Electro-magnetic desensitizer

Information

  • Patent Grant
  • 5805065
  • Patent Number
    5,805,065
  • Date Filed
    Thursday, March 18, 1993
    31 years ago
  • Date Issued
    Tuesday, September 8, 1998
    26 years ago
Abstract
A magnetic security marker of an article surveillance system is deactivated by first determining the status of the marker by exposing it to the interrogating field. If the marker is active, a deactivation field is applied to the marker. The marker is again interrogated using the interrogating field and, if an active marker is detected, an incrementally increased deactivation field is applied. The marker is continually interrogated and, as long as an active marker is detected, the intensity of the field is incrementally increased until the field reaches a level effecting deactivation.
Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a process for use with a companion electronic article surveillance (EAS) system. The inventive process detects and magnetizes a magnetic security marker of the EAS system.
The invention relates further to apparatus for practicing the aforesaid process.
2. Prior Art
U.S. Pat. No. 3,820,104 discloses a process of the aforesaid kind whereby a magnetic security marker, particularly for anti-pilferage systems, may be detected within a detection zone and deactivated thereafter, with the fact of such deactivation having taken place being signalled. The prior art process deactivates the magnetic security marker by magnetizing an element therein. The magnetizing field is preferably produced by discharging a capacitor having a very high capacitance into a coil. The process requires a very high voltage since it would not be possible otherwise to furnish the required current for two successive deactivation pulses at an acceptable repetition rate. This also calls for a voluminous and relatively expensive capacitor discharge circuit to be incorporated in the apparatus for practicing the said process.
It has been known also to provide apparatus for detecting and deactivating a security strip attached to an article of merchandise (DE-OS 30 45 703) which comprises a chamber having at least an input and an output opening for receiving the articles, as well as interrogation, detection and deactivation coils surrounding said chamber which, when coupled to the associated power source, are energized to generate an electromagnetic field which permeates the said chamber.
DE-OS 30 14 667, too, discloses a process and apparatus for deactivating a security marker much like that described in the U.S. Pat. No. 3,820,104.
In these disclosures, the security marker comprises a strip of magnetically soft (low coercive force), high-permeability material together with at least one piece of a second material having a higher coercive force. In the demagnetized condition, the second material is neutral relative to, and does not affect, the magnetically soft strip so that in this condition the security marker will be activated. This means that the detection means will detect a characteristic response produced by the marker when an article having the marker attached thereto passes through the surveillance zone.
In order to deactivate the security marker (e.g., when the merchandise has been paid for), the deactivator magnetizes the higher coercive force material and causes the high permeability element to saturate so that the characteristic response on which detection is based is no longer produced.
When using a deactivator in the form of a coil, the associated field magnetizes a continuous strip of the magnetizable material into a single, one-piece bar magnet since the magnetic field lines will be short-circuited in the latter and be prevented from extending sufficiently through the material of a high-permeability material. As a result, there is not an acceptable assurance that the high-permeability strip will be saturated to the point where it cannot respond to an alternating magnetic field in the surveillance zone. In order to prevent this from happening, the process known by DE-OS 30 14 667 depicts apparatus for forming adjacent poles of different polarity in the magnetic security marker by moving the marker into the active region of a deactivator which has adjacent poles of different polarity. The deactivator and reactivator for the magnetizable security marker used there disclosed comprises alternating polarity magnetic poles serially spaced on a mount. The distance between said poles are selected to correspond to the desired depth of penetration of the magnetic field generated between adjacent poles. Each pole has a deactivation coil wound thereon, with adjacent coils being serially connected and wound in opposite directions so that a current passed therethrough causes webs in the mounting structure, which forms the poles, to act alternatingly as north poles and south poles.
The prior process and apparatus according to DE-OS 30 14 667 are unable to determine safely whether the security element has, in fact, been demagnetized or deactivated.
SUMMARY OF THE INVENTION
It is the object underlying the invention to provide a process of the kind stated above, as well as apparatus for practicing said process which enables magnetizable elements in the magnetic security markers to be safely magnetized using any alternating current power supply, thereby deactivating the markers while minimizing the risk of damage to nearby objects.
The electronic article surveillance (EAS) system, with which the deactivating apparatus of the present invention is to be used, basically corresponds in function to an anti-pilferage system of the kind frequently used at the exits of department stores, libraries, etc. In such a system, a transmitter generates an alternating signal which may, for example, have a frequency of one kilohertz. The alternating signal is in turn coupled via a power amplifier and a capacitor to a coil positioned adjacent an interrogation zone. Signals produced by markers in the zone are received by a receiver coil also positioned adjacent the interrogation zone. The second signals are passed to a bank of bandpass filters or the like, which allow a characteristic response at the security marker to be identified. The security markers are formed magnetically in such a manner that the characteristic response includes a characteristic frequency spectrum which is readily identified and distinguished from other influences.
More specifically, the apparatus of the present invention comprises equipment which simulates that of the electronic article surveillance system with which it is to operate. Thus, the simulation equipment preferably comprises a wave generator and coil for generating a first magnetic field corresponding to that produced by the EAS system for interrogating a said marker, within which first field a said marker may be positioned. The equipment further comprises a receiver for detecting the response from the marker and for producing an active marker signal in the event the response corresponds with the characteristic response required by the EAS system to produce the alarm signal. Additionally, the apparatus also comprises a circuit for generating, within the coil, a second, unidirectional magnetic field which causes the magnetizable element of the marker to change the magnetic state thereof, thereby altering said response, and a circuit for reapplying the first magnetic field to the marker, detecting the response therefrom, and for producing a deactivated marker signal when said altered response is detected.
The apparatus is characterized by an electronic switch responsive to the active marker signal for automatically applying current directly from a source of alternating electrical power through a rectifier to the coil to gradually build up the second magnetic field. In the embodiment of the present invention, in the event an active marker signal is produced upon reapplying the first magnetic field, the circuit for generating the second unidirectional field responds by incrementally increasing the intensity of the field. Such a reiteration of determining whether an active marker signal is present, and then exposing the marker to an incrementally more intense field, may then continue until the intensity of the second field is sufficient to deactivate the marker, resulting in production of a deactivated marker signal. The electronic evaluator and control circuits then respond to the deactivated marker signal, causing the switch to automatically disconnect the source of power from the coil to prevent the production of yet more intense levels of the second field.
Instead of the bank of bandpass filters coupled to the receiver antenna output, the antenna output signal may preferably be digitized and processed by a signal processor.
The apparatus of the present invention is particularly used in connection with security markers which need a directionally constant magnetic field for desensitization. However, it is also recognized that the apparatus may also produce an alternating magnetic field, gradually decreasing in intensity, by applying current directly from the alternating current grid without being rectified, thereby resensitizing the marker by demagnetizing the magnetizable element therein.
The inventive process and the apparatus for practicing it are advantageous particularly because a magnetic security marker may be activated or deactivated using any AC power line. Detection errors due to label dyes, contamination, print or orientation are not possible. In particular, the use of the electromagnetic coil for both the detection of the security marker and its deactivation is advantageous because the same field orientation ensures reliable deactivation. Since the electromagnetic coil of the magnetizing apparatus is energized by a mains voltage, power may be obtained easily and reliably, as transformers, capacitors, high current thyristors and the like will not be necessary. The relatively low frequency of 1 kHz obviates problems with postal or other communications authorities. As the maximum distance that the security marker may be detected by the inventive apparatus is equal to one-half the distance from the apparatus in which it can be deactivated, and as the time required to generate the magnetic field is very short (80-100 ms), the deactivation is 100 percent user reliable. Additionally, after the magnetization process has been completed, a test is immediately carried out to establish whether or not an active security marker is in the detection area. In addition, the electromagnetic coil is only activated for a relatively short time in the deactivation process; and, in the present embodiment, as the intensity of the second field is limited to that intensity required to result in the production of a deactivated marker signal, magnetic media are prevented from being accidentally erased. The inventive apparatus is easily handled by unskilled personnel and may be used together with any magnetic security marker.
The invention eliminates the previous necessity of using a bank of capacitors having a relatively high capacity, transformers and high current thyristors; in addition, it allows the magnetic system to be switched to the main power line in response to a detection of the security marker without circuitry changes. As a result, relatively high current intensities as well as different coil assemblies may be used so that the security marker does not have to be located in an area of maximum magnetic field strength. It is possible to use a conventional coil and to mount it on a core preferably made of transformer steel sheets. The core may be U-shaped and the electromagnetic coil may be mounted on its central portion, with the two legs of the yoke as high as the coil to create a relatively large air gap. Together with the coil, the core may advantageously be mounted under the top of a cash register table so that all an operator has to do is simply to move an item of merchandize bearing the security element across the table top.
Alternatively, the coil and the yoke may be mounted in a handheld unit.





BRIEF DESCRIPTION OF THE DRAWING
The invention will now be explained in great detail under reference to the attached drawings.
FIG. 1 shows the fundamental elements of the inventive apparatus;
FIG. 2 shows a presently preferred circuit arrangement of the apparatus for practicing the inventive process;
FIG. 3 shows a perspective view of a cash register table having the inventive apparatus mounted thereunder;
FIG. 4 shows diagrams illustrating the main, voltage, the main current, the coil current and the magnetic flux density as they occur in the practice of the inventive process; and
FIG. 5 shows the circuitry of the magnetizing apparatus per se, which is mounted under the top of a cash register table or in a handheld unit.





DETAILED DESCRIPTION
As shown in FIG. 1, the inventive apparatus has on the transmitter side a wave generator 1 which typically generates a 1 kHz sinewave signal and is coupled to an electromagnetic coil 2 of deactivator 4 and to a power section 3. Coil 2 enables magnetic fields to be generated which are strong enough to deactivate a security marker in the system. A yoke 5 having a typical U-shape and made of transformer steel sheets may be provided inside coil 2. The legs of yoke 5 may fill the top of coil 2 to concentrate the magnetic field at the top of coil 2. Together with coil 2, yoke 5 may be mounted under top 6 of a cash register table 7 (FIG. 3). The receiver comprises an antenna 8 mounted atop coil 2 and coupled to electronic evaluation circuit 9, which also acts to drive power section 3 of magnetizing apparatus 4.
The (short-circuited) cylinder coil 2, the yoke 5, and the power section 3 together form said magnetizing apparatus 4 which preferably is mounted under a table top 6 (FIG. 3) or in a handheld unit.
As shown in FIG. 2 which shows the circuitry in accordance with a preferred embodiment of the inventive apparatus, wave generator 1 is made of a sinewave generator 10 and capacitors 11, and coupled through said capacitors 11 to the terminals of coil 2 of yoke 5 of magnetizing apparatus 4.
Cylinder coil 2 is short-circuited via a fullwave bridge rectifier 12, with one branch of the short-circuit connection including between the junction of the respective capacitor 11 and fullwave bridge rectifier 12 a series connection of a switch 13 and a current sensor 14. Through switches 15, fullwave bridge rectifier 12 may be connected directly to any alternating power line (100 to 260 V, 50 to 60 Hz).
Fullwave bridge rectifier 12, switch 13 in the short-circuit loop, and switch 15 are combined to form the power section 3 of the magnetizing apparatus 4.
On the receiver side, system antenna 8 is connected via filter and amplifier assembly 16 with an electronic evaluator means 17 connected in series with an electronic control means 18. Output 19 of filter and amplifier assembly 16 is coupled to said electronic evaluator means 17. The output of electronic control means 18 is connected to acoustic signalling means 20. Evaluator means 17 controls switches 15 to the AC power line and also switch 13 in the short-circuit loop. The reset input of control means 18 is directly coupled to switch 13 and the switches 15. The reset input of evaluator means 17 will be actuated by the current sensor 14, if the magnetic security marker is detected. As the sold goods are moved over the table top, the magnetic system will be directly connected to the power line which creates a successively increasing magnetic field. For that, the current will be rectified in double bridge 12 and current sensor 14 in the short circuit loop will control the current. The current will be increased at every phase change until the trigger level of current sensor 14 is reached. That guarantees that the magnetic flux density was strong enough to deactivate the security marker.
When the necessary coil current from the current sensor 14 is reached, reset input of the evaluator means 17 is actuated and switches off switches 13 and 15 and simultaneously switches on acoustic signalling means 20 for 0,5 s. Since switches 13 and 15 are thyristors, the power line will be switched off at the next phase change. The short circuit loop switch 13 remains activated until the coil current is practically zero (max. 0,5 s).
Current sensor 14, filter and amplifier assembly 16, electronic evaluator and control means 17 and 18 and the acoustic signalling means 20 are combined to form the electronic analyzer (comparator) 9 (also shown in FIG. 1) used to control power section 3.
Alternatively, coil 2 of the magnetic system preferably may be short-circuited by antiparallel diodes connected to the power line via a diode, with the current sensor 14 coupled to the electronic switch included in the short-circuit loop.
As shown by diagram I in FIG. 4, connection of the apparatus to the alternating power line causes a sinewave voltage 22 to be applied to fullwave bridge rectifier 12, which causes the current 24 to be rectified as shown in diagram II of FIG. 4, thereby providing a plurality of rectified voltage pulses. The high-impedance magnetic system causes the waveform of the increasing current 26 to deviate substantially from a pure sine. Diagram III of FIG. 4 shows the rectified current flowing through coil 2 of magnetizing apparatus 4, which increases in steps and is substantially smoothed by the high impedance of coil 2. Although the curve of the rectified current extends to zero, this current function is not transferred to the coil because these intermissions in the power flux are bridged relatively easily by the magnetic system. Accordingly, and as shown in diagram IV of FIG. 4, the system builds up a steadily increasing magnetic flux density 28. In the example shown, this takes about 100 milliseconds, assuming a power line frequency of 50 Hz. Further, diagrams III and IV show that, once the maximum current (i.e., tile current to which current sensor 14 is set to respond) and the corresponding magnetic flux density (typically 800 G, 80 mT (milli Tesla)) have been reached, the magnetic system is disconnected from power line by the electronic switch 15. Following the disconnection of the magnetic system from power line, the magnetic field disappears within 0,5 s.
FIG. 5 shows the circuitry of the magnetizing apparatus 4 or 4' with coil 2', yoke 5' and antenna 8' being mounted under a table top, whereas coil 2', yoke 5' and antenna 8' are mounted in a handheld unit. By means of switch 30, the operation of the inventive apparatus can be changed either to the table top device or to the handheld unit.
Referring again to FIG. 2, instead of monitoring the desired field intensity via the current sensor 14, in an alternative embodiment, the desired field intensity may be monitored indirectly, but solely by the response produced in antenna 8. As in the embodiment in which the current to the coil is monitored, in this embodiment, the status of a marker is still determined by interrogating the status of a marker by exposing it to a first electromagnetic field corresponding to that produced by the system for interrogating the marker. The response from the marker is thus detected and an active marker signed is produced in the event the response corresponds to the characteristic response required by the system to produce an alarm signal. In response to the active marker signal, the marker is then exposed to a second field, imparting to the marker a deactivation energy having a first, predetermined intensity. The status of the marker is again interrogated by exposing it to the first field. If an active marker signal is still produced, the intensity of the second field is incrementally increased so that the marker is exposed to slightly more intense deactivation energy. The steps of interrogative and applying an incrementally more intense deactivation energy is repeated until an active marker signal is no longer produced. This embodiment enables the intensity of the deactivation energy to be kept to a minimum, thereby minimizing the possibility of drawing to other nearby objects, such as magnetically sensitive prerecorded audio and video magnetic cassettes.
Claims
  • 1. In an electronic article surveillance system, a method for deactivating a marker that is in a first, activated state, comprising the steps of:
  • (a) imparting to the marker a deactivation field having a first, predetermined intensity;
  • (b) exposing the marker to an interrogating field, detecting the response produced by the marker, producing an active marker signal if the response indicates that the marker is in the first, activated state, and producing a deactivated marker signal if the response indicates that the marker is in a second, deactivated state;
  • (c) imparting to the marker, in response to the active marker signal, the deactivation field having an incrementally greater intensity; and
  • (d) repeating steps (b) and (c) until the deactivated marker signal is produced.
  • 2. The method according to claim 1 wherein the marker includes at least one magnetizable element.
  • 3. The method according to claim 2 wherein the deactivation field comprises a magnetic field which is directionally constant.
  • 4. The method according to claim 1 wherein the marker is unmagnetized when in the first, activated state, and magnetized when in the second, deactivated state.
  • 5. A deactivating apparatus for deactivating a marker of an electronic article surveillance (EAS) system, the deactivating apparatus comprising:
  • interrogation means for interrogating the marker to cause the marker to produce a response, for detecting the response produced by the marker, for producing an active marker signal if the response indicates that the marker is in an activated state, and for producing a deactivated marker signal if the response indicates that the marker is in a deactivated state;
  • deactivation means for applying a deactivation field to the marker in response to the active marker signal, wherein the interrogation means re-interrogates the marker after each application of the deactivation field, and wherein the deactivation field intensity is incrementally increased each time the deactivation field is applied; and
  • control means for disabling the deactivation means when the deactivated marker signal is produced.
  • 6. The apparatus according to claim 5 wherein the deactivation means includes switch means responsive to the active marker signal for automatically and gradually applying current through a rectifier directly from a source of alternating electrical power to incrementally increase the deactivation field.
  • 7. The apparatus according to claim 6, wherein magnetic flux density required for deactivating the marker is built up by a plurality of rectified voltage pulses from the source of electrical power.
  • 8. The apparatus according to claim 6, wherein the interrogation means interrogates the marker with a substantially sinusoidal interrogation field.
  • 9. The apparatus according to claim 8 wherein the interrogation means includes a wave generator and a coil adapted to produce the interrogation field.
  • 10. The apparatus according to claim 9, further including a yoke proximate to the coil, and configured to create a relatively wide air gap, with the yoke and the coil being adapted to be mounted underneath a table top.
  • 11. The apparatus according to claim 10, wherein the yoke has a substantially U-shaped configuration.
  • 12. An apparatus according to claim 9, wherein the coil includes two terminals, and wherein both terminals of the coil are connected through impedance matching and decoupling capacitors to the wave generator, and further wherein the switch means prevents current from the wave generator from being short-circuited.
  • 13. An apparatus according to claim 9, further including a yoke proximate to the coil comprised of a relatively low coercive force material.
  • 14. The apparatus according to claim 5 wherein the deactivation field is directionally constant.
Parent Case Info

The application is a continuation-in-part of U.S. Ser. No. 07/697,644 filed May 8, 1991, U.S. Pat. No. 5,210,524 issued May 11, 1993.

US Referenced Citations (6)
Number Name Date Kind
3820104 Fearon Jun 1974
4484184 Gregor et al. Nov 1984
4906974 Rehder Mar 1990
5027106 Lizzi et al. Jun 1991
5210524 Schwarz et al. May 1993
5341125 Plonsky et al. Aug 1994
Foreign Referenced Citations (3)
Number Date Country
30 14 667 A1 Oct 1981 DEX
30 15 811 A1 Oct 1981 DEX
30 45 703 A1 Jul 1982 DEX
Continuation in Parts (1)
Number Date Country
Parent 697644 May 1991