Electro-kinetic air transporter and conditioner devices with 3/2 configuration having driver electrodes

Information

  • Patent Grant
  • 7517505
  • Patent Number
    7,517,505
  • Date Filed
    Wednesday, December 8, 2004
    20 years ago
  • Date Issued
    Tuesday, April 14, 2009
    15 years ago
Abstract
Electro-kinetic air transporter and conditioner systems and methods are provided. A system includes at least one emitter electrode and at least a one collector (and likely, at least a pair of collector electrodes) that are downstream from the emitter electrode. An insulated driver electrode is located adjacent a collector electrode, and where there is at least a pair of collector electrodes, between each pair of collector electrodes. A high voltage source provides a voltage potential to the at least one of the emitter electrode and the collector electrode(s), to thereby provide a potential different therebetween. The insulated driver electrode(s) may or may not be at a same voltage potential as the emitter electrode, but should be at a different voltage potential than the collector electrode(s).
Description
FIELD OF THE INVENTION

The present invention relates generally to devices that electro-kinetically transport and/or condition air.


BACKGROUND OF THE INVENTION

It is known in the art to produce an airflow using electro-kinetic techniques, by which electrical power is converted into a flow of air without mechanically moving components. One such system was described in U.S. Pat. No. 4,789,801 to Lee (1988), depicted herein in simplified form as FIG. 1. System 100 includes a first array 110 of emitter electrodes 112 that are spaced-apart symmetrically from a second array 120 of collector electrodes 122. The positive terminal of a high voltage pulse generator 140 that outputs a train of high voltage pulses (e.g., 0 to perhaps +5 KV) is coupled to the first array 110, and the negative pulse generator terminal is coupled to the second array 120 in this example.


The high voltage pulses ionize the air between arrays 110 and 120, and create an airflow 150 from the first array 110 toward the second array 120, without requiring any moving parts. Particulate matter 160 in the air is entrained within the airflow 150 and also moves towards the collector electrodes 122. Some of the particulate matter is electrostatically attracted to the surfaces of the collector electrodes 122, where it remains, thus conditioning the flow of air exiting system 100. Further, the corona discharge produced between the electrode arrays can release ozone into the ambient environment, which can eliminate odors that are entrained in the airflow, but is generally undesirable in excess quantities.


In a further embodiment of Lee shown herein as FIG. 2, a third array 230 includes passive collector electrodes 232 that are positioned midway between each pair of collector electrodes 122. According to Lee, these passive collector electrodes 232, which were described as being grounded, increase precipitation efficiency. However, because the grounded passive collector electrodes 232 (also referred to hereafter as driver electrodes) are located close to adjacent negatively charged collector electrodes 122, undesirable arcing (also known as breakdown or sparking) will occur between collector electrodes 122 and driver electrodes 232 if the potential difference therebetween is too high, or if a carbon path is produced between an electrode 122 and an electrode 232 (e.g., due to a moth or other insect that got stuck between an electrode 122 and electrode 232). It is also noted that driver electrodes are sometimes referred to as interstitial electrodes because they are situated between other (i.e., collector) electrodes.


Increasing the voltage difference between the emitter electrodes 112 and the collector electrodes 122 is one way to further increase particle collecting efficiency and air flow rate. However, the extent that the voltage difference can be increased is limited because arcing will eventually occur between the collector electrodes 122 and the driver electrodes 232. Such arcing will typically decrease the collecting efficiency of the system, as well as produce an unpleasant odor.


Accordingly, there is a desire to improve upon existing electro-kinetic techniques. More specifically there is a desire to increase particle collecting efficiency and airflow rate, and to reduce arcing between electrodes.


SUMMARY OF THE PRESENT INVENTION

Embodiments of the present invention are related to electro-kinetic air transporter-conditioner systems and methods. In accordance with an embodiment of the present invention, a system includes at least one emitter electrode and at least one collector electrode that is downstream from the emitter electrode. An insulated driver electrode is located adjacent the collector electrode. A high voltage source provides a voltage potential to at least one of the emitter electrode and the collector electrode to thereby provide a potential different therebetween. The insulated driver electrode(s) may or may not be at a same voltage potential as the emitter electrode, but should be at a different voltage potential than the collector electrode.


The insulation (i.e., dielectric material) on the driver electrodes allows the voltage potential to be increased between the driver and collector electrodes, to a voltage potential that would otherwise cause arcing if the insulation were not present. This increased voltage potential increases particle collection efficiency. Additionally, the insulation will reduce, and likely prevent, any arcing from occurring if a carbon path is formed between the collector and driver electrodes, e.g., due to an insect getting caught therebetween.


In accordance with an embodiment of the present invention, the emitter electrode(s) and the insulated driver electrode(s) are grounded, while the high voltage source is used to provide a high voltage potential to the collector electrode(s) (e.g., −16 KV). This is a relatively easy embodiment to implement since the high voltage source need only provide one polarity.


In accordance with an embodiment of the present invention, the emitter electrode(s) is at a first voltage potential, the collector electrode(s) is at a second voltage potential different than the first voltage potential, and the insulated driver electrode is at a third voltage potential different than the first and second voltage potentials. One of the first, second and third voltage potentials can be ground, but need not be. Other variations, such as the emitter and driver electrodes being at the same potential (ground or otherwise) are within the scope of the invention.


In accordance with an embodiment of the present invention, the emitter electrode(s) may be generally equidistant from the upstream ends of the closest pair of collector electrodes. In other embodiments, certain emitter electrodes are moved outward to thereby adjust the electric fields produced between the emitter electrodes and the collector electrodes, and thus establish a non-equidistant relationship.


In accordance with an embodiment of the present invention, an the upstream end of each insulated driver electrode is set back a distance from the upstream end of the collector electrode(s).


Each insulated driver electrode includes an underlying electrically conductive electrode that is covered with, for example, a dielectric material. The dielectric material can be, for example, a heat shrink tubing material or an insulating varnish type material. In accordance with an embodiment of the present invention, the dielectric material is coated with an ozone reducing catalyst. In accordance with another embodiment of the present invention, the dielectric material includes or is an ozone reducing catalyst.


The embodiments as describe above have some or all of the advantages of increasing the particle collection efficiency, increasing the rate and/or volume of airflow, reducing arcing, and/or reducing the amount of ozone generated. Further, ions generated using many of the embodiments of the present invention will be more of the negative variety as opposed to the positive variety.


In accordance with an embodiment of the present invention, an insulated driver electrode includes generally flat elongated sides that are generally parallel with the adjacent collector electrode(s). Alternatively, an insulated driver electrode can include one, or preferably a row of, insulated wire-shaped electrodes.


Other features and advantages of the invention will appear from the following description in which the preferred embodiments have been set forth in detail, in conjunction with the accompanying drawings and claims.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 illustrates schematically, a prior art electro-kinetic conditioner system.



FIG. 2 illustrates schematically, a further prior art electro-kinetic conditioner system.



FIG. 3 illustrates schematically, an electro-kinetic conditioner system according to an embodiment of the present invention.



FIG. 4 illustrates schematically, an electro-kinetic conditioner system according to another embodiment of the present invention.



FIG. 5 illustrates schematically, an electro-kinetic conditioner system according to a further embodiment of the present invention.



FIG. 6 illustrates exemplary electrostatic field lines produced using embodiments of the present invention.



FIG. 7 illustrates the relative distances between various electrodes of the electro-kinetic conditioner systems of the present invention.



FIG. 8 illustrates schematically, an electro-kinetic conditioner system according to a further embodiment of the present invention where additional emitter electrodes are used.



FIG. 9 illustrates schematically, an electro-kinetic conditioner system according to an embodiment of the present invention, where the location of the emitter electrodes are adjusted to change the electric field distribution.



FIG. 10 illustrates schematically, an electro-kinetic conditioner system according to an embodiment of the present invention, where the location of the collector electrodes are adjusted to change the electric field distribution.



FIG. 11 illustrates the use of a ozone reducing catalyst over the insulation of the insulating driver electrodes of the present invention.



FIG. 12 illustrates schematically, an electro-kinetic conditioner system according to an embodiment of the present invention, where the insulated driver electrodes are wire-like.



FIGS. 13A and 13B illustrates an electro-kinetic conditioner system, according to an embodiment of the present invention, wherein the collector electrodes are U-shaped.



FIG. 14 illustrates a perspective view of an electro-kinetic conditioner unit, according to an embodiment of the present invention.



FIG. 15 is block diagram showing an exemplary implementation of a high voltage source that can be used with embodiments of the present invention.



FIG. 16 is graph that is useful for showing how embodiments of the present invention can be used to increase particle collection efficiency.





DETAILED DESCRIPTION


FIG. 3 illustrates schematically, an electro-kinetic conditioner system 300 according to an embodiment of the present invention. The system includes a first array 310 (i.e., emitter array) of emitter electrodes 312, a second array 320 (i.e. collector array) of collector electrodes 322 and a third array 330 of insulated driver electrodes 330. In this embodiment, the first array 310 is shown as being connected to a positive terminal of a high voltage source 340, and the second array 320 is shown as being connected to a negative terminal of the high voltage source 340. The third array 330 of insulated driver electrodes 332 are shown as being grounded.


Each insulated driver electrode 332 includes an electrically conductive electrode 334 that is covered by a dielectric material 336. In accordance with an embodiment of the present invention, the dielectric material 336 is heat shrink tubing. During manufacture, the heat shrink tubing is placed over the driver electrodes 334 and then heated, which causes the tubing to shrink to the shape of the driver electrodes 334. An exemplary heat shrinkable tubing is type FP-301 flexible polyolefin tubing available from 3M of St. Paul, Minn.


In accordance with another embodiment of the present invention, the dielectric material 336 is an insulating varnish, lacquer or resin. For example, a varnish, after being applied to the surface of the driver electrodes 334, dries and forms an insulating coat or film a few mil (thousands of an inch) in thickness covering the electrodes 334. The dielectric strength of the varnish or lacquer can be, for example, above 1000 V/mil (one thousands of an inch). Such insulating varnishes, lacquer and resins are commercially available from various sources, such as from John C. Dolph Company of Monmouth Junction, N.J., and Ranbar Electrical Materials Inc. of Manor, Pa.


Other possible dielectric materials that can be used to insulate the driver electrodes include ceramic or porcelain enamel or fiberglass. These are just a few examples of dielectric materials that can be used to insulate the driver electrodes 334. It is within the spirit and scope of the present invention that other insulating dielectric materials can be used to insulate the driver electrodes.


During operation of system 300, the high voltage source 340 positively charges the emitter electrodes 312 (of the first array 310) and negatively charges the collector electrodes 322 (of the second array 320). For example, the voltage on the emitter electrodes 312 can be +6 KV, while the voltage on the collector electrodes 322 can be −10 KV, resulting in a 16 KV potential difference between the emitter electrodes 312 and collector electrodes 322. This potential difference will produces a high intensity electric field that is highly concentrated around the emitter electrodes 312. More specifically, a corona discharge takes place from the emitter electrodes 312 to the collector electrodes 322, producing positively charged ions. Particles (e.g., dust particles) in the vicinity of the emitter electrodes 312 are positively charged by the ions. The positively charged ions are repelled by the positively charged emitter electrodes 312, and are attracted to and deposited on the negatively charged collector electrodes 322.


Further electric fields are produced between the insulates driver electrodes 332 and collector electrodes 322, which further push the positively charged particles toward the collector electrodes 322. Generally, the greater this electric field between the driver electrodes and collector electrodes, the greater the particle collection efficiency. In the prior art, the extent that this voltage difference (and thus, the electric field) could be increased was limited because arcing would occur between the collector electrodes and un-insulated driver electrodes beyond a certain voltage potential difference. However, with the present invention, the insulation 336 covering electrodes 334 significantly increases the voltage potential difference that can be obtained between the collector electrodes 322 and the driver electrodes 332 without arcing. The increased potential difference results in an increase electric field, which significantly increases particle collecting efficiency. By analogy, the insulation 336 works much the same way as a dielectric material works in a parallel plate capacitor. That is, even though a parallel plate capacitor can be created with only an air gap between a pair of differently charged conductive plates, the electric field can be significantly increased by placing a dielectric material between the plates.


As will be described in further detail below, a system such as system 300 will likely be included within a freestanding housing the is meant to be placed in a room (e.g., near a corner of a room) to thereby clean the air in the room, circulate the air in the room, and increase the concentration of negative ions in the room. Such a housing will likely include a side having one or more inlet vents and an opposing side having one or more outlet vents, with the side having the outlet vent(s) intended not to face any wall. Thus, the side of the housing having the inlet vent(s) will often be placed close to wall. Accordingly, it is likely that the positively charged emitter electrodes 312 will be in close proximity to the floor and/or wall(s) of a room. The floor or walls of a room can generally be thought of as having a grounded voltage potential. Accordingly, with system 300 there will be a potential difference, and thus electric field, between the positively charge emitter electrodes 312 and any nearby floor and/or wall(s), or even furniture, in a room. The effect of this is that a portion of the positively charged ions (and positively charge particles) produced in the vicinity of the emitter electrodes 312 may travel backward, i.e., in a direction opposite or away from the collector electrodes 322. This can cause the undesirable effects of reducing cleaning efficiency, increasing positive ions in a room, and causing particles to stick to the floor and/or walls in the room. Many of the following embodiments of the present invention overcome these just mentioned deficiencies.



FIG. 4 illustrates schematically, an electro-kinetic conditioner system 400 according to another embodiment of the present invention. The arrangement of system 400 is similar to that of system 300 (and thus, is numbered in the same manner), except that the emitter electrodes 312 are grounded in system 400, rather than being connected to the positive output terminal of a high voltage source 340. The collector electrodes 322 are still negatively charged. Further, the insulated driver electrodes 332 are still grounded.


The electro-kinetic conditioner system 400 operates in a similar manner to system 300. More specifically, during operation of system 400, the high voltage source 340 negatively charges the collector electrodes 322 (of the collector array 320). For example, the voltage on the collector electrodes 322 can be −16 KV, resulting in a 16 KV potential difference between the grounded emitter electrodes 312 and the collector electrodes 322. This potential difference will produces a high intensity electric field that is highly concentrated around the emitter electrodes 312. More specifically, a corona discharge takes place from the emitter electrodes 312 to the collector electrodes 322, producing positive ions. This causes particles (e.g., dust particles) in the vicinity of the emitter electrodes 312 become positively charged relative to the collector electrodes 322. The particles are attracted to and deposited on the negatively charged collector electrodes 322. Additionally, there will be a 16 KV potential difference between the insulated driver electrodes 332 and the collector electrodes 322, which pushes particles toward the collector electrodes 322. Advantageously, in this embodiment the emitter electrodes 312 will be generally at the same potential as the floor and walls of a room within which system 400 is placed. This will significantly reduce, and possibly prevent, any charged particles from flowing backward, i.e., away from the collector electrodes.


Another advantage of system 400 is that it requires only a single polarity voltage supply (e.g., voltage source 340 need only provide a −16 KV potential, without requiring any positive supply potential). Thus, system 400 is relatively simple to design, build and manufacture, making it a very cost effective system.



FIG. 5 illustrates schematically, an electro-kinetic conditioner system 500 according to another embodiment of the present invention. The arrangement of system 500 is similar to that of system 400 (and thus, is numbered in the same manner), except that the insulated driver electrodes 332 are connected to the positive output terminal of the high voltage source 340, rather than being grounded as in system 300. The collector electrodes 322 are still negatively charged. Further, the emitter electrodes 312 are still grounded. Positively charging the insulated drivers 332 can be used to increase the potential difference between the insulated driver array 330 and the collector array 320, thereby increasing the particle collecting efficiency. For example, the voltage on the collector electrodes 322 can be −16 KV, while the voltage on the insulated drivers 332 can be +5 KV, resulting in a 21 KV potential difference between the collector electrodes 322 and the insulated driver electrodes 332, while keeping the voltage potential difference between the emitter electrodes 312 and collector electrodes 322 at 16 KV.


The electro-kinetic conditioner system 500 operates in a similar manner to system 400. Advantageously, as in system 400, in this embodiment the emitter electrodes 312 will be generally at the same potential as the floor and walls of a room within which system 500 is placed, which will significantly reduce, and possibly prevent, any charged particles from flowing backward, i.e., away from the collector electrodes 322. While system 500 will be quite effective, it will require a slightly more complex voltage source 340, since voltage source 340 must provide both a positive and negative voltage potential.


In addition to those described above, there are other voltage potential variations that can be used to drive an electro-kinetic system including an insulated driver electrode(s) 332. To summarize, in system 300 shown in FIG. 3, the emitter electrodes 312 were positive, the collector electrodes 322 were negative, and the insulated driver electrodes 332 were grounded. In system 400 shown in FIG. 4, the emitter electrodes 312 and the insulated driver electrodes 332 were grounded, and the collector electrodes 322 were negative. It would also be possible to modify the system 400 to make the insulated driver electrodes 332 slightly negative (e.g., −1 KV) so long as the collector electrodes 322 were significantly more negative (e.g., −16 KV). In system 400, the emitter electrodes 312 were grounded, the collector electrodes 322 were negative, and the insulated driver electrodes 332 were positive. System 400 can be modified, for example, by making the emitter electrodes 312 slightly negative or slightly positive. Other variations are also possible while still being within the spirit as scope of the present invention. For example, the emitter electrodes 312 and insulated driver electrodes 332 can be grounded, while the collector electrodes 322 have a high negative voltage potential or a high positive voltage potential. It is also possible that the instead of grounding certain portions of the electrode arrangement, the entire arrangement can float (e.g., the insulated driver electrodes 332 and the emitter electrodes 312 can be at a floating voltage potential, with the collector electrodes 322 offset from the floating voltage potential).


An important feature according to an embodiment of the present invention is that, if desired, the voltage potential of the emitter electrodes 312 and insulated driver electrodes 332 can be independently adjusted. This allows for corona current adjustment (produced by the electric field between the emitter electrodes 312 and collector electrodes 322) to be performed independently of the adjustments to the electric fields between the insulated driver electrodes 332 and collector electrodes 322. More specifically, this allows the voltage potential between the emitter electrodes 312 and collector electrodes 322 to be kept below arcing levels, while still being able to independently increase the voltage potential between the insulated driver electrodes 332 and collector electrodes 322 to a higher voltage potential difference than would be possible between the emitters 312 and collectors 322.


The electric fields produced between the emitter electrodes 312 and collector electrodes 322 (also referred to as the ionization regions), and the electric fields produced between the insulated driver electrodes 332 and collector electrodes 322 (also referred to as the collector regions), are show as exemplary dashed lines in FIG. 6. The ionization regions produce ions and cause air movement in a downstream direction from the emitter electrodes 312 toward the collector electrodes 322. The collector regions increase particle capture by pushing charged particles in the air flow toward the collector electrodes 322.


It is preferably that the electric fields produced between the insulated driver electrode(s) 332 and collector electrodes 322 (i.e. the collecting regions) do not interfere with the electric fields between the emitter electrode(s) 312 and the collector electrodes 322 (i.e., the ionization regions). If this were to occur, the collecting regions will reduce the intensity of the ionization regions, thereby reducing the production of ions and slowing down air movement. Accordingly, the leading ends of the driver electrodes 332 are preferably set back (i.e., downstream) from the leading ends of the collector electrodes 322 by about the same distance that the emitter electrodes 312 are from the collector electrodes 322. This is shown in FIG. 7, where the setback distance X of an insulated driver electrodes 332 is approximately equal to the distance Z between an emitter electrode 312 and the closest collector electrodes 322. Still referring to FIG. 7, it is also desirable to have the distance Y between a pair of adjacent emitter electrodes 312 about equal to the setback distance X. However, other set back distances are within the spirit and scope of the present invention.


As explained above, the emitter electrodes 312 and insulated driver electrodes 332 may or may not be at the same voltage potential, depending on which embodiment of the present invention is practiced. When at the same voltage potential, there will be no problem of arcing occurring between the emitter electrodes 312 and insulated driver electrodes 332. Further, even when at different potentials, because the insulated driver electrodes 332 are setback as described above, the collector electrodes 322 will shield the insulated driver electrodes 332, as can be appreciated from the electric field lines shown in FIG. 6. Thus, as shown in FIG. 6, there is generally no electric field produced between the emitter electrodes 312 and the insulated driver electrodes 332. Accordingly, arcing should not occur therebetween.


Referring back to FIG. 6, it can be appreciated that the outermost surfaces of the outer collector electrodes 322a and 322d are farthest from any of the emitter electrodes 312, resulting in a lower electric field at these surfaces. This will reduce the particle collecting efficiency of the outermost surfaces of the outer collector electrodes 322a and 322d. To increase the electric field at these surfaces, and thus the particle collection efficiency, two extra emitter electrodes can be added in accordance with an embodiment of the present invention, as shown in FIG. 8. While the extra emitters will increase particle collection efficiency, they may also add to the overall size of the system, potentially increase ozone production, and increase the power consumption of the system.


An scheme for producing a more uniform airflow, is to move the outer emitter electrodes outward, as shown in FIG. 9.


Referring back to FIG. 6, it can be appreciated that the strength of the electric field generated at the leading or upstream ends of the inner most collector electrodes 322b and 322c (i.e., the ends closest to the emitter electrodes 312) will be greater than the electric field generated at the leading ends of the outer most collector electrodes 322a and 322d. This may cause a greater amount of airflow movement in the middle of collector array 320 (i.e., near collector electrode 322b and 322c), as compared to near the outer collector electrodes 322a and 322d. If a more even airflow is desired, the inner collector electrodes 322b and 322c can be moved slightly downstream, as shown in FIG. 10.


In addition to producing ions, the systems described above will also produce ozone (O3). While limited amounts of ozone are useful for eliminating odors, concentrations of ozone beyond recommended levels are generally undesirable. In accordance with embodiments of the present invention, ozone production is reduced by coating the insulated driver electrodes 332 with an ozone reducing catalyst. Exemplary ozone reducing catalysts include manganese dioxide and activated carbon. Commercially available ozone reducing catalysts such as PremAir™ manufactured by Englehard Corporation of Iselin, N.J., can also be used.


Some ozone reducing catalysts, such as manganese dioxide are not electrically conductive, while others, such as activated carbon are electrically conductive. When using a catalyst that is not electrically conductive, the insulation 334 can be coated in any available manner because the catalyst will act as an additional insulator, and thus not defeat the purpose of adding the insulator 334. However, when using a catalyst that is electrically conductive, it is important that the electrically conductive catalyst does not interfere with the benefits of insulating the driver. This will be described with reference to FIG. 11


Referring now to FIG. 11, an underlying driver electrode 334 is covered by dielectric insulation 336 to produce an insulated driver electrode 332. The underlying driver electrode 334 is shown as being connected by a wire 1102 (or other conductor) to a voltage potential (ground in this example). An ozone reducing catalyst 1104 covers most of the insulation 336. If the ozone reducing catalyst does not conduct electricity, then the ozone reducing catalyst 1104 may contact the wire or other conductor 1102 without negating the advantages provided by insulating the underlying driver electrodes 334. However, if the ozone reducing catalyst 1104 is electrically conductive, then care must be taken so that the electrically conductive ozone reducing catalyst 1104 (covering the insulation 336) does not touch the wire or other conductor 1102 that connects the underlying driver electrode 334 to a voltage potential (e.g., ground, a positive voltage, or a negative voltage). So long as an electrically conductive ozone reducing catalyst does not touch the wire 1104 that connects the driver electrode 334 to a voltage potential, then the potential of the electrically conductive ozone reducing catalyst will remain floating, thereby still allowing an increased voltage potential between insulated driver electrode 332 and adjacent collector electrodes 322. Other example of electrically conductive ozone reducing catalyst include, but are not limited to, noble metals.


In accordance with another embodiment of the present invention, if the ozone reducing catalyst is not electrically conductive, then the ozone reducing catalyst can be included in, or used as, the insulation 336. Preferably the ozone reducing catalysts should have a dielectric strength of at least 1000 V/mil (one-hundredth of an inch) in this embodiment.


The positively charged particles that travel from the regions near the emitter electrodes 312 toward the collector electrodes 322 are missing electrons. In order to clean the air, it is desirable that the particles stick to the collector electrodes 322 (which can later be cleaned). Accordingly, it is desirable that the exposed surfaces of the collector electrodes 322 are electrically conductive so that the collector electrodes 322 can give up a charge (i.e., an electron), thereby causing the particles to stick to the collector electrodes 322. Accordingly, if an ozone reducing catalyst is electrically conductive, the collector electrodes 322 can be coated with the catalyst. However, it is preferably to coat the insulated driver electrodes 332 with an ozone reducing catalyst, rather than the collector electrodes 322. This is because as particles collect on the collector electrodes 322, the surfaces of the collector electrodes 322 become covered with the particles, thereby reducing the effectiveness of the ozone reducing catalyst. The insulated driver electrodes 332, on the other hand, do not collect particles. Thus, the ozone reducing effectiveness of a catalyst coating the insulated driver electrodes 332 will not diminish due to being covered by particles.


In the previous FIGS., the insulated driver electrodes 332 have been shown as including a generally plate like electrically conductive electrode 334 covered by a dielectric insulator 336. In alternative embodiments of the present invention, the insulated driver electrodes can take other forms. For example, referring to FIG. 12, the driver electrodes can be include a wire or rod-like electrical conductor 334′ covered by dielectric insulation 336′. Although a single such insulated driver electrode 332′ can be used, it is preferably to use a row of such insulated drivers electrodes 332′, as shown in FIG. 12. The electric field between such a row of insulated driver electrodes 332′ and the collector electrodes 322 will look similar to the corresponding electric field shown in FIG. 6.


In the various electrode arrangements described herein, emitter electrode(s) 312 in the first electrode array 310 can be fabricated, for example, from tungsten. Tungsten is sufficiently robust in order to withstand cleaning, has a high melting point to retard breakdown due to ionization, and has a rough exterior surface that seems to promote efficient ionization. The emitter electrodes 312 are likely wire-shaped, and are likely manufactured from a wire or, if thicker than a typical wire, still has the general appearance of a wire or rod. Alternatively, as in known in the art, other types of ionizers, such as pin or needle shaped electrodes can be used in place of a wire. For example, an elongated saw-toothed edge can be used, with each edge functioning as a corona discharge point. A column of tapered pins or needles would function similarly. As another alternative, a plate with a sharp downstream edge can be used as an emitter electrode. These are just a few examples of the emitter electrodes that can be used with embodiments of the present invention. Further, other materials besides tungsten can be used to produce the emitter electrodes 312.


Collector electrodes 322 in the second electrode array 320 can have a highly polished exterior surface to minimize unwanted point-to-point radiation. As such, collector electrodes 322 can be fabricated, for example, from stainless steel and/or brass, among other materials. The polished surface of collector electrodes 322 also promotes ease of electrode cleaning. The collector electrodes 322 are preferably lightweight, easy to fabricate, and lend themselves to mass production. Accordingly, even though the collector electrodes can be solid, it is more practical that the collector electrodes be manufactured from sheet metal. When made from sheet metal, the sheet metal can be readily configured to define side regions and a bulbous nose region, forming a hollow, elongated “U”-shaped electrode, for example, as shown in FIG. 13A. Each “U”-shaped electrode has a nose and two trailing sides. Similarly, in embodiments including plate like insulated driver electrodes 332, the underlying driver electrodes can be made of a similar material and in a similar shape (e.g., “U” shaped) as the collector electrodes 322. FIG. 13B shows a perspective view of the electrode assembly shown in FIG. 13A. The corresponding perspective views for the electrode configurations discussed in the previous FIGS. will look similar. It is within the spirit and scope of the invention that the emitter electrodes 312 and collector electrodes 322, as well as the insulated driver electrodes 332, can have other shapes besides those specifically mentioned herein.


In the FIGS. discussed above, four collector electrodes 322 and three insulated driver electrodes 332 were shown, with either three emitter electrodes 312, or five emitter electrodes 312. These numbers of electrodes have been shown for example, and can be changed. Preferably there is at least a pair of collector electrodes with an insulated driver electrode therebetween to push charged particles toward the collector electrodes. However, it is possible to have embodiments with only one collector electrode, and one or more emitter electrodes. In such embodiments, the insulated driver electrode should be generally parallel to the collector electrode.


Preferably, there is at least one emitter electrode 312 for each pair of collector electrodes 322. In the embodiment depicted, each the emitter electrode 312 is preferably equidistant from the noses or leading edges of the two closest collector electrodes 322, as shown, for example, in FIG. 6. However, in certain embodiments, such as the one discussed with reference to FIG. 9, the location of the outermost emitter electrodes 312 may be change to alter the resulting electric fields in a desired manner. As discussed with reference to FIG. 8, adding emitter electrodes 312 may also be useful.


It may also be practical to add insulated driver electrodes an either sides of the outer collector electrodes (e.g., on either side of collector electrodes 322a and 322d shown in FIG. 8). This would push any charged particles passing adjacent to the outer surfaces of the outer collector electrodes (e.g., 322a and 322d in FIG. 8) toward the outer surfaces of the outer collector electrodes.


In some embodiments, the number N1 of emitter electrodes 312 in the emitter array 310 can differ by one relative to the number N2 of collector electrodes 322in the collector array 320. In many of the embodiments shown, N2>N1. However, if desired, additional emitter electrodes could be added at the outer ends of array 310 such that N1>N2, e.g., five emitter electrodes 312 compared to four collector electrodes 322, as in FIG. 8.


Referring now to FIG. 14, the above described electro-kinetic air transporter-conditioner systems are likely within or include a housing 1402. The housing likely includes rear-located intake vents 1404 and front located exhaust or outlet vents 1406, and a base pedestal 1408. Preferably, the housing 1402 is free standing and/or upstandingly vertical and/or elongated. The base 1408, which may be pivotally mounted to the remainder of the housing, allows the housing 1402 to remain in a vertical position.


Internal to the transporter housing 1402 is one of the electro-kinetic transporter and conditioner systems described above. The electro-kinetic transporter and conditioner system is likely powered by an AC-DC power supply that is energizable or excitable using switch S1. Switch S1, along with the other user operated switches such as a control dial 1410, are preferably located on or near a top 1403 of the housing 1402. The whole system is self-contained in that other than ambient air, nothing is required from beyond the transporter housing 1402, except perhaps an external operating voltage, for operation of the present invention.


A user-liftable handle member 1412 is preferably affixed the collector array 320 of collector electrodes 322, which normally rests within the housing 1402. The housing 1402 also encloses the array 310 of emitter electrodes 312 and the array 330 of insulated driver electrodes 332. In the embodiment shown, the handle member 1412 can be used to lift the collector array 310 upward causing the collector electrodes 322 to telescope out of the top of the housing 1402 and, if desired, out of the housing 1402 for cleaning, while the emitter electrode array 310 and insulated driver electrodes array 330 remain within the housing 1402. As is evident from FIG. 14, the collector array 310 can be lifted vertically out from the top 1403 of the housing along the longitudinal axis or direction of the elongated housing 1402. This arrangement with the collector electrodes 322 removable through a top portion of the housing 1402, makes it easy for a user to pull the collector electrodes 322 out for cleaning, and to return the collector electrodes 322, with the assistance of gravity, back to their resting position within the housing 1402. If desired, the emitter array 310 and/or the insulated driver array 330 may be made similarly removable.


There need be no real distinction between vents 1404 and 1406, except their location relative to the electrodes. These vents serve to ensure that an adequate flow of ambient air can be drawn into or made available to the electrodes, and that an adequate flow of ionized cleaned air moves out from housing 1402.


The above described embodiments do not specifically include a germicidal (e.g., ultra-violate) lamp. However, a germicidal lamp can be included with the above configurations. Where the insulated driver electrodes are coated with an ozone reducing catalyst, the ultra-violate radiation from such a lamp may increase the effectiveness of the catalyst. The inclusion of a germicidal lamp is shown in FIG. 15. Additional details of the inclusion of a germicidal lamp are included in U.S. Pat. No. 6,544,485, entitled “Electro-Kinetic Device with Enhanced Anti-Microorganism Capability,” and U.S. patent application Ser. No. 10/074,347, entitled “Electro-Kinetic Air Transporter and Conditioner Device with Enhanced Housing Configuration and Enhanced Anti-Microorganism Capability,” each of which is incorporated herein by reference.



FIG. 15 is an electrical block diagram showing an exemplary implementation of the high voltage source 340 the can be used to power the various embodiments of the present invention discussed above. An electrical power cord 1502 that plugs into a common electrical wall socket can be used to accept a nominal 110 VAC. An electromagnetic interference (EMI) filter 1510 is placed across the incoming nominal 110 VAC line to reduce and/or eliminate high frequencies generated by the various circuits. In embodiments including a germicidal lamp 1590, an electronic ballast 1512 is electrically connected to the germicidal lamp 1590 to regulate, or control, the flow of current through the lamp 1590. Electrical components such as the EMI Filter 1510 and electronic ballast 1512 are well known in the art and do not require a further description.


A DC Power Supply 1514, which is well known, is designed to receive the incoming nominal 110 VAC and to output a first DC voltage (e.g., 160 VDC). The first DC voltage (e.g., 160 VDC) is shown as being stepped down through a resistor network to a second DC voltage (e.g., about 12 VDC) that a micro-controller unit (MCU) 1530 can monitor without being damaged. The MCU 1530 can be, for example, a Motorola 68HC908 series micro-controller, available from Motorola. In accordance with an embodiment of the present invention, the MCU 1530 monitors the stepped down voltage (e.g., about 12 VDC), which is labeled the AC voltage sense signal in FIG. 15, to determine if the AC line voltage is above or below the nominal 110 VAC, and to sense changes in the AC line voltage. For example, if a nominal 110VAC increases by 10% to 121 VAC, then the stepped down DC voltage will also increase by 10%. The MCU 1530 can sense this increase and then reduce the pulse width, duty cycle and/or frequency of the low voltage pulses it outputs to maintain the output power of the high voltage source 340 to be the same as when the line voltage is at 110 VAC. Conversely, when the line voltage drops, the MCU 1530 can sense this decrease and appropriately increase the pulse width, duty cycle and/or frequency of the low voltage pulses to maintain a constant output power. Such voltage adjustment features also enable the same unit to be used in different countries that have different nominal voltages than in the United States (e.g., in Japan the nominal AC voltage is 100 VAC).


Output voltage potentials of the high voltage source 340 can be provided to the emitter array 310, the collector array 320 and/or the insulated driver array 330, depending upon which embodiment of the present invention discussed above is being practiced. The high voltage source 340 can be implemented in many ways. In the exemplary embodiment shown, the high voltage source 340 includes an electronic switch 1526, a step-up transformer 1516 and a voltage multiplier 1518. The primary side of the step-up transformer 1516 receives the first DC voltage (e.g., 160 VDC) from the DC power supply. An electronic switch receives low voltage pulses (of perhaps 20-25 KHz frequency) from the MCU 1530. Such a switch is shown as an insulated gate bipolar transistor (IGBT) 1526. The IGBT 1526, or other appropriate switch, couples the low voltage pulses from the MCU 1530 to the input winding of the step-up transformer 1516. The secondary winding of the transformer 1516 is coupled to the voltage multiplier 1518, which outputs high voltage pulses that can be provided to the arrays 310, 320 and/or 330, based on which embodiment is implemented. In general, the IGBT 1526 operates as an electronic on/off switch. Such a transistor is well known in the art and does not require a further description. When driven, the high voltage source 340 receives the low input DC voltage (e.g., 160 VDC) from the DC power supply 1514 and the low voltage pulses from the MCU 1530, and generates high voltage pulses of, for example, 10 KV peak-to-peak, with a repetition rate of, for example, about 20 to 25 KHz.


Referring back to the embodiment of FIG. 3, the voltage multiplier 1518 can output, for example, +4 KV to the emitter array 310, and about −6 KV to the collector array 320. In this embodiment, the insulated driver array 330 is grounded. Thus, in this example there is a 10 KV voltage potential difference between the emitter array 310 and the collector array 320, and a 6 KV voltage potential difference between the insulated driver array 330 and the collector array 320.


Referring back to the embodiment of FIG. 4, the voltage multiplier 1518 can output, for example, −10 KV to the collector array 320, while both the emitter array 310 and the insulated driver array 330 are grounded. In this example, there is a 10 KV voltage potential difference between the emitter array 310 and the collector array 320, and a 10 KV difference between the insulated driver array 330 and the collector array 320.


Referring back to the embodiment of FIG. 5, the voltage multiplier 1518 can output, for example, −10 KV to the collector array 320, and +5 KV to the insulated driver array 330. In this embodiment the emitter array 310 is grounded. Thus, in this example there is a 10 KV voltage potential difference between the emitter array 310 and the collector array 320, and a 15 KV difference between the insulated driver array 330 and the collector array 320.


These are just a few examples of the various voltages the can be provided for a few of the embodiments discussed above. It is within the scope of the present invention for the voltage multiplier 1518 to produce greater or smaller voltages. The high voltage pulses can have a duty cycle of, for example, about 10%-15%, but may have other duty cycles, including a 100% duty cycle.


The MCU 1530 can receive an indication of whether the control dial 1410 is set to the LOW, MEDIUM or HIGH airflow setting. The MCU 1530 controls the pulse width, duty cycle and/or frequency of the low voltage pulse signal provided to switch 1526, to thereby control the airflow output, based on the setting of the control dial 1410. To increase the airflow output, the MCU 1530 can increase the pulse width, frequency and/or duty cycle. Conversely, to decrease the airflow output rate, the MCU 1530 can reduce the pulse width, frequency and/or duty cycle. In accordance with an embodiment, the low voltage pulse signal (provided from the MCU 1530 to the high voltage source 340) can have a fixed pulse width, frequency and duty cycle for the LOW setting, another fixed pulse width, frequency and duty cycle for the MEDIUM setting, and a further fixed pulse width, frequency and duty cycle for the HIGH setting. However, depending on the setting of the control dial 1410, the above described embodiment may produce too much ozone (e.g., at the HIGH setting) or too little airflow output (e.g., at the LOW setting). According, a more elegant solution, described below, can be used.


In accordance with an embodiment, the low voltage pulse signal created by the MCU 1530 modulates between a “high” airflow signal and a “low” airflow signal, with the control dial setting specifying the durations of the “high” airflow signal and/or the “low” airflow signal. This will produce an acceptable airflow output, while limiting ozone production to acceptable levels, regardless of whether the control dial 1410 is set to HIGH, MEDIUM or LOW. For example, the “high” airflow signal can have a pulse width of 5 microseconds and a period of 40 microseconds (i.e., a 12.5% duty cycle), and the “low” airflow signal can have a pulse width of 4 microseconds and a period of 40 microseconds (i.e., a 10% duty cycle). When the control dial 1410 is set to HIGH, the MCU 1530 outputs a low voltage pulse signal that modulates between the “low” airflow signal and the “high” airflow signal, with, for example, the “high” airflow signal being output for 2.0 seconds, followed by the “low” airflow signal being output for 8.0 second. When the control dial 1410 is set to MEDIUM, the “low” airflow signal can be increased to, for example, 16 seconds (e.g., the low voltage pulse signal will include the “high” airflow signal for 2.0 seconds, followed by the “low” airflow signal for 16 seconds). When the control dial 1410 is set to LOW, the “low” airflow signal can be further increased to, for example, 24 seconds (e.g., the low voltage pulse signal will include a “high” airflow signal for 2.0 seconds, followed by the “low” airflow signal for 24 seconds). Alternatively, or additionally, the frequency of the low voltage pulse signal (used to drive the transformer 1516) can be adjusted to distinguish between the LOW, MEDIUM and HIGH settings. These are just a few examples of how air flow can be controlled based on a control dial setting.


In practice, an electro-kinetic transporter-conditioner unit is placed in a room and connected to an appropriate source of operating potential, typically 110 VAC. The energized electro-kinetic transporter conditioner emits ionized air and small amounts of ozone via outlet vents 1460. The airflow is indeed electro-kinetically produced, in that there are no intentionally moving parts within unit. (Some mechanical vibration may occur within the electrodes). Additionally, because particles are collected on the collector electrodes 322, the air in the room is cleaned. It would also be possible, if desired, to further increase airflow by adding a fan. Even with a fan, the insulated driver electrode(s) 332 can be used to increase particle collecting efficiency by allowing the electrical field between the driver electrode(s) and collector electrodes to be increased beyond what would be allowable without the insulation.


Experiments have shown that insulating the driver electrodes have allowed the voltage potential between the collectors and driver(s) to be increased, thereby increasing particle collection efficiency. These experiments were performed using a test system including a single grounded emitter wire 312, a pair of collector electrodes 322, and a single driver electrode. In a first test it was determined that the voltage potential between the collector electrodes 322 and a non-insulated driver electrode (located between the collector electrodes 322) should be no more than 9.4 KV, with any higher voltage potential being very susceptible to arcing between the collectors and driver. Specifically, the collector electrodes 322 were placed at −15 KV, the non-insulated driver was placed at −5.6 KV, and the emitter wire 312 was grounded. The particle collecting efficiency was then measured for various particle sizes ranging. The results are shown as line 1602 in the graph of FIG. 16. As shown in FIG. 16, the collecting efficiency for small particles of about 0.3 μm was only about 50%.


The non-insulated driver electrode was then replaced with an insulated driver electrode 332 having the same dimensions. It was then determined that the voltage potential difference between the collector electrode 322 and the insulated driver electrode 332 could be increased to 15 KV without being highly susceptible to arcing between the collectors 322 and insulated driver 332. By increasing the voltage potential difference from 9.4 KV to 15 KV the electric field between the collector and drivers increased from about 750 V/mm to about 1200 V/mm. Specifically, the collector electrodes 322 were placed at 15 KV and the emitter electrode 312 and the insulated driver electrode 332 were both grounded. The results are shown as line 1604 in the graph of FIG. 16. As shown in FIG. 16, the collecting efficiency for small particles of about 0.3 μm increased to about 60%.


Experiments have also shown that particle collecting efficiency can be further increased by increasing the width (the dimension in the downstream direction) of the collector electrodes 322. However, this would also increase the cost and weight of a system, and thus, is a design tradeoff. But for given width of collector electrodes and driver electrodes, insulating the drivers will allow the electric field between the collectors and drivers to be increased (as compared to if the drivers were not insulated), thereby increasing particle collection efficiency.


The foregoing descriptions of the preferred embodiments of the present invention have been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations will be apparent to the practitioner skilled in the art. Modifications and variations may be made to the disclosed embodiments without departing from the subject and spirit of the invention as defined by the following claims. Embodiments were chosen and described in order to best describe the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention, the various embodiments and with various modifications that are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.

Claims
  • 1. An air conditioner system comprising: a. a housing;b. an emitter electrode in the housing;c. at least three collector electrodes in the housing positioned downstream of the emitter electrode; andd. at least two driver electrodes in the housing, wherein one driver electrode is located between adjacent collector electrodes, wherein a handle member is affixed to the collector electrodes so that the collector electrodes are separable from the driver electrodes and removable from the housing and the driver electrodes remain in the housing.
  • 2. The system of claim 1 wherein the emitter electrode and the driver electrodes are grounded and further wherein the collector electrodes are negatively charged by a high voltage source.
  • 3. The system of claim 1 wherein the emitter electrode further comprises two emitter electrodes.
  • 4. The system of claim 1 wherein the driver electrodes are insulated.
  • 5. The system of claim 1 wherein the driver electrodes are coated with an ozone reducing agent.
  • 6. The system of claim 1 wherein the drivers are insulated and include an electrically conductive electrode covered by a dielectric material.
  • 7. The system of claim 1 wherein the collector electrodes are removable through an upper portion of the housing.
  • 8. An air conditioner system comprising: a. a housing;b. an ion generator within the housing, wherein the ion generator includes three collector electrodes removable from the housing; andc. two insulated driver electrodes within the housing, each driver electrode positioned between a pair of adjacent collector electrodes, wherein a handle member is affixed to the collector electrodes so that the collector electrodes are separable from the driver electrodes and removable from the housing and the driver electrodes remain in the housing.
  • 9. The system of claim 8 wherein the ion generator further comprises an emitter electrode positioned upstream of the collector electrodes.
  • 10. The system of claim 9 wherein at least one driver electrode is directly downstream and in-line with the emitter electrode.
  • 11. The system of claim 8 wherein the collector electrodes are removable through an upper portion of the housing.
  • 12. The system of claim 8 wherein the housing has a freestanding and elongated configuration.
  • 13. The system of claim 8 wherein an upstream edge of each driver electrode is downstream of an upstream edge of adjacent collector electrodes.
  • 14. An air conditioner system comprising: a. an emitter electrode;b. at least three collector electrodes at a downstream location with respect to the emitter electrode, the collector electrodes configured to be moved from the downstream location in a substantially vertical direction; andc. at least two driver electrodes at the downstream location, wherein a handle member is affixed to the collector electrodes so that the collector electrodes are separable from the driver electrodes and removable from a housing so that the driver electrodes may remain in the housing.
  • 15. The system of claim 14 wherein the emitter electrode and the driver electrodes are grounded and further wherein the collector electrodes are negatively charged by a high voltage source.
  • 16. The system of claim 14 wherein the emitter electrode further comprises two emitter electrodes.
  • 17. The system of claim 14 wherein the driver electrodes are insulated.
  • 18. The system of claim 14 wherein the driver electrodes are coated with an ozone reducing agent.
  • 19. The system of claim 14 wherein the driver electrodes are directly downstream and in-line with the emitter electrode.
  • 20. The system of claim 14 wherein the downstream location is within the housing which is upstanding, the collector electrodes vertically movable through an upper portion in the housing.
PRIORITY CLAIM

The present application is a continuation of application entitled “ELECTRO-KINETIC AIR TRANSPORTER-CONDITIONER DEVICES WITH INSULATED DRIVER ELECTRODES” application Ser. No. 10/717,420, now abandoned filed Nov. 19, 2003 which claims priority under 35 U.S.C. 119(e) to U.S. Provisional Patent Application No. 60/500,437, filed Sep. 5, 2003, entitled “ELECTRO-KINETIC AIR TRANSPORTER-CONDITIONER DEVICES WITH INSULATED DRIVER ELECTRODES” both of which are hereby incorporated herein by reference. The present invention is related to the following patent applications and patent, each of which is incorporated herein by reference: abandoned U.S. patent application Ser. No. 10/074,207, filed Feb. 12, 2002, entitled “Electro-Kinetic Air Transporter Conditioner Devices with Interstitial Electrode”; abandoned U.S. patent application Ser. No. 10/074,827, filed Feb. 12, 2002, “Electro-Kinetic Air Transporter-Conditioner with Non-Equidistant Collector Electrodes”; and U.S. Pat. No. 6,176,977, entitled “Electro-Kinetic Air Transporter-Conditioner.”

US Referenced Citations (474)
Number Name Date Kind
653421 Lorey Jul 1900 A
895729 Carlborg Aug 1908 A
995958 Goldberg Jun 1911 A
1791338 Wintermute Feb 1931 A
1869335 Day Jul 1932 A
1882949 Ruder Oct 1932 A
2129783 Penney Sep 1938 A
2327588 Bennett Aug 1943 A
2359057 Skinner Sep 1944 A
2509548 White May 1950 A
2590447 Nord et al. Mar 1952 A
2949550 Brown Aug 1960 A
3018394 Brown Jan 1962 A
3026964 Penney Mar 1962 A
3374941 Okress Mar 1968 A
3518462 Brown Jun 1970 A
3540191 Herman Nov 1970 A
3581470 Aitkenhead et al. Jun 1971 A
3638058 Fritzius Jan 1972 A
3744216 Halloran Jul 1973 A
3806763 Masuda Apr 1974 A
3892927 Lindenberg Jul 1975 A
3945813 Iinoya et al. Mar 1976 A
3958960 Bakke May 1976 A
3958961 Bakke May 1976 A
3958962 Hayashi May 1976 A
3981695 Fuchs Sep 1976 A
3984215 Zucker Oct 1976 A
3988131 Kanazawa et al. Oct 1976 A
4007024 Sallee et al. Feb 1977 A
4052177 Kide Oct 1977 A
4056372 Hayashi Nov 1977 A
4070163 Kolb et al. Jan 1978 A
4074983 Bakke Feb 1978 A
4092134 Kikuchi May 1978 A
4097252 Kirchhoff et al. Jun 1978 A
4102654 Pellin Jul 1978 A
4104042 Brozenick Aug 1978 A
4110086 Schwab et al. Aug 1978 A
4119415 Hayashi et al. Oct 1978 A
4126434 Keiichi Nov 1978 A
4138233 Masuda Feb 1979 A
4147522 Gonas et al. Apr 1979 A
4155792 Gelhaar et al. May 1979 A
4171975 Kato et al. Oct 1979 A
4185971 Isahaya Jan 1980 A
4189308 Feldman Feb 1980 A
4205969 Matsumoto Jun 1980 A
4209306 Feldman et al. Jun 1980 A
4218225 Kirchhoff et al. Aug 1980 A
4225323 Zarchy et al. Sep 1980 A
4227894 Proynoff Oct 1980 A
4231766 Spurgin Nov 1980 A
4232355 Finger et al. Nov 1980 A
4244710 Burger Jan 1981 A
4244712 Tongret Jan 1981 A
4251234 Chang Feb 1981 A
4253852 Adams Mar 1981 A
4259093 Vlastos et al. Mar 1981 A
4259452 Yukuta et al. Mar 1981 A
4259707 Penney Mar 1981 A
4264343 Natarajan et al. Apr 1981 A
4266948 Teague et al. May 1981 A
4282014 Winkler et al. Aug 1981 A
4284420 Borysiak Aug 1981 A
4289504 Scholes Sep 1981 A
4293319 Claassen, Jr. Oct 1981 A
4308036 Zahedi et al. Dec 1981 A
4315188 Cerny et al. Feb 1982 A
4318718 Utsumi et al. Mar 1982 A
4338560 Lemley Jul 1982 A
4342571 Hayashi Aug 1982 A
4349359 Fitch et al. Sep 1982 A
4351648 Penney Sep 1982 A
4354861 Kalt Oct 1982 A
4357150 Masuda et al. Nov 1982 A
4362632 Jacob Dec 1982 A
4363072 Coggins Dec 1982 A
4366525 Baumgartner Dec 1982 A
4369776 Roberts Jan 1983 A
4375364 Van Hoesen et al. Mar 1983 A
4380900 Linder et al. Apr 1983 A
4386395 Francis, Jr. May 1983 A
4391614 Rozmus Jul 1983 A
4394239 Kitzelmann et al. Jul 1983 A
4405342 Bergman Sep 1983 A
4406671 Rozmus Sep 1983 A
4412850 Kurata et al. Nov 1983 A
4413225 Donig et al. Nov 1983 A
4414603 Masuda Nov 1983 A
4435190 Taillet et al. Mar 1984 A
4440552 Uchiya et al. Apr 1984 A
4443234 Carlsson Apr 1984 A
4445911 Lind May 1984 A
4477263 Shaver et al. Oct 1984 A
4477268 Kalt Oct 1984 A
4481017 Furlong Nov 1984 A
4496375 Levantine Jan 1985 A
4502002 Ando Feb 1985 A
4505724 Baab Mar 1985 A
4509958 Masuda et al. Apr 1985 A
4514780 Brussee et al. Apr 1985 A
4515982 Lechtken et al. May 1985 A
4516991 Kawashima May 1985 A
4521229 Baker et al. Jun 1985 A
4522634 Frank Jun 1985 A
4534776 Mammel et al. Aug 1985 A
4536698 Shevalenko et al. Aug 1985 A
4544382 Taillet et al. Oct 1985 A
4555252 Eckstein Nov 1985 A
4569684 Ibbott Feb 1986 A
4582961 Frederiksen Apr 1986 A
4587475 Finney, Jr. et al. May 1986 A
4588423 Gillingham et al. May 1986 A
4590042 Drage May 1986 A
4597780 Reif Jul 1986 A
4597781 Spector Jul 1986 A
4600411 Santamaria Jul 1986 A
4601733 Ordines et al. Jul 1986 A
4604174 Bollinger et al. Aug 1986 A
4614573 Masuda Sep 1986 A
4623365 Bergman Nov 1986 A
4626261 Jorgensen Dec 1986 A
4632135 Lenting et al. Dec 1986 A
4632746 Bergman Dec 1986 A
4636981 Ogura Jan 1987 A
4643744 Brooks Feb 1987 A
4643745 Sakakibara et al. Feb 1987 A
4647836 Olsen Mar 1987 A
4650648 Beer et al. Mar 1987 A
4656010 Leitzke et al. Apr 1987 A
4657738 Kanter et al. Apr 1987 A
4659342 Lind Apr 1987 A
4662903 Yanagawa May 1987 A
4666474 Cook May 1987 A
4668479 Manabe et al. May 1987 A
4670026 Hoenig Jun 1987 A
4673416 Sakakibara et al. Jun 1987 A
4674003 Zylka Jun 1987 A
4680496 Letournel et al. Jul 1987 A
4686370 Blach Aug 1987 A
4689056 Noguchi et al. Aug 1987 A
4691829 Auer Sep 1987 A
4692174 Gelfand et al. Sep 1987 A
4693869 Pfaff Sep 1987 A
4694376 Gesslauer Sep 1987 A
4702752 Yanagawa Oct 1987 A
4713092 Kikuchi et al. Dec 1987 A
4713093 Hansson Dec 1987 A
4713724 Voelkel Dec 1987 A
4715870 Masuda et al. Dec 1987 A
4725289 Quintilian Feb 1988 A
4726812 Hirth Feb 1988 A
4726814 Weitman Feb 1988 A
4736127 Jacobsen Apr 1988 A
4743275 Flanagan May 1988 A
4749390 Burnett et al. Jun 1988 A
4750921 Sugita et al. Jun 1988 A
4760302 Jacobsen Jul 1988 A
4760303 Miyake Jul 1988 A
4765802 Gombos et al. Aug 1988 A
4771361 Varga Sep 1988 A
4772297 Anzai Sep 1988 A
4779182 Mickal et al. Oct 1988 A
4781736 Cheney et al. Nov 1988 A
4786844 Farrell et al. Nov 1988 A
4789801 Lee Dec 1988 A
4808200 Dallhammer et al. Feb 1989 A
4811159 Foster, Jr. Mar 1989 A
4822381 Mosley et al. Apr 1989 A
4853005 Jaisinghani et al. Aug 1989 A
4869736 Ivester et al. Sep 1989 A
4892713 Newman Jan 1990 A
4929139 Vorreiter et al. May 1990 A
4940470 Jaisinghani et al. Jul 1990 A
4940894 Morters Jul 1990 A
4941068 Hofmann Jul 1990 A
4941224 Saeki et al. Jul 1990 A
4944778 Yanagawa Jul 1990 A
4954320 Birmingham et al. Sep 1990 A
4955991 Torok et al. Sep 1990 A
4966666 Waltonen Oct 1990 A
4967119 Torok et al. Oct 1990 A
4976752 Torok et al. Dec 1990 A
4978372 Pick Dec 1990 A
D315598 Yamamoto et al. Mar 1991 S
5003774 Leonard Apr 1991 A
5006761 Torok et al. Apr 1991 A
5010869 Lee Apr 1991 A
5012093 Shimizu Apr 1991 A
5012094 Hamade Apr 1991 A
5012159 Torok et al. Apr 1991 A
5022979 Hijikata et al. Jun 1991 A
5024685 Torok et al. Jun 1991 A
5030254 Heyen et al. Jul 1991 A
5034033 Alsup et al. Jul 1991 A
5037456 Yu Aug 1991 A
5045095 You Sep 1991 A
5053912 Loreth et al. Oct 1991 A
5059219 Plaks et al. Oct 1991 A
5061462 Suzuki Oct 1991 A
5066313 Mallory, Sr. Nov 1991 A
5072746 Kantor Dec 1991 A
5076820 Gurvitz Dec 1991 A
5077468 Hamade Dec 1991 A
5077500 Torok et al. Dec 1991 A
5100440 Stahel et al. Mar 1992 A
RE33927 Fuzimura May 1992 E
D326514 Alsup et al. May 1992 S
5118942 Hamade Jun 1992 A
5125936 Johansson Jun 1992 A
5136461 Zellweger Aug 1992 A
5137546 Steinbacher et al. Aug 1992 A
5141529 Oakley et al. Aug 1992 A
5141715 Sackinger et al. Aug 1992 A
D329284 Patton Sep 1992 S
5147429 Bartholomew et al. Sep 1992 A
5154733 Fujii et al. Oct 1992 A
5158580 Chang Oct 1992 A
D332655 Lytle et al. Jan 1993 S
5180404 Loreth et al. Jan 1993 A
5183480 Raterman et al. Feb 1993 A
5196171 Peltier Mar 1993 A
5198003 Haynes Mar 1993 A
5199257 Colletta et al. Apr 1993 A
5210678 Lain et al. May 1993 A
5215558 Moon Jun 1993 A
5217504 Johansson Jun 1993 A
5217511 Plaks et al. Jun 1993 A
5234555 Ibbott Aug 1993 A
5248324 Hara Sep 1993 A
5250267 Johnson et al. Oct 1993 A
5254155 Mensi Oct 1993 A
5266004 Tsumurai et al. Nov 1993 A
5271763 Jang Dec 1993 A
5282891 Durham Feb 1994 A
5290343 Morita et al. Mar 1994 A
5296019 Oakley et al. Mar 1994 A
5302190 Williams Apr 1994 A
5308586 Fritsche et al. May 1994 A
5315838 Thompson May 1994 A
5316741 Sewell et al. May 1994 A
5330559 Cheney et al. Jul 1994 A
5348571 Weber Sep 1994 A
5376168 Inculet Dec 1994 A
5378978 Gallo et al. Jan 1995 A
5386839 Chen Feb 1995 A
5395430 Lundgren et al. Mar 1995 A
5401301 Schulmerich et al. Mar 1995 A
5401302 Schulmerich et al. Mar 1995 A
5403383 Jaisinghani Apr 1995 A
5405434 Inculet Apr 1995 A
5407469 Sun Apr 1995 A
5407639 Watanabe et al. Apr 1995 A
5417936 Suzuki et al. May 1995 A
5419953 Chapman May 1995 A
5433772 Sikora Jul 1995 A
5435817 Davis et al. Jul 1995 A
5435978 Yokomi Jul 1995 A
5437713 Chang Aug 1995 A
5437843 Kuan Aug 1995 A
5445798 Ikeda et al. Aug 1995 A
5466279 Hattori et al. Nov 1995 A
5468454 Kim Nov 1995 A
5474599 Cheney et al. Dec 1995 A
5484472 Weinberg Jan 1996 A
5484473 Bontempi Jan 1996 A
5492678 Ota et al. Feb 1996 A
5501844 Kasting, Jr. et al. Mar 1996 A
5503808 Garbutt et al. Apr 1996 A
5503809 Coate et al. Apr 1996 A
5505914 Tona-Serra Apr 1996 A
5508008 Wasser Apr 1996 A
5514345 Garbutt et al. May 1996 A
5516493 Bell et al. May 1996 A
5518531 Joannu May 1996 A
5520887 Shimizu et al. May 1996 A
5525310 Decker et al. Jun 1996 A
5529613 Yavnieli Jun 1996 A
5529760 Burris Jun 1996 A
5532798 Nakagami et al. Jul 1996 A
5535089 Ford et al. Jul 1996 A
5536477 Cha et al. Jul 1996 A
5538695 Shinjo et al. Jul 1996 A
5540761 Yamamoto Jul 1996 A
5542967 Ponizovsky et al. Aug 1996 A
5545379 Gray Aug 1996 A
5545380 Gray Aug 1996 A
5547643 Nomoto et al. Aug 1996 A
5549874 Kimiya et al. Aug 1996 A
5554344 Duarte Sep 1996 A
5554345 Kitchenman Sep 1996 A
5569368 Larsky et al. Oct 1996 A
5569437 Stiehl et al. Oct 1996 A
D375546 Lee Nov 1996 S
5571483 Pfingstl et al. Nov 1996 A
5573577 Joannou Nov 1996 A
5573730 Gillum Nov 1996 A
5578112 Krause Nov 1996 A
5578280 Kazi et al. Nov 1996 A
5582632 Nohr et al. Dec 1996 A
5587131 Malkin et al. Dec 1996 A
D377523 Marvin et al. Jan 1997 S
5591253 Altman et al. Jan 1997 A
5591334 Shimizu et al. Jan 1997 A
5591412 Jones et al. Jan 1997 A
5593476 Coppom Jan 1997 A
5601636 Glucksman Feb 1997 A
5603752 Hara Feb 1997 A
5603893 Gundersen et al. Feb 1997 A
5614002 Chen Mar 1997 A
5624476 Eyraud Apr 1997 A
5630866 Gregg May 1997 A
5630990 Conrad et al. May 1997 A
5637198 Breault Jun 1997 A
5637279 Besen et al. Jun 1997 A
5641342 Smith et al. Jun 1997 A
5641461 Ferone Jun 1997 A
5647890 Yamamoto Jul 1997 A
5648049 Jones et al. Jul 1997 A
5655210 Gregoire et al. Aug 1997 A
5656063 Hsu Aug 1997 A
5665147 Taylor et al. Sep 1997 A
5667563 Silva, Jr. Sep 1997 A
5667564 Weinberg Sep 1997 A
5667565 Gondar Sep 1997 A
5667756 Ho Sep 1997 A
5669963 Horton et al. Sep 1997 A
5678237 Powell et al. Oct 1997 A
5681434 Eastlund Oct 1997 A
5681533 Hiromi Oct 1997 A
5698164 Kishioka et al. Dec 1997 A
5702507 Wang Dec 1997 A
D389567 Gudefin Jan 1998 S
5766318 Loreth et al. Jun 1998 A
5779769 Jiang Jul 1998 A
5814135 Weinberg Sep 1998 A
5879435 Satyapal et al. Mar 1999 A
5893977 Pucci Apr 1999 A
5911957 Khatchatrian et al. Jun 1999 A
5972076 Nichols et al. Oct 1999 A
5975090 Taylor et al. Nov 1999 A
5980614 Loreth et al. Nov 1999 A
5993521 Loreth et al. Nov 1999 A
5997619 Knuth et al. Dec 1999 A
6019815 Satyapal et al. Feb 2000 A
6042637 Weinberg Mar 2000 A
6063168 Nichols et al. May 2000 A
6086657 Freije Jul 2000 A
6117216 Loreth Sep 2000 A
6118645 Partridge Sep 2000 A
6126722 Mitchell et al. Oct 2000 A
6126727 Lo Oct 2000 A
6149717 Satyapal et al. Nov 2000 A
6149815 Sauter Nov 2000 A
6152146 Taylor et al. Nov 2000 A
6163098 Taylor et al. Dec 2000 A
6176977 Taylor et al. Jan 2001 B1
6182461 Washburn et al. Feb 2001 B1
6182671 Taylor et al. Feb 2001 B1
6193852 Caracciolo et al. Feb 2001 B1
6203600 Loreth Mar 2001 B1
6212883 Kang Apr 2001 B1
6228149 Alenichev et al. May 2001 B1
6252012 Egitto et al. Jun 2001 B1
6270733 Rodden Aug 2001 B1
6277248 Ishioka et al. Aug 2001 B1
6282106 Grass Aug 2001 B2
D449097 Smith et al. Oct 2001 S
D449679 Smith et al. Oct 2001 S
6296692 Gutmann Oct 2001 B1
6302944 Hoenig Oct 2001 B1
6309514 Conrad et al. Oct 2001 B1
6312507 Taylor et al. Nov 2001 B1
6315821 Pillion et al. Nov 2001 B1
6328791 Pillion et al. Dec 2001 B1
6348103 Ahlborn et al. Feb 2002 B1
6350417 Lau et al. Feb 2002 B1
6362604 Cravey Mar 2002 B1
6372097 Chen Apr 2002 B1
6373723 Wallgren et al. Apr 2002 B1
6379427 Siess Apr 2002 B1
6391259 Malkin et al. May 2002 B1
6398852 Loreth Jun 2002 B1
6447587 Pillion et al. Sep 2002 B1
6451266 Lau et al. Sep 2002 B1
6464754 Ford Oct 2002 B1
6471753 Ahn et al. Oct 2002 B1
6494940 Hak Dec 2002 B1
6504308 Krichtafovitch et al. Jan 2003 B1
6508982 Shoji Jan 2003 B1
6544485 Taylor Apr 2003 B1
6585935 Taylor et al. Jul 2003 B1
6588434 Taylor et al. Jul 2003 B2
6603268 Lee Aug 2003 B2
6613277 Monagan Sep 2003 B1
6632407 Lau et al. Oct 2003 B1
6635105 Ahlborn et al. Oct 2003 B2
6672315 Taylor et al. Jan 2004 B2
6709484 Lau et al. Mar 2004 B2
6713026 Taylor et al. Mar 2004 B2
6735830 Merciel May 2004 B1
6749667 Reeves et al. Jun 2004 B2
6753652 Kim Jun 2004 B2
6761796 Srivastava et al. Jul 2004 B2
6768108 Hirano et al. Jul 2004 B2
6768110 Alani Jul 2004 B2
6768120 Leung et al. Jul 2004 B2
6768121 Horskey Jul 2004 B2
6770878 Uhlemann et al. Aug 2004 B2
6774359 Hirabayashi et al. Aug 2004 B1
6777686 Olson et al. Aug 2004 B2
6777699 Miley et al. Aug 2004 B1
6777882 Goldberg et al. Aug 2004 B2
6781136 Kato Aug 2004 B1
6785912 Julio Sep 2004 B1
6791814 Adachi et al. Sep 2004 B2
6794661 Tsukihara et al. Sep 2004 B2
6797339 Akizuki et al. Sep 2004 B2
6797964 Yamashita Sep 2004 B2
6799068 Hartmann et al. Sep 2004 B1
6800862 Matsumoto et al. Oct 2004 B2
6803585 Glukhoy Oct 2004 B2
6805916 Cadieu Oct 2004 B2
6806035 Atireklapvarodom et al. Oct 2004 B1
6806163 Wu et al. Oct 2004 B2
6806468 Laiko et al. Oct 2004 B2
6808606 Thomsen et al. Oct 2004 B2
6809310 Chen Oct 2004 B2
6809312 Park et al. Oct 2004 B1
6809325 Dahl et al. Oct 2004 B2
6812647 Cornelius Nov 2004 B2
6815690 Veerasamy et al. Nov 2004 B2
6818257 Amann et al. Nov 2004 B2
6818909 Murrell et al. Nov 2004 B2
6819053 Johnson Nov 2004 B2
6863869 Taylor et al. Mar 2005 B2
6896853 Law et al. May 2005 B2
6911186 Taylor et al. Jun 2005 B2
20010048906 Lau et al. Dec 2001 A1
20020069760 Pruette et al. Jun 2002 A1
20020079212 Taylor et al. Jun 2002 A1
20020098131 Taylor et al. Jul 2002 A1
20020122751 Sinaiko et al. Sep 2002 A1
20020122752 Taylor et al. Sep 2002 A1
20020127156 Taylor Sep 2002 A1
20020134664 Taylor et al. Sep 2002 A1
20020134665 Taylor et al. Sep 2002 A1
20020141914 Lau et al. Oct 2002 A1
20020144601 Palestro et al. Oct 2002 A1
20020146356 Sinaiko et al. Oct 2002 A1
20020150520 Taylor et al. Oct 2002 A1
20020152890 Leiser Oct 2002 A1
20020155041 McKinney, Jr. et al. Oct 2002 A1
20020170435 Joannou Nov 2002 A1
20020190658 Lee Dec 2002 A1
20020195951 Lee Dec 2002 A1
20030005824 Katou et al. Jan 2003 A1
20030170150 Law et al. Sep 2003 A1
20030206837 Taylor et al. Nov 2003 A1
20030206839 Taylor et al. Nov 2003 A1
20030206840 Taylor et al. Nov 2003 A1
20040033176 Lee et al. Feb 2004 A1
20040052700 Kotlyar et al. Mar 2004 A1
20040065202 Gatchell et al. Apr 2004 A1
20040096376 Taylor May 2004 A1
20040136863 Yates et al. Jul 2004 A1
20040166037 Youdell et al. Aug 2004 A1
20040226447 Lau et al. Nov 2004 A1
20040234431 Taylor et al. Nov 2004 A1
20040237787 Reeves et al. Dec 2004 A1
20040251124 Lau Dec 2004 A1
20040251909 Taylor et al. Dec 2004 A1
20050000793 Taylor et al. Jan 2005 A1
Foreign Referenced Citations (33)
Number Date Country
2111112 Jul 1972 CN
87210843 Jul 1988 CN
2138764 Jun 1993 CN
2153231 Dec 1993 CN
2206057 Aug 1973 DE
197 41 621 C 1 Jun 1999 DE
0433152 Dec 1990 EP
0332624 Jan 1992 EP
2690509 Oct 1993 FR
643363 Sep 1950 GB
S51-90077 Aug 1976 JP
S62-20653 Feb 1987 JP
S63-164948 Oct 1988 JP
10137007 May 1998 JP
11104223 Apr 1999 JP
2000236914 Sep 2000 JP
WO 9205875 Apr 1992 WO
WO 9604703 Feb 1996 WO
WO 9907474 Feb 1999 WO
WO 0010713 Mar 2000 WO
WO 0147803 Jul 2001 WO
WO 0148781 Jul 2001 WO
WO 0164349 Sep 2001 WO
WO 0185348 Nov 2001 WO
WO 0220162 Mar 2002 WO
WO 0220163 Mar 2002 WO
WO 0230574 Apr 2002 WO
WO 0232578 Apr 2002 WO
WO 0242003 May 2002 WO
WO 02066167 Aug 2002 WO
WO 03009944 Feb 2003 WO
WO 03013620 Feb 2003 WO
WO 03013734 AA Feb 2003 WO
Related Publications (1)
Number Date Country
20050152818 A1 Jul 2005 US
Provisional Applications (1)
Number Date Country
60500437 Sep 2003 US
Continuations (1)
Number Date Country
Parent 10717420 Nov 2003 US
Child 11007734 US