This invention relates generally to drawer slides and cabinetry, and more particularly, to access of cabinetry using an electronically actuated latching and locking system, which may have a touch or push activation feature.
Cabinets often include doors or drawers for enclosed storage space for various items. At times control of access to the enclosed storage space may be desired, for example in retail or other environments. The control of access may be desired to limit access to appropriate persons or to determine time when access was made, or both.
Unfortunately, devices providing control of access to the enclosed storage space may present difficulties. The devices may be burdensome to use, may require exceedingly fine exact machining, or may insufficiently control access to the enclosed storage space.
Aspects of the invention is in the technical field of cabinetry. More particularly, aspects of the invention relate to the technical field of electronic security and access to cabinetry, which in some embodiments is stationary and/or portable cabinetry.
In one embodiment, aspects of the invention provide an electro-mechanical device for locking and/or latching and unlocking and/or unlatching a cabinet door with a touch or push activation.
In another embodiment, aspects of the invention provide an electro-mechanical device for locking and/or latching and unlocking and/or unlatching a drawer with a touch or push activation.
Some aspects of the invention provide an electro-mechanical locking device for cabinetry, comprising a rotatable latch receiver for receiving a latch striker, a lever arm for maintaining the latch receiver in a locking position, an actuator for driving the lever arm to an unlocking position, a first sensor for detecting an indication of inward movement, relative to the cabinetry, of the latch striker, and a controller configured to command the actuator to drive the lever arm to the unlocking position based on detection by the first sensor of the indication of inward movement of the latch striker. In some such aspects, the controller is configured to command the actuator to drive the lever arm to the unlocking position only upon every other occurrence of the first sensor detecting the indication of inward movement of the latch striker. In some such aspects, the controller is configured to command the actuator to drive the lever arm to the unlocking position only if a command has also been received from an external access control device. In some such aspects the external access control device is a radio frequency identification (RFID) device. In some such aspects the controller is additionally configured to command the actuator to drive the lever arm to the unlocking position based on a signal indicative of inward movement, relative to the cabinetry, of a second latch striker, the second latch striker being of a second electro-mechanical locking device for cabinetry.
Another aspect of the invention provides a method of operating a lock for a cabinet, the lock including a latch receiver for receiving a latch striker and an actuator for unlocking the latch receiver, and a controller for commanding operation of the actuator, the method comprising: receiving a first indication that the latch striker has moved to a position inward in the cabinet; commanding, by the controller, the actuator to provide for unlocking of the latch receiver.
Another aspect of the invention provides a first controller for controlling a locking mechanism for a drawer coupled to cabinetry by at least two drawer slides, the first controller maintaining an indication of status of the drawer, the first controller configured to: receive a first indication from a first sensor that the drawer is pressed inward into the cabinetry; receive a second indication from a second sensor that the drawer is pressed inward into the cabinetry; and upon receipt of either the first indication or the second indication, if the indication of status of the drawer is closed, command a locking mechanism associated with the first drawer slide to move to an unlocking position.
Another aspect of the invention provides for a locking system for cabinetry, comprising: at least one locking device, each including a receiver for receiving a striker and means for maintaining the receiver in a locked position; and a controller configured to command unlocking of the receiver by the means for maintaining the receiver in the locked position based on an indication that a striker associated with at least one of the at least one of the locking devices has been moved inward into the cabinetry.
Another aspect of the invention provides a locking system for cabinetry, comprising: a locking device including a receiver for receiving a striker, means for maintaining the receiver in a locked position, and an actuator for actuating the means for maintaining the receiver in the locked position; a first sensor for determining whether the receiver is in a locked position; a second sensor for determining if the means for maintaining the receiver in the locked position is in a locking position; a third sensor for determining an indication of whether the actuator is in a state to allow the means for maintaining the receiver in the locked position to be in a locking position; and a controller configured to command the actuator to allow the means for maintaining the receiver in the locked position to be in an unlocking position and to determine an indication of whether the receiver is securely maintained in the locked position.
These and other aspects of the invention are more fully comprehended upon review of this disclosure.
In aspects of the invention an electro-mechanical device allow for controlled access to latched or locked cabinetry, with some embodiments including use of an external access control device, examples of which include a keypad, RFID reader, biometric, NFC or any other device used to authenticate a user. In
In some embodiments the electro-mechanical device of
Once the sensor has provided an activation signal, through monitoring position of the latch receiver for example, and the latch receiver is displaced once again with outward movement of the catch, providing a change in state to the sensor, the control circuit can be programmed to once again activate the motor and return the lever arm to its original position. The latch receiver is then biased by inward movement of the catch or striker to move the latch receiver back to the latched and locked position.
A feature of the circuit and the design, in some embodiments, allows for the electro-mechanical device to latch and release with every second sensor activation. In such circumstances if the access control device is programmed to apply the external signal for an extended period of time, a user can repeatedly latch and unlatch the electro-mechanical device until such time that the external signal is removed. As such this action compares to a mechanical touch release mechanism that releases and secures with every other compression cycle.
In some embodiments control circuits of lock mechanisms for multiple drawers are in communication. In some embodiments each control circuit is also configured to only allow unlocking of a single drawer of a cabinet with multiple drawers. For example, if one control circuit indicates its drawer is unlocked, the other control circuits will not allow unlocking of their drawers. Such a configuration provides an electronic interlock or anti-tip feature, which may be useful for tall cabinetry stacked drawers for which opening of multiple drawers may create a tipping hazard. In addition, in some embodiments communication of information between control circuits of multiple drawers is used to avoid undesired unlocking or locking of one drawer due to vibrations resulting from opening or closing another drawer. In such embodiments the control circuits may be configured such that a change in sensor status for a particular drawer is ignored if sensor status for another drawer, for example indicating opening or closing of the other drawer, has occurred within a predefined period of time, for example 0.5 seconds, immediately prior to the change in sensor status for the particular drawer.
Turning now to
The electro-mechanical latch/locking device includes a latch receiver 119. The latch receiver 119 receives the striker 113 when the drawer slide is in or approximate a closed position. The latch receiver 119 is maintained in a locked position by a lever arm 123, which is moveable between a locking position and an unlocking position by activation of a motor 125. In some embodiments the latch receiver 119 is maintained in the locked position by engagement with a first end 147 of the lever arm 123. In some embodiments, for example as illustrated in
In the embodiment illustrated in
The striker 113 may be welded or otherwise attached to the extension of the inner slide member or mounted to the drawer, for example by way of the striker face plate if present. In other embodiments, the striker 113 may be formed of the material of the inner slide member, and may, for example, be in the form of a hook or a ring, or other form punched or pressed from the material of the inner slide member.
The electro-mechanical latch/locking device includes components configured to work in combination to capture the striker 113 within the latch receiver 119 and secure the inner slide member or drawer in the closed or locked position. Conversely, the components of the electro-mechanical latch/locking device may also be activated to release the striker 113 from the latch receiver 119 and thus, release the inner slide member or drawer to allow it to return to the open position. The latch receiver 119 captures the striker 113, such that the striker 113, and therefore the inner slide member or the drawer, is prevented from moving to an open position. Thus, the striker 113 and the latch receiver 119 may together be considered a latch.
The latch receiver 119 is rotatably mounted using a screw or rivet to a housing base 111. Alternately, in some embodiments the electro-mechanical latch/locking device, or in some embodiments the latch receiver 119, may be mounted to an outer slide member or a cabinet frame. The latch receiver 119 is generally U-shaped, defined by two legs that extend from the latch receiver, a first leg 151 and a second leg 141, with the first leg 151 and the second leg 141 defining a basin there between for receiving the striker 113. The first leg 151 is configured to slip into engage with the striker 113 forming a latch. In one embodiment, the striker 113 is shaped as a hook or a ring to receive the first leg 151 which is shaped as a cylinder. The shape and structure of the striker 113 and the first leg 151 is not limited, as long as the first leg 151 can be rotated and engage with the striker 113 in the closed position, which prevents the drawer from opening. A third leg 121 extends from one side of the of the generally U-shaped latch receiver 119 approximately perpendicular to the basin. In one embodiment, the third leg 121 extends straight from the latch receiver 119, and in some embodiments, such as shown in
Referring to
A bumper 153 is positioned to engage the third leg 121 of the latch receiver 119 when the latch receiver 119 is in the open position. Preferably the bumper 153 includes a soft compliant shell, for example of rubber, to reduce noise generated by contact of the third leg 121 and the bumper 153. The bumper 153 is positioned such that its engagement with the third leg 121 counters the bias from the latch spring 131 to cause the latch-receiver 119 to stop rotating as the basin is positioned to receive the striker 113. The constant biasing of the latch receiver 119 by the latch spring 131 and the counteraction of this bias by the third leg 121 against the bumper 153 ensures that the latch receiver 119 is held in place and does not inadvertently move out of position.
Referring to
Referring to
As illustrated in
Referring to
Referring to
Referring back to
In such an embodiment two lock mechanisms may lock the drawer within the cabinet. In such an embodiment control circuitry of the two lock mechanisms may communicate with each other, either by way of wired communications or wireless communications, so as to be able to coordinate their actions. For example, depending on drawer width, and possibly other factors, one side of the drawer may be pressed inward in the cabinet, to an extent noticeable by a sensor of the lock mechanism such as a drawer switch, without the other side of the drawer being so sufficiently moved. In such a circumstance, the lock mechanism which has had a sensor indicate pressing in of the drawer may communicate that information to the other lock mechanism, or a central controller, so that both lock mechanisms may unlock (or lock as the case may be).
The microcontroller 1611 generally processes program instructions for controlling the electro-mechanical latch/locking device. As shown in
The lever arm switch and/or the lock switch may be used to determine whether or not tamper has occurred. For example, a tamper may be detected based on activation and deactivation sequences of the lever arm switch and/or the lock switch. In some embodiments, once a tamper is detected the microcontroller may perform a reaction or series of reactions in response to the tamper.
In some embodiments, the drawer switch is used for locking and unlocking operations of the electro-mechanical latch/locking device. In some embodiments when a catch or striker moves a latch receiver of the electro-mechanical latch/locking device, the drawer switch may be activated sending the microcontroller a signal. The microcontroller registers the signal and commands the motor driver which in turn activates the motor to rotate in a direction to displace a lever arm that secures the latch receiver. As a result, the latch receiver may move freely, and may unlock and release the catch or striker allowing a drawer of a cabinet to open. Once the catch or striker is released, the microcontroller may command the motor (via the motor driver) to rotate the lever arm back to its original position. In some embodiments when a user pushes inward to close the drawer of the cabinet, the catch or striker moves horizontally inward to push the latch receiver inward causing the drawer switch to activate. Once again, a signal is transmitted from the drawer switch to the microcontroller. In some embodiments, the microcontroller may be programmed to control a predefined time to confirm activation command by the drawer switch and a predefined time the motor is commanded to rotate by the motor driver. In some embodiments, the microcontroller may be programmed to update a variable that tracks status of the drawer switch.
In some embodiments the lever switch may be used to indicate whether the lever arm is positioned at its original, latched and locked position. As previously indicated, when performing the unlocking operation, the lever arm is displaced to allow the latch receiver to move freely and release the catch or striker. The displacement of the lever arm, for example, may activate the lever switch sending a signal to the microcontroller indicating that the lever arm is not in its original, latched and locked position. As a result, the microcontroller registers such signal and commands the motor to rotate the lever arm to its original position. The rotation of the lever arm causes an end of the lever arm to move horizontally inward deactivating the lever switch as a result. Deactivating the lever switch transmits a signal to the microcontroller indicating that the lever arm is in its original, latched and locked position.
At block 1713 the process sets variables, performs input/output mapping, and initiates timers. The process, for example, may perform initialization of the variables by assigning initial values to the variables. In addition, the process may define constants by assigning predefined values to the constants. For example, the process may assign a predefined value of 80 milliseconds to an open de-bounce time constant and 30 milliseconds to a close de-bounce time constant. Referring to
At block 1715, the process sends a command to ensure initial state of a drawer or door is known. In some embodiments, the process sends a CLOSED command to a motor driver, for example the motor driver 1619 shown in
At block 1717 the process determines whether or not a trigger is active. In some embodiments, the trigger may be activated by a device equipped with a keypad, RFID reader, biometric, near field communication (NFC), or any other device used to authenticate user access. For example, the trigger may be activated when the device is in proximity with the electro-mechanical latch/locking device. Upon activation of the trigger, a signal may be received at a trigger input to indicate that the trigger is active. Once the trigger is active, the process continues to block 1719. Otherwise, the process returns to block 1717.
At block 1719, the process waits for a drawer switch or a tandem switch to activate. The use of two switches, e.g. the drawer switch and the tandem switch, in the alternative may be useful, for example, if a drawer is sufficiently wide that it is possible that only a portion of a drawer may be pressed inwardly by a user. The drawer switch or the tandem switch, for example, may be activated when a catch or striker of the electro-mechanical latch/locking device moves horizontally inward to bias a rotational catch inward resulting in activation of the drawer switch or the tandem switch. In addition, the process may monitor a lock switch for tamper. The process, for example, may determine that tamper has occurred based on a sequence of activation and deactivation of the lock switch. The process then proceeds to blocks 1721 and 1725.
At block 1721, the process determines whether or not the electro-mechanical device has been tampered. If tamper has occurred, the process proceeds to block 1723. Otherwise, the process returns to block 1719.
At block 1723, the process activates a lock output relay.
At block 1725, the process determines whether or not drawer switch or tandem switch of the electro-mechanical device has been continuously activated for at least a fixed duration. In some embodiments, the fixed duration is 0.08 second or 80 milliseconds. In some embodiments the drawer switch is a switch that indicates whether or not a drawer has been pressed inward into a cabinet. In some embodiments the tandem switch also indicates whether or not the drawer has been pressed inward into the cabinet. If the drawer switch or the tandem switch has been continuously activated for at least the fixed duration, the process proceeds to block 1727. Otherwise, the process returns to block 1719.
At block 1727, the process sends a command to unlock and open the drawer or door. The process, for example, may send an OPEN command to a motor driver (e.g., the motor driver 1619 shown in
At block 1729, the process waits for the drawer switch to activate. The drawer switch for example may be drawer switch 1615 shown in
At block 1731, the process determines whether or not the drawer switch or the tandem switch of the electro-mechanical device has been continuously activated for at least a fixed duration. In some embodiments, the fixed duration is 0.03 second or 30 milliseconds. If the drawer switch or the tandem switch has been continuously activated for at least the fixed duration, the process proceeds to block 1733. Otherwise, the process returns to block 1729.
At block 1733, the process sends a command to close the drawer or door. The process, for example, may send a CLOSED command to the motor driver and set the variable that keeps track of the drawer or door to CLOSED. The drawer or door thereafter is closed.
At block 1811, the process determines whether or not a trigger is active. In some embodiments, the trigger may be activated by a device equipped with a keypad, RFID reader, biometric, near field communication (NFC), or any other device used to authenticate user access. For example, the trigger may be activated when the device is in proximity with the electro-mechanical latching and locking device. Upon activation of the trigger, a signal may be received at a trigger input to indicate that the trigger is active. Once the trigger is active, the process continues to block 1815. Otherwise, the process continues to block 1813.
At block 1813 the process ensures that the electro-mechanical latching and locking device is in a latched and locked position. In doing so, the process may send a CLOSED command to a motor driver, for example motor driver 1619 shown in
At block 1815 the process determines the status of the drawer of the electro-mechanical latching and locking device. In doing so, the process may perform a read operation of the variable the tracks the status of the drawer. If the status of the drawer is OPEN, the process continues to block 1817. Otherwise, the process continues to block 1819.
At block 1817 the process determines whether or not a drawer switch or a tandem switch is active. The tandem switch in some embodiments is a drawer switch of a secondary electro-mechanical device connected in tandem with the electro-mechanical latching and locking device. Connecting both electro-mechanical devices in tandem for example may allow for synchronic activation. For example, if one electro-mechanical device is independently or both together activated, both electro-mechanical devices will be activated and provide position feedback. This is particularly useful in wide applications where a user activation point may vary and provide only enough displacement or bias at one device to provide activation. In some embodiments, the drawer switch or the tandem switch is activated when a catch or striker moves horizontally inward to bias a latch receiver inward resulting in activation of the drawer or tandem switch. In some embodiments, the drawer switch or the tandem switch is activated if the activation is continuous or uninterrupted for a fixed duration, for example 0.03 second or 30 milliseconds. If the drawer switch or the tandem switch is activated, the process continues to block 1821. Otherwise, the process returns to block 1811.
At block 1821 the process updates the status of the drawer to indicate that the drawer is closed. In doing so, the process may set the variable that tracks the status of the drawer to CLOSED. Moreover, the process may in turn send a CLOSED command to the motor driver to place the lever arm in the latched and locked position if the lever arm is not in such position. The process thereafter returns.
At block 1819, the process determines whether or not the drawer switch or the tandem switch is active. As previously mentioned, the tandem switch may be the drawer switch of the secondary electro-mechanical device connected in tandem with the initial electro-mechanical latching and locking device. Furthermore, the drawer switch or the tandem switch in some embodiments is activated when the catch or striker moves horizontally inward to bias the latch receiver inward resulting in activation of the drawer or tandem switch. In some embodiments, the drawer switch or the tandem switch is activated if the activation is continuous or uninterrupted for a fixed duration, for example 0.08 second or 80 milliseconds. Such requirement would filter out unintentional or unwanted actions such as inadvertent bump of the drawer, unforeseen electrical signal spikes, or in a case of a multi-drawer or door cabinet, slamming of a neighboring drawer or door may provide enough momentum to activate the drawer switch. If the drawer switch or the tandem switch is activated, the process continues to block 1823. Otherwise, the process returns to block 1811.
At block 1823, the process performs unlocking operation of the drawer. In doing so, the process may send an OPEN command to the motor driver. The motor driver in turn commands the motor to rotate in a direction to displace the lever arm that secures the latch receiver. Once the motor has displaced the lever arm, the latch receiver is free to move and release the catch or striker allowing the drawer to open. The process then continues to block 1825.
At block 1825 the process again determines whether or not the drawer switch or the tandem switch is active. In some embodiments when the drawer or tandem switch is activated, pulses may be generated as a result. These pulses however may comprise brief bursts that possess irregular shapes or spikes and can occur at random intervals. Such irregularities in the pulses may signal that the drawer or tandem switch is activated multiple times. Therefore, in some embodiments additional determination of whether or not the drawer or tandem switch is necessary to process such pulses before proceeding. If the drawer switch or the tandem switch is activated, the process continues to block 1827. Otherwise, the process returns to block 1823.
At block 1827 the process waits for a fixed duration. In some embodiments when the unlocking operation is performed, the catch or striker moves horizontally away from the electro-mechanical device in a lock-lever path resulting in the release of the catch or striker with the latch receiver. Therefore, in some embodiments delaying for the fixed duration ensures that the catch or striker has cleared the lock-lever path. The fixed duration for example may be 0.3 second or 300 milliseconds. The process then continues to block 1829.
At block 1829 the process updates the status of the drawer indicating that the drawer is open. In doing so, the process may set the variable that tracks the status of the drawer to OPEN. The process then continues to block 1831.
At block 1831 the process places the electro-mechanical device to the latched and locked position. In some embodiments, the process may send a signal to the motor driver which in turn activates the motor to rotate in a direction that returns the lever arm to its original position.
The process thereafter returns.
At block 1911 the process determines whether or not a trigger is active. In some embodiments, the trigger may be activated by a device equipped with a keypad, RFID reader, biometric, near field communication (NFC), or any other device used to authenticate user access. For example, the trigger may be activated when the device is in proximity with the electro-mechanical latch/locking device. Upon activation of the trigger, a signal may be received at a trigger input to indicate that the trigger is active. Once the trigger is active, the process continues to block 1913. Otherwise, the process returns to block 1911.
At block 1913 the process waits for a drawer or a tandem switch of the electro-mechanical latch/locking device to activate. In some embodiments, the process may perform a loop operation until the drawer or tandem switch is activated. The tandem switch in some embodiments is a drawer switch of a secondary electro-mechanical latch/locking device connected in tandem with the initial electro-mechanical latch/locking device. Connecting both electro-mechanical latch/locking devices in tandem for example may allow for synchronic activation. For example, if one electro-mechanical latch/locking device is independently or both together activated, both electro-mechanical devices will be activated and provide position feedback. This is particularly useful in wide applications where a user activation point may vary and provide only enough displacement or bias at one device to provide activation. In some embodiments, the drawer switch or the tandem switch is activated when a catch or striker moves horizontally inward to bias a latch receiver inward resulting in activation of the drawer or tandem switch. In some embodiments, the drawer switch or the tandem switch is activated if the activation is continuous or uninterrupted for a fixed duration, for example 0.08 second or 80 milliseconds. The process then continues to block 1915.
At block 1915 the process sends unlock command to perform unlocking operation of a drawer. In some embodiments, the process may send an OPEN command to a motor driver which in turn commands a motor to rotate in a direction to displace a lever arm that secures a latch receiver. Once the motor has displaced the lever arm, the latch receiver is free to move and release the catch or striker allowing the drawer to open. Subsequent to the opening of the drawer, the motor driver in some embodiments activates the motor to return the lever arm to its original position. The process then continues to block 1917.
At block 1917, the process updates status of the drawer. In doing so, the process in some embodiments may assign a value indicative of OPEN to a variable that tracks the status of the drawer. The process then continues to block 1919.
At block 1919 the process again waits for the drawer or the tandem switch of the electro-mechanical latch/locking device to activate. The process may for example perform a loop operation until the drawer or the tandem switch is active. As previously mentioned, the drawer switch or the tandem switch in some embodiments is active when the catch or striker moves horizontally inward to bias the latch receiver inward resulting in activation of the drawer or tandem switch. In some embodiments, the drawer switch or the tandem switch is activated if the activation is continuous or uninterrupted for a fixed duration, for example 0.03 second or 30 milliseconds. The process then continues to block 1921.
At block 1921 the process sends a lock command to perform locking operation of the drawer. The process for example may send a CLOSED command to the motor driver to place the lever arm in the latched and locked position if the lever arm is not in such position. The process then continues to block 1923.
At block 1923 the process updates the status of the drawer. The process in some embodiments may assign a value indicative of CLOSED to a variable that tracks the status of the drawer.
The process thereafter returns.
Although the invention has been discussed with respect to various embodiments, it should be recognized that the invention comprises the novel and non-obvious claims supported by this disclosure.
This present application is a divisional of U.S. patent application Ser. No. 15/001,136, filed Jan. 19, 2016, which claims the benefit of the filing date of U.S. Provisional Patent Application No. 62/104,665, filed on Jan. 16, 2015, the disclosures of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
7878560 | Scheffler et al. | Feb 2011 | B1 |
20030127866 | Martinez et al. | Jul 2003 | A1 |
20050179349 | Booth et al. | Aug 2005 | A1 |
20090284025 | Salcombe | Nov 2009 | A1 |
20110056253 | Greiner et al. | Mar 2011 | A1 |
20110101839 | Boks | May 2011 | A1 |
20130069514 | Hashemi et al. | Mar 2013 | A1 |
20140021843 | Hashemi et al. | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
2830593 | Oct 2006 | CN |
103827422 | May 2014 | CN |
203729162 | Jul 2014 | CN |
20210528 | Oct 2002 | DE |
102007033451 | Jan 2009 | DE |
202011105059 | Dec 2012 | DE |
20-0440074 | May 2008 | KR |
WO 2014015182 | Jan 2014 | WO |
Entry |
---|
Examination Report on related European Application No. 16743862.1 from the European Patent Office (EPO) dated Nov. 15, 2019. |
International Search Report on related PCT Application No. PCT/US2016/013961 from International Searching Authority (KIPO) dated Apr. 28, 2016. |
Written Opinion on related PCT Application No. PCT/US2016/013961 from International Searching Authority (KIPO) dated Apr. 28, 2016. |
Extended European Search Report on related European Application No. 16743862.1 from the European Patent Office (EPO) dated Dec. 14, 2017. |
Office action on related Canadian Patent Application No. 2974118 from the Canadian Intellectual Property Office (CIPO) dated Jun. 7, 2018. |
Office action on related Chinese Application No. 201680013065.7 from the China National Intellectual Property Administration (CNIPA) dated Sep. 29, 2018. |
U.S. Appl. No. 15/001,136, filed Jan. 19, 2016, Scott Jordan Bruk Sahilu Charles Milligan, US 2016-0208520 A1, Office Actions dated Feb. 23, 2018; Oct. 4, 2018; Notice of Allowance dated Apr. 2, 2019. |
Number | Date | Country | |
---|---|---|---|
20190345739 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
62104665 | Jan 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15001136 | Jan 2016 | US |
Child | 16525021 | US |