limited to the disclosed embodiments, but that it have the full scope permitted by the language of the following claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2005/019547 | 6/3/2005 | WO | 00 | 7/29/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/122989 | 12/29/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2538993 | Travis | Jan 1951 | A |
2833587 | Saunders | May 1958 | A |
3099020 | Garfield et al. | Jul 1963 | A |
3174722 | Alm | Mar 1965 | A |
3203670 | Farris | Aug 1965 | A |
3815164 | Smith | Jun 1974 | A |
4037871 | Bourgraf et al. | Jul 1977 | A |
4071222 | Wright | Jan 1978 | A |
4078269 | Weipert | Mar 1978 | A |
4097941 | Merkel | Jul 1978 | A |
4271545 | Christian, III | Jun 1981 | A |
4352991 | Kaufman | Oct 1982 | A |
4556198 | Tominaga | Dec 1985 | A |
4558847 | Coates | Dec 1985 | A |
4613122 | Manabe | Sep 1986 | A |
4646211 | Gallant et al. | Feb 1987 | A |
4675926 | Lindblom et al. | Jun 1987 | A |
4912787 | Bradcovich | Apr 1990 | A |
4984774 | Zupancic et al. | Jan 1991 | A |
5022105 | Catoe | Jun 1991 | A |
5054141 | Foster et al. | Oct 1991 | A |
5074000 | Soltani et al. | Dec 1991 | A |
5083331 | Schnelle et al. | Jan 1992 | A |
5084922 | Louit | Feb 1992 | A |
5135350 | Eelman et al. | Aug 1992 | A |
5271113 | White | Dec 1993 | A |
5365622 | Schirmer | Nov 1994 | A |
5495914 | DiMucci et al. | Mar 1996 | A |
5537700 | Way et al. | Jul 1996 | A |
5575026 | Way et al. | Nov 1996 | A |
5662627 | Say | Sep 1997 | A |
5697471 | DiMucci et al. | Dec 1997 | A |
5701618 | Brugger | Dec 1997 | A |
5740884 | DiMucci et al. | Apr 1998 | A |
5983425 | DiMucci et al. | Nov 1999 | A |
6024528 | Taylor | Feb 2000 | A |
6219864 | Ellis et al. | Apr 2001 | B1 |
6332638 | Menna | Dec 2001 | B1 |
6701545 | Ferneau et al. | Mar 2004 | B1 |
6916056 | Mitchell et al. | Jul 2005 | B2 |
7521891 | Choy et al. | Apr 2009 | B2 |
20020174486 | Van Den Heuvel et al. | Nov 2002 | A1 |
20030037375 | Riley et al. | Feb 2003 | A1 |
20030079288 | Cook et al. | May 2003 | A1 |
20040055087 | Edgerton | Mar 2004 | A1 |
20040080172 | Mitchell et al. | Apr 2004 | A1 |
20040088792 | O'Krangley et al. | May 2004 | A1 |
20050011188 | Silva et al. | Jan 2005 | A1 |
20050035871 | Dixon et al. | Feb 2005 | A1 |
20060259267 | Narayanasamy | Nov 2006 | A1 |
Number | Date | Country |
---|---|---|
3541017 | Jun 1986 | DE |
2786091 | May 2000 | FR |
2302672 | Jan 1997 | GB |
2351439 | Jan 2001 | GB |
2368317 | May 2002 | GB |
2390062 | Dec 2003 | GB |
63125837 | Sep 1988 | JP |
2003159301 | Jun 2003 | JP |
WO 0239944 | May 2002 | WO |
WO2004064698 | Aug 2004 | WO |
200806565 | Jun 2009 | ZA |
Number | Date | Country | |
---|---|---|---|
20090172883 A1 | Jul 2009 | US |
Number | Date | Country | |
---|---|---|---|
60579395 | Jun 2004 | US |