The present disclosure relates to lock cores and in particular to interchangeable lock cores having an electro-mechanical locking system.
Conventional locksets include a lock cylinder, a lock core that fits within the lock cylinder, and a token that cooperates with the lock core. The lock cylinder can take many forms. For example, the lock cylinder may be a padlock or part of a mortise lockset or cylindrical lockset. No matter what form the lock cylinder takes, the lock cylinder includes an opening that receives the lock core. Traditionally, the lock cores have included mechanical features that cooperated with a mechanical key to determine if the user of the key is granted or denied access through the lockset. Exemplary systems are provided in U.S. Pat. Nos. 4,424,693, 4,444,034, and 4,386,510.
Electronic access control systems interrogate a token having stored codes therein and compare the token codes with valid access codes before providing access to an area. See, for example, U.S. Pat. No. 5,351,042. If the token being interrogated has a valid access code, the electronic access control system interacts with portions of a lockset to permit the user of the token to gain access to the area protected by the lockset.
Access control systems may include mechanical and electrical access components to require that a token include both a valid “mechanical code”, for example, an appropriately configured bitted blade to properly position mechanical tumblers, and the valid electronic access code before the user of the token is granted access. See, for example, U.S. Pat. Nos. 5,826,450, 5,768,925, and 5,685,182. Many of these electro-mechanical access control systems use power sources and access code validation systems which are not situated in the lock core.
Small format interchangeable core (SFIC) locks and large format interchangeable core (LFIC) locks are known. For many of SFIC and LFIC cores, the core is actuated by a key which when correctly bitted aligns the shear line and allows it to rotate. The rotation transfers to the throw members which then interface with whatever locking device the core happens to be installed in. A separate key is used to align a different shear line called the control which couples a core keeper for rotation with the control key. The control key turns about 15 degrees to retract the core keeper within an envelope of the interchangeable core which allows the interchangeable core to be installed and removed, hence interchangeable. The interchangeable concept allows mechanical cylinders to be removed from lock housings and re-installed into different housings. This can be done quickly and eliminates the need to have the mechanical cylinders rekeyed or re-pinned. Interchangeable cores are installed in many different products: cylindrical and mortise locks, exit devices, electro-mechanical locks and key switches, padlocks, and more.
Exemplary interchangeable cores are shown in U.S. Pat. No. 8,973,417. The interchangeable core disclosed in the '417 patent is shown to have a
The technology of interchangeable lock cores has been traditionally controlled by mechanical mechanisms such as keys, pins, tumblers, and the like. When a key, or sometimes a master key, is lost or otherwise compromised it is sometimes necessary to replace each lock to which the compromised key had access. This particular process involves utilizing either a locksmith or other maintenance personnel to rekey or replace the interchangeable core with another core, and then requires the creation and redistribution of new keys. The compromise of a mechanical key in traditional security systems creates a considerable security risk and inconvenience.
However, the installed base of mechanical locks, including interchangeable mechanical locks, is entrenched and many customers will likely not replace their mechanical locks with electro-mechanical locks unless such replacement is relatively easy and inexpensive. This means that customers may only be persuaded to upgrade to electro-mechanical locks if the new lock is cost-effective. Also, the security offered by the electro-mechanical lock should be appropriate to justify the upgrade. Additionally, customers now look to incorporate technology into everyday household objects. Thus, there remains a need for an inexpensive, electro-mechanical core incorporating several advanced technologies.
In an exemplary embodiment, an interchangeable electro-mechanical lock core is provided that has blocking member controlled by a number of elements.
In an exemplary embodiment of the present disclosure, an interchangeable lock core for use with a lock device having a locked state and an unlocked state is provided. The interchangeable core comprising a lock core body having an interior, a moveable plug, and a clutch. The lock core body including an upper portion having a first cylindrical portion with a first maximum lateral extent, a lower portion having a second cylindrical portion with a second maximum lateral extent, and a waist portion having a third maximum lateral extent, the third maximum lateral extent being less than the first maximum lateral extent and being less than the second maximum lateral extent, the lock core body having a first end and a second end opposite the first end. The moveable plug positioned within the lower portion of the lock core body proximate the first end of the lock core body. The moveable plug having a first position relative to the lock core body which corresponds to the lock device being in the locked state and a second position relative to the lock core body which corresponds to the lock device being in the unlocked state. The moveable plug being rotatable between the first position and the second position about a moveable plug axis. The clutch positioned in the lower portion of the lock core body between the moveable plug and the second end of the lock core body. The clutch being rotatable about the moveable plug axis and displaceable along the moveable plug axis. The interchangeable lock core further comprising a biasing member positioned to bias the clutch towards the second end of the lock core body along the moveable plug axis; an operator actuatable assembly supported by the lock core body, the operator actuatable assembly including an operator actuatable input device extending from the second end of the lock core body, the operator actuatable assembly being operatively coupled to the clutch; an electronic controller positioned in the upper portion of the lock core body; an electrical energy storage device positioned in the upper portion of the lock core body; and a blocker positioned in the interior of the lock core body. The blocker having a blocking position which maintains the clutch in a spaced apart relationship relative to the moveable plug along the moveable plug axis and a release position which permits a displacement of the clutch along the moveable plug axis to be operatively coupled to the moveable plug, the electronic controller positioning the blocker in one of the blocking position and the release position.
In one example thereof, the blocker is moveable along a blocker axis which is angled relative to the moveable plug axis. In a variation thereof, the blocker axis is perpendicular to the moveable plug axis.
In another example thereof, the blocker is at least partially positioned in the waist portion of the lock core body as the blocker moves from the blocking position to the release position.
In a further example thereof, the interchangeable lock core further comprises a motor positioned in the upper portion of the lock core body, and a threaded shaft driven by the motor about a blocker axis. The blocker being engaged with the threaded shaft, wherein the threaded shaft is rotated in a first direction about the blocker axis to move the blocker to the blocking position and the threaded shaft is rotated in a second direction about the blocker axis, opposite the first direction, to move the blocker to the release position.
In yet another example thereof, the blocker engages the clutch to restrict the displacement of the clutch along the moveable plug axis when the blocker is in the blocking position.
In yet a further example thereof, the blocker engages the clutch to restrict the displacement of the clutch along the moveable plug axis when the blocker is in the blocking position while permitting rotation of the clutch about the moveable plug axis through 360 degrees.
In still another example thereof, the clutch includes a shoulder and the blocker is positioned between the shoulder of the clutch and the moveable plug when the blocker is in the blocking position. In a variation thereof, the blocker is positioned above the shoulder of the clutch when the blocker is in the release position to permit the shoulder of the clutch to pass underneath the blocker when the clutch is moved along the moveable plug axis towards the moveable plug. In another variation thereof, the clutch includes a circumferential groove which receives the blocker when the blocker is in the blocking position, the shoulder of the clutch being a wall of the circumferential groove of the clutch.
In still a further example thereof, the interchangeable lock core further comprises a lock device interface accessible proximate the first end of the lock core body. The lock device interface adapted to be coupled to the lock device to actuate the lock device to one of the locked state of the lock device and the unlocked state of the lock device. In a variation thereof, the lock device interface is a portion of the moveable plug. In another variation thereof, the lock device interface is coupled to the moveable plug.
In yet still another example thereof, the clutch includes a first plurality of engagement features and the moveable plug includes a second plurality of engagement features. The first plurality of engagement features being spaced apart from the second plurality of engagement features along the moveable plug axis when the blocker is in the blocking position and the first plurality of engagement features being engaged with the second plurality of engagement features when the blocker is in the release position and the clutch has been displaced along the moveable plug axis towards the moveable plug due to an external force exerted on the operator actuatable assembly.
In yet still a further example thereof, the interchangeable lock core further comprises a core keeper moveably coupled to the lock core body, the core keeper being positionable in a retain position wherein the core keeper extends beyond an envelope of the lock core body to hold the lock core body in an opening of the lock device and a remove position wherein the core keeper is within the envelope of the lock core body to permit removal of the lock core body from the opening of the lock device. In a variation thereof, the core keeper is supported by a control sleeve, the control sleeve receiving the moveable plug. In a further variation thereof, the interchangeable lock core further comprises a control element supported by the moveable plug, the control element being moveable from a first position wherein the control element couples the moveable plug to the control sleeve and a second position wherein the control element permits the moveable plug to rotate independent of the control sleeve. In still a further variation thereof, the control element is received in an opening of the control sleeve when the control element is in the first position and the control element is spaced apart from the opening in the control sleeve when the control element is in the second position. In yet still a further variation thereof, the control element is actuatable from the second position to the first position through a central channel of the moveable plug.
In still yet another example thereof, the electronic controller includes an access granted logic which controls when to move the electronically controlled blocker from the blocking position to the release position.
In another exemplary embodiment of the present disclosure, a method of actuating a lock device with an interchangeable lock core having a longitudinal axis is provided. The method comprising the steps of: (a) receiving a first physical input through an operator actuatable assembly of the interchangeable lock core; (b) receiving electronic credentials of an operator device proximate the interchangeable lock core; (c) determining that the received electronic credentials provide access to actuate the interchangeable lock core to actuate the lock device; (d) moving a blocker of the interchangeable lock core from a blocking position to a release position to permit a clutch of the interchangeable core to be displaceable within an interior of the interchangeable lock core along the longitudinal axis of the interchangeable core, the clutch being operatively coupled to the operator actuatable assembly; (e) receiving a second physical input through the operator actuatable assembly, the second physical input being a displacement of an operator actuatable input device of the operator actuatable assembly along the longitudinal axis of interchangeable core towards a moveable plug of the interchangeable lock core; (f) engaging the moveable plug of the interchangeable lock core with the clutch due to the received second physical input and the blocker being in the release position; (g) receiving a third physical input through the operator actuatable assembly, the third physical input being a rotation of the operator actuatable input device of the operator actuatable assembly about the longitudinal axis; and (h) rotating the moveable plug of the interchangeable lock core due to the received third physical input and the clutch being engaged with the moveable plug of the interchangeable lock core.
In an example thereof, the second physical input further includes a rotation of the operator actuatable input device about the longitudinal axis of the interchangeable core. In a variation thereof, the displacement of the operator actuatable input device along the longitudinal axis of the interchangeable core precedes the rotation of the operator actuatable input device about the longitudinal axis of the interchangeable core.
In a further exemplary embodiment of the present disclosure, an interchangeable lock core for use with a lock device having a locked state and an unlocked state is provided. The interchangeable core comprising: a lock core body having an interior; a moveable plug positioned within a first portion of the interior of the lock core body, the moveable plug having a first position relative to the lock core body which corresponds to the lock device being in the locked state and a second position relative to the lock core body which corresponds to the lock device being in the unlocked state, the moveable plug being rotatable between the first position and the second position about a moveable plug axis; a clutch rotatable about the moveable plug axis and moveable along the moveable plug axis; and an electronically controlled blocker positioned in the interior of the lock core body, the electronically controlled blocker having a blocking position which maintains the clutch in a spaced apart relationship relative to the moveable plug along the moveable plug axis and a release position which permits a displacement of the clutch along the moveable plug axis to be operatively coupled to the moveable plug.
In an example thereof, the clutch is positioned in the interior of the lock core body.
In another example thereof, the interchangeable lock core further comprises an operator actuatable assembly supported by the lock core body and coupled to the clutch. The clutch being displaceable along the moveable plug axis in response to an external force exerted on an operator actuatable input device of the operator actuatable assembly. The operator actuatable input device extending from an end of the lock core body.
In yet another example thereof, the interchangeable lock core further comprises a biasing member. The biasing member positioned to bias the clutch to be operatively decoupled from the moveable plug. In a variation thereof, the biasing member is positioned between the clutch and the moveable plug and biases the clutch along the moveable plug axis away from the moveable plug.
In still another example thereof, the clutch is freely rotatable about the moveable plug axis when the electronically controlled blocker is positioned in the blocking position. In a variation thereof, the clutch is freely rotatable about the moveable plug axis when the electronically controlled blocker is positioned in the release position.
In still a further example, with the electronically controlled blocker positioned in the release position, the clutch is displaceable along the moveable plug axis to be operatively coupled to the moveable plug resulting in a rotation of the clutch about the moveable plug axis causing a corresponding rotation in the moveable plug about the moveable plug axis. In a variation thereof, the clutch supports a first plurality of engagement features and the moveable plug supports a second plurality of engagement features, the first plurality of engagement features and the second plurality of engagement features cooperating to operatively couple the clutch to the moveable plug.
In yet another example, the electronically controlled blocker is moveable along a blocker axis which is angled relative to moveable plug axis. In a variation thereof, the blocker axis is perpendicular to moveable plug axis. In another variation thereof, the interchangeable lock core further comprises a motor having a motor shaft rotatable about the blocker axis, the motor being operatively coupled to the electronically controlled blocker to move the electronically controlled blocker from the blocking position to the release position.
In yet still another example, the interchangeable lock core further comprises a motor positioned in the interior of the lock core body in a non-intersecting relationship with the moveable plug axis, the motor being operatively coupled to the electronically controlled blocker to move the electronically controlled blocker from the blocking position to the release position.
In yet still a further example, the interchangeable lock core further comprises an electronic controller operatively coupled to the electronically controlled blocker, the electronic controller including an access granted logic which controls when to move the electronically controlled blocker from the blocking position to the release position.
In yet a further exemplary embodiment, an interchangeable lock core for use with a lock device having a locked state and an unlocked state is provided. The interchangeable core comprising a lock core body having an interior; a moveable plug positioned within a first portion of the interior of the lock core body, the moveable plug having a first position relative to the lock core body which corresponds to the lock device being in the locked state and a second position relative to the lock core body which corresponds to the lock device being in the unlocked state, the moveable plug being rotatable between the first position and the second position about a moveable plug axis; and an electronically controlled blocker positioned in the interior of the lock core body and outside of an envelope of the moveable plug, the electronically controlled blocker having a blocking position which restricts an engagement with the moveable plug to rotate the moveable plug from the first position of the moveable plug to the second position of the moveable plug and a release position which permits the engagement with the moveable plug to rotate the moveable plug from the first position of the moveable plug to the second position of the moveable plug.
In an example thereof, the lock core body includes a first end and a second end opposite the first end, the electronically controlled blocker positioned between the moveable plug and the second end of the lock core body. In a variation thereof, the electronically controlled blocker is translatable along a direction angled relative to the moveable plug axis to move between the blocking position and the release position. In a further variation thereof, the electronically controlled blocker is translatable along a direction perpendicular to the moveable plug axis to move between the blocking position and the release position. In yet a further variation thereof, the interchangeable lock core further comprises an intermediate component between the electronically controlled blocker and the moveable plug, the engagement with the moveable plug to rotate the moveable plug from the first position of the moveable plug to the second position of the moveable plug is between the intermediate component and the moveable plug. In a further variation thereof, the intermediate component is a clutch moveable along the moveable plug axis from a first position of the clutch to a second position of the clutch when the electronically controlled blocker is in the release position, the second position of the clutch results in the engagement between the clutch and the moveable plug. In still a further variation thereof, the clutch supports a first plurality of engagement features and the moveable plug supports a second plurality of engagement features, the first plurality of engagement features and the second plurality of engagement features cooperating to cause the engagement between the clutch and the moveable plug.
In another example thereof, the interchangeable lock core further comprises a motor positioned in the interior of the lock core body and outside of the envelope of the moveable plug, the motor being operatively coupled to the electronically controlled blocker to move the electronically controlled blocker from the blocking position to the release position.
In yet a further example, the interchangeable lock core further comprises an electronic controller operatively coupled to the electronically controlled blocker, the electronic controller including an access granted logic which controls when to move the electronically controlled blocker from the blocking position to the release position.
In still a further exemplary embodiment of the present disclosure, an interchangeable lock core for use with a lock device having a locked state and an unlocked state is provided. The interchangeable core comprising a lock core body having an interior, the lock core body including an upper portion having a first cylindrical portion with a first maximum lateral extent, a lower portion having a second cylindrical portion with a second maximum lateral extent, and a waist portion having a third maximum lateral extent, the third maximum lateral extent being less than the first maximum lateral extent and being less than the second maximum lateral extent, the lock core body having a first end and a second end opposite the first end; a moveable plug positioned within the lower portion of the lock core body proximate the first end of the lock core body, the moveable plug having a first position relative to the lock core body which corresponds to the lock device being in the locked state and a second position relative to the lock core body which corresponds to the lock device being in the unlocked state, the moveable plug being rotatable between the first position and the second position about a moveable plug axis; and an electronically controlled blocker positioned in the interior of the body and axially between the second end of the lock core body and the moveable plug, the electronically controlled blocker having a blocking position which restricts an engagement with the moveable plug to rotate the moveable plug from the first position of the moveable plug to the second position of the moveable plug and a release position which permits the engagement with the moveable plug to rotate the moveable plug from the first position of the moveable plug to the second position of the moveable plug, wherein the electronically controlled blocker is moveable along a blocker axis, the blocker axis being angled relative to the moveable plug axis.
In an example thereof, the interchangeable lock core further comprises an electronic controller operatively coupled to the electronically controlled blocker. The electronic controller including an access granted logic which controls when to move the electronically controlled blocker from the blocking position to the release position.
In a further still exemplary embodiment of the present disclosure, an interchangeable lock core for use with a lock device having a locked state and an unlocked state is provided. The interchangeable core comprising a lock core body having an interior; a moveable plug positioned within a first portion of the interior of the lock core body, the moveable plug having a first position relative to the lock core body which corresponds to the lock device being in the locked state and a second position relative to the lock core body which corresponds to the lock device being in the unlocked state, the moveable plug being rotatable between the first position and the second position about a moveable plug axis; an electronically controlled blocker positioned in the interior of the lock core body, the electronically controlled blocker having a blocking position which restricts an engagement with the moveable plug to rotate the moveable plug from the first position of the moveable plug to the second position of the moveable plug and a release position which permits the engagement with the moveable plug to rotate the moveable plug from the first position of the moveable plug to the second position of the moveable plug; and an electronic controller positioned in the interior of the lock core body, the electronic controller receives at least one wireless input signal, the electronic controller moving the electronically controlled blocker to the release position in response to the received at least one wireless input signal indicating an authorized operator.
In an example thereof, the interchangeable lock core further comprises an operator actuatable assembly including an operator actuatable input device having an exterior, wherein the operator actuatable input device is rotatable about the moveable plug axis and the exterior of the operator actuatable input device prevents access to the moveable plug along the moveable plug axis. In a variation thereof, the operator actuatable input device is translatable along the moveable plug axis. In another variation thereof, wherein when the electronically controlled blocker is in the release position, the moveable plug is rotatable from the first position of the moveable plug to the second position of the moveable plug by translating the operator actuatable input device along the moveable plug axis towards the moveable plug to engage the moveable plug and subsequently rotating the operator actuatable input device about the moveable plug axis to rotate the moveable plug.
In still another exemplary embodiment of the present disclosure, an interchangeable lock core for use with a lock device having a locked state and an unlocked state is provided. The interchangeable core comprising: a lock core body having an interior; a moveable plug positioned within a first portion of the interior of the body, the moveable plug having a first position relative to the lock core body which corresponds to the lock device being in the locked state and a second position relative to the lock core body which corresponds to the lock device being in the unlocked state, the moveable plug being rotatable between the first position and the second position about a moveable plug axis; an operator actuatable assembly supported by the lock core body, the operator actuatable assembly having a first end proximate the moveable plug; and an electronically controlled blocker positioned in the interior of the lock core body, the electronically controlled blocker having a blocking position which restricts an engagement with the moveable plug to rotate the moveable plug from the first position of the moveable plug to the second position of the moveable plug and a release position which permits the engagement with the moveable plug to rotate the moveable plug from the first position of the moveable plug to the second position of the moveable plug, wherein the first end of the operator actuatable assembly is moveable relative to the moveable plug in a first number of degrees of freedom when the electronically controlled blocker is in the blocking position and a second number of degrees of freedom when the electronically controlled blocker is in the release position, the second number of degrees of freedom being greater than the first number of degrees of freedom and both the first number of degrees of freedom and the second number of degrees of freedom being greater than zero.
In an example thereof, the first end of the operator actuatable assembly is rotatable about the moveable plug axis and wherein the first number of degrees of freedom includes a rotation of the first end of the operator actuatable assembly about the moveable plug axis and the second number of degrees of freedom includes the rotation of the first end of the operator actuatable assembly about the moveable plug axis and a translation of the operator actuatable assembly along the moveable plug axis.
In another example thereof, the operator actuatable assembly includes an operator actuatable input device actuatable from an exterior of the lock core body, the operator actuatable input device being moveable in the second number of degrees of freedom when the blocker is in the blocking position while the first end of the operator actuatable assembly is restricted to the first number of degrees of freedom.
In yet another example thereof, the interchangeable lock core further comprises a clutch coupled to the first end of the operator actuatable assembly, wherein with the electronically controlled blocker positioned in the release position the clutch is displaceable along the moveable plug axis to be operatively coupled to the moveable plug. In a variation thereof, the clutch supports a first plurality of engagement features and the moveable plug supports a second plurality of engagement features, the first plurality of engagement features and the second plurality of engagement features cooperating to operatively couple the clutch to the moveable plug. In another variation thereof, the electronically controlled blocker is moveable along a blocker axis which is angled relative to moveable plug axis. In yet a further variation thereof, the interchangeable lock core further comprises a motor having a motor shaft rotatable about the blocker axis, the motor being operatively coupled to the electronically controlled blocker to move the electronically controlled blocker from the blocking position to the release position. In still yet a further variation thereof, the interchangeable lock core further comprises a motor positioned in the interior of the lock core body in a non-intersecting relationship with the moveable plug axis, the motor being operatively coupled to the electronically controlled blocker to move the electronically controlled blocker from the blocking position to the release position.
In a further example thereof, the interchangeable lock core further comprises an electronic controller operatively coupled to the electronically controlled blocker, the electronic controller including an access granted logic which controls when to move the electronically controlled blocker from the blocking position to the release position.
In yet a further still exemplary embodiment of the present disclosure, an interchangeable lock core for use with a lock device having a locked state and an unlocked state is provided. The interchangeable core comprising: a lock core body having an interior; a moveable plug positioned within a first portion of the interior of the lock core body proximate a first end of the lock core body, the moveable plug having a first position relative to the lock core body which corresponds to the lock device being in the locked state and a second position relative to the lock core body which corresponds to the lock device being in the unlocked state, the moveable plug being rotatable between the first position and the second position about a moveable plug axis; an operator actuatable assembly supported by the lock core body and having an operator actuatable input device extending from a second end of the lock core body; and an electronically controlled blocker positioned in the interior of the lock core body, the electronically controlled blocker having a blocking position which restricts an engagement with the moveable plug to rotate the moveable plug from the first position of the moveable plug to the second position of the moveable plug and a release position which permits the engagement with the moveable plug to rotate the moveable plug from the first position of the moveable plug to the second position of the moveable plug, wherein the operator actuatable assembly rotates about the moveable plug axis and the operator actuatable assembly is axially separated from the moveable plug along the moveable plug axis when the blocker is in the blocking position, the operator actuatable assembly being rotatable about the moveable plug axis when the blocker is in the blocking position and when the blocker is in the release position.
In an example thereof, the operator actuatable assembly is rotatable about the moveable plug axis when the blocker is in the blocking position through a 360 degree rotation.
In another example thereof, the interchangeable lock core further comprises a clutch, wherein a displacement of the operator actuatable assembly along the moveable plug axis towards the first end of the lock core body brings the clutch into engagement with the moveable plug, the displacement of the operator actuatable assembly along the moveable plug axis towards the second end of the lock core body being blocked when the blocker is in the blocking position and permitted when the blocker is in the release position.
In yet a another still exemplary embodiment of the present disclosure, an interchangeable lock core for use with a lock device having a locked state and an unlocked state, the interchangeable core comprising: a lock core body having an interior, the lock core body including an upper portion having a first maximum lateral extent, a lower portion having a second maximum lateral extent, and a waist portion having a third maximum lateral extent, the third maximum lateral extent being less than the first maximum lateral extent and being less than the second maximum lateral extent; a moveable plug positioned within a first portion of the interior of the lock core body proximate a first end of the lock core body, the moveable plug having a first position relative to the lock core body which corresponds to the lock device being in the locked state and a second position relative to the lock core body which corresponds to the lock device being in the unlocked state, the moveable plug being moveable between the first position and the second position; an electronically controlled blocker positioned in the interior of the lock core body, the electronically controlled blocker being moveable between a blocking position and a release position, at least a portion of the electronically controlled blocker being positioned in the waist portion of the lock core body as the electronically controlled blocker moves between the blocking position and the release position; and an operator actuatable assembly including an operator actuatable input device extending beyond a second end of the lock core body, wherein (1) when the electronically controlled blocker is in the blocking position the operator actuatable input device of the operator actuatable assembly is rotatable 360 degrees about a first axis relative to the lock core body and the operator actuatable assembly is operatively decoupled from the moveable plug and (2) when the electronically controlled blocker is in the release position the operator actuatable input device of the operator actuatable assembly is rotatable about the first axis and the moveable plug is engageable by the operator actuatable assembly to move the moveable plug from the first position to the second position.
In an example thereof, a movement of the moveable plug from the first position of the moveable plug to the second position of the moveable plug includes a rotation of the moveable plug. In a variation thereof, the rotation of the moveable plug is above the first axis.
In another example thereof, the interchangeable lock core further comprises a motor positioned in the interior of the lock core body, the motor being operatively coupled to the electronically controlled blocker to move the electronically controlled blocker from the blocking position to the release position. In a variation thereof, the motor is positioned outside of an envelope of the moveable plug.
In yet another example, the interchangeable lock core further comprises an electronic controller operatively coupled to the electronically controlled blocker, the electronic controller including an access granted logic which controls when to move the electronically controlled blocker from the blocking position to the release position.
In still yet a further still exemplary embodiment of the present disclosure, an interchangeable lock core for use with a lock device having a locked state and an unlocked state, the interchangeable core comprising: a lock core body having an interior; a moveable plug positioned within the interior of the lock core body proximate a first end of the lock core body, the moveable plug having a first position relative to the lock core body which corresponds to the lock device being in the locked state and a second position relative to the lock core body which corresponds to the lock device being in the unlocked state, the moveable plug being rotatable between the first position and the second position about a moveable plug axis; a clutch positioned in the lock core body between the moveable plug and a second end of the lock core body, the second end being opposite the first end, the clutch being rotatable about the moveable plug axis and displaceable along the moveable plug axis; a first biasing member positioned to bias the clutch in a first direction along the moveable plug axis away from the moveable plug; an operator actuatable input device operatively coupled to the clutch and being moveable along the moveable plug axis through a first distance relative to the clutch; a second biasing member positioned to bias the operator actuatable input device in the first direction along the moveable plug axis, the second biasing member exerting a higher force on the operator actuatable input device than the first biasing member exerts on the clutch; and a blocker positioned in the interior of the lock core body, the blocker having a first blocking position which maintains the clutch in a spaced apart relationship relative to the moveable plug along the moveable plug axis and a release position which permits a displacement of the clutch along the moveable plug axis in a second direction, opposite the first direction, to be operatively coupled to the moveable plug, wherein in the presence of an external force on the operator actuatable input device along the second direction (a) when the blocker is in the release position the first biasing member is overcome to operatively couple the operator actuatable input device to the moveable plug through the clutch due to a movement of both the operator actuatable input device and the clutch in the second direction and (b) when the blocker is in the blocking position the second biasing member is overcome and the operator actuatable input device is moved in the second direction relative to the clutch and contacts a stop surface to prevent further movement of the operator actuatable input device in the second direction.
In an example thereof, the stop surface is supported by the lock core body. In a variation thereof, the stop surface is the second end of the lock core body.
In another example, the first biasing member is a first spring positioned between the clutch and the moveable plug and the second biasing member is a second spring positioned between the clutch and the operator actuatable input device.
In still yet another still exemplary embodiment of the present disclosure, an interchangeable lock core for use with a lock device having a locked state and an unlocked state and an operator device is provided. The interchangeable core comprising: a lock core body having an interior, the lock core body including an upper portion having a first cylindrical portion with a first maximum lateral extent, a lower portion having a second cylindrical portion with a second maximum lateral extent, and a waist portion having a third maximum lateral extent, the third maximum lateral extent being less than the first maximum lateral extent and being less than the second maximum lateral extent, the lock core body having a first end and a second end opposite the first end; a moveable plug positioned within the lower portion of the lock core body proximate the first end of the lock core body, the moveable plug having a first position relative to the lock core body which corresponds to the lock device being in the locked state and a second position relative to the lock core body which corresponds to the lock device being in the unlocked state, the moveable plug being rotatable between the first position and the second position about a moveable plug axis; an operator actuatable input device operatively coupled to the moveable plug and being moveable along the moveable plug axis and about the moveable plug axis; a sensor supported by the lock core body, the sensor positioned to detect a movement of the operator actuatable input device relative to the moveable plug axis; an electronic controller positioned in the interior of the lock core body, the electronic controller in response to the sensor detecting the movement of the operator actuatable input device relative to the moveable plug axis monitors for a wireless signal from the operator device with an electronic credentials; and a blocker positioned in the interior of the lock core body, the blocker having a blocking position which restricts an engagement with the moveable plug to rotate the moveable plug from the first position of the moveable plug to the second position of the moveable plug and a release position which permits the engagement with the moveable plug to rotate the moveable plug from the first position of the moveable plug to the second position of the moveable plug, the electronic controller positioning the blocker in one of the blocking position and the release position.
In an example thereof, the electronic credentials is a single electronic credential. In another example thereof, the electronic credentials is a plurality of electronic credentials.
In a further example, the sensor detects a translation of the operator actuatable input device along the moveable plug axis. In a variation thereof, the sensor includes an actuator accessible from the second end of the lock core body, the operator actuatable input device contacts the actuator when the operator actuatable input device is translated along the moveable plug axis towards the first end of the lock core body. In a further variation thereof, the actuator is a button extending from the second end of the lock core body.
In still another example, the operator actuatable input device supports a magnet and the sensor monitors a magnetic field proximate the second end of the lock core body, a characteristic of the magnetic field changing as the operator actuatable input device is translated along the moveable plug axis. In a variation thereof, the magnet is a ring magnet.
In yet still another example, the sensor detects a rotation of the operator actuatable input device about the moveable plug axis. In a variation thereof, the operator actuatable input device supports a magnet and the sensor monitors a magnetic field proximate the second end of the lock core body, a characteristic of the magnetic field changing as the operator actuatable input device is rotated about the moveable plug axis.
In still another exemplary embodiment of the present disclosure, an interchangeable lock core for use with a lock device having a locked state and an unlocked state and an operator device is provided. The interchangeable core comprising: a lock core body having an interior, the lock core body including an upper portion having a first cylindrical portion with a first maximum lateral extent, a lower portion having a second cylindrical portion with a second maximum lateral extent, and a waist portion having a third lateral extent, the third lateral extent being less than the first maximum lateral extent and being less than the second maximum lateral extent, the lock core body having a first end and a second end opposite the first end; a moveable plug positioned within the lower portion of the lock core body proximate the first end of the lock core body, the moveable plug having a first position relative to the lock core body which corresponds to the lock device being in the locked state and a second position relative to the lock core body which corresponds to the lock device being in the unlocked state, the moveable plug being rotatable between the first position and the second position about a moveable plug axis; an operator actuatable input device operatively coupled to the moveable plug and being moveable along the moveable plug axis and about the moveable plug axis; a sensor supported by the lock core body, the sensor providing an indication of the operator device proximate the lock core body; an electronic controller positioned in the lock core body, the electronic controller in response to the sensor detecting the operator device proximate the lock core body monitors for a wireless signal from the operator device with an electronic credentials; and a blocker positioned in the interior of the lock core body, the blocker having a blocking position which restricts an engagement with the moveable plug to rotate the moveable plug from the first position of the moveable plug to the second position of the moveable plug and a release position which permits the engagement with the moveable plug to rotate the moveable plug from the first position of the moveable plug to the second position of the moveable plug, the electronic controller positioning the blocker in one of the blocking position and the release position, the electronically controlled blocker is at least partially positioned in the waist portion of the lock core body as the blocker moves from the blocking position to the release position.
In an example thereof, the sensor is one of a capacitive sensor, an inductive sensor, and an ultrasonic sensor.
In another example thereof, the interchangeable lock core further comprises an intermediate component between the electronically controlled blocker and the moveable plug, the engagement with the moveable plug to rotate the moveable plug from the first position of the moveable plug to the second position of the moveable plug is between the intermediate component and the moveable plug. In a variation thereof, the intermediate component is a clutch moveable along the moveable plug axis from a first position of the clutch to a second position of the clutch when the electronically controlled blocker is in the release position, the second position of the clutch results in the engagement between the clutch and the moveable plug. In another variation thereof, the clutch supports a first plurality of engagement features and the moveable plug supports a second plurality of engagement features, the first plurality of engagement features and the second plurality of engagement features cooperating to cause the engagement between the clutch and the moveable plug.
In a further example thereof, the interchangeable lock core further comprises a motor positioned in the interior of the lock core body and outside of an envelope of the moveable plug, the motor being operatively coupled to the electronically controlled blocker to move the electronically controlled blocker from the blocking position to the release position. In a variation thereof, the electronically controlled blocker is translated along a blocker axis as the electronically controlled blocker moves from the blocking position to the release position.
In yet a further exemplary embodiment of the present disclosure, an interchangeable lock core for use with a lock device having a locked state and an unlocked state, the lock device including a privacy input which may be actuated to indicate the lock device should remain in the locked state is provided. The interchangeable lock core comprising: a lock core body having an interior; a moveable plug positioned within a first portion of the interior of the lock core body, the moveable plug having a first position relative to the lock core body which corresponds to the lock device being in the locked state and a second position relative to the lock core body which corresponds to the lock device being in the unlocked state, the moveable plug being rotatable between the first position and the second position about a moveable plug axis; an electronically controlled blocker positioned in the interior of the lock core body, the electronically controlled blocker having a blocking position which restricts an engagement with the moveable plug to rotate the moveable plug from the first position of the moveable plug to the second position of the moveable plug and a release position which permits the engagement with the moveable plug to rotate the moveable plug from the first position of the moveable plug to the second position of the moveable plug; and an electronic controller positioned in the interior of the lock core body which receives at least one wireless input signal, the electronic controller moving the electronically controlled blocker in the release position in response to both (a) a first wireless signal of the received at least one wireless input signal indicating an authorized operator and (b) an indication that the privacy input has not been actuated to an activated privacy state.
In an example thereof, the indication that the privacy input has not been actuated to the activated privacy state is received by the electronic controller as a second wireless input signal. In a variation thereof, both the first wireless input signal and the second wireless input signal are BLUETOOTH advertising packets.
In another example, the indication that the privacy input has not been actuated to the activated privacy state is an absence of a second wireless input signal received by the electronic controller.
In another yet exemplary embodiment of the present disclosure, a lock system for use with a door having an exterior side and an interior side and a strike mounted to a door frame is provided. The lock system having an opening on the exterior side of the door. The lock system comprising a first operator actuatable input device actuatable from the exterior side of the door; a second operator actuatable input device actuatable from the interior side of the door; a lock device positioned between the first operator actuatable input device and the second operator actuatable input device, the lock device including a latch, the latch having an extended position wherein the latch is positioned in the strike and a retracted position wherein the latch is retracted from the strike; a privacy input actuatable from the interior side of the door, the privacy input may be actuated to an activated privacy state to indicate the lock device should remain in a locked state; and an interchangeable lock core positioned in the opening of the lock system on the exterior side of the door. The interchangeable lock core including a lock core body having an interior; a moveable plug positioned within the interior of the lock core body, the moveable plug having a first position relative to the lock core body which corresponds to the lock device being in the locked state wherein the latch is maintained in the extended position and a second position relative to the lock core body which corresponds to the lock device being in an unlocked state wherein the latch may be moved to the retracted position, the moveable plug being rotatable between the first position and the second position about a moveable plug axis; an electronically controlled blocker positioned in the interior of the lock core body, the electronically controlled blocker having a blocking position which restricts an engagement with the moveable plug to rotate the moveable plug from the first position of the moveable plug to the second position of the moveable plug and a release position which permits the engagement with the moveable plug to rotate the moveable plug from the first position of the moveable plug to the second position of the moveable plug; and an electronic controller which receives at least one wireless input signal, the electronic controller moving the electronically controlled blocker to the release position in response to both (a) a first wireless signal of the received at least one wireless input signal indicating an authorized operator and (b) an indication that the privacy input has not been actuated to an activated privacy state.
In an example thereof, the indication that the privacy input has not been actuated to the activated privacy state is received by the electronic controller as a second wireless input signal. In a variation thereof, both the first wireless input signal and the second wireless input signal are BLUETOOTH advertising packets.
In another example thereof, the indication that the privacy input has not been actuated to the activated privacy state is an absence of a second wireless input signal received by the electronic controller.
In a further example thereof, the lock system further comprises a visual indicator viewable from the interior side of the door, the visual indicator provides a status of the privacy input.
In a further still example thereof, the privacy input is supported by the second operator actuatable input device actuatable from the interior side of the door.
In a yet further example thereof, the lock system further comprises a first antenna operatively coupled to the electronic controller and positioned to monitor the exterior side of the door; a second antenna operatively coupled to the electronic controller and positioned to monitor the interior side of the door, wherein the electronic controller discards the at least one wireless input signal if received by the second antenna.
In yet another example thereof, an actuation of the second operator actuatable device cancels the activated privacy state of the privacy input. In a variation thereof, the actuation of the second operator actuatable device is a rotation of the second operator actuatable device.
In a further example thereof, the lock system further comprises a movement sensor, the movement sensor monitoring the second operator actuatable device. In a variation thereof, the movement sensor is one of a vibration sensor, a tilt sensor, and an accelerometer.
In still a further exemplary embodiment of the present disclosure an interchangeable lock core for use with a lock device having a locked state and an unlocked state is provided. The lock device including an opening sized to receive the interchangeable lock core. The interchangeable lock core comprising: a lock core body having an interior, the lock core body including an upper portion having a first maximum lateral extent, a lower portion having a second maximum lateral extent, and a waist portion having a third maximum lateral extent, the third maximum lateral extent being less than the first maximum lateral extent and being less than the second maximum lateral extent, the lower portion, the upper portion, and the waist portion forming an envelope of the lock core body; a moveable plug positioned within a first portion of the interior of the lock core body proximate a first end of the lock core body, the moveable plug having a first position relative to the lock core body which corresponds to the lock device being in a locked state and a second position relative to the lock core body which corresponds to the lock device being in the unlocked state, the moveable plug being rotatable between the first position and the second position about a moveable plug axis; a core keeper moveably coupled to the lock core body, the core keeper being positionable in a retain position wherein the core keeper extends beyond the envelope of the lock core body to hold the lock core body in the opening of the lock device and a remove position wherein the core keeper is within the envelope of the lock core body to permit removal of the lock core body from the opening of the lock device; an electronically controlled blocker positioned in the interior of the lock core body, the electronically controlled blocker being moveable between a blocking position and a release position; and an operator actuatable assembly including an operator actuatable input device extending beyond a second end of the lock core body, wherein the operator actuatable input device blocks access to the interior of the lock core body, the moveable plug is movable from the first position to the second position with the operator actuatable input device being assembled to the lock core body, and the operator actuatable input device must be removed from a remainder of the interchangeable lock core prior to moving the core keeper from the retain position to the release position.
In an example thereof, the interchangeable core further comprises a control sleeve rotatable about the moveable plug axis, the control sleeve supporting the core keeper. In a variation thereof, the moveable plug is received within an interior of the control sleeve. In another variation thereof, the control sleeve is positioned in the interior of the lock core body. In a further variation thereof, the lower portion of the lock core body includes an opening and the control sleeve is positioned in the opening of the lower portion of the lock core body. In still a further variation thereof, the interchangeable core further comprises at least a first coupler received in at least a first opening of the moveable plug, the first coupler being moveable in a direction angled relative to the moveable plug axis to couple the control sleeve to the moveable plug such that a rotation of the moveable plug about the moveable plug axis causes a rotation of the control sleeve about the moveable axis. In still a further variation thereof, the moveable plug includes a central keyway along the moveable plug axis, the first coupler extending into the central keyway, wherein with the operator actuatable input device removed from the remainder of the interchangeable lock core, the keyway is accessible from the second end of the lock core body.
In yet another exemplary embodiment of the present disclosure, a method of actuating a lock device with an interchangeable lock core having a longitudinal axis is provided. The method comprising the steps of (a) receiving a first physical input through an exterior of an operator actuatable input device of an operator actuatable assembly of the interchangeable lock core; (b) generating a first broadcast message with an electronic controller positioned within the interchangeable lock core in response to receiving the first physical input; (c) broadcasting the first broadcast message; (d) receiving a second broadcast message from an operator device positioned proximate the interchangeable lock core, the second broadcast message including an electronic credentials of the operator device proximate the interchangeable lock core; (e) determining that the received electronic credentials provide access to actuate the interchangeable lock core to actuate the lock device; (f) moving a blocker of the interchangeable lock core from a blocking position to a release position to permit a rotation of a moveable plug of the interchangeable core; and (g) receiving at least a second physical input through the operator actuatable assembly to rotate the moveable plug of the interchangeable lock core, the second physical input including a translation of the operator actuatable input device along the longitudinal axis of the interchangeable core.
In an example thereof, the second physical input is through the exterior of the operator actuatable input device of the operator actuatable assembly. In a variation thereof, the second physical input further includes a rotation of the operator actuatable input device about the longitudinal axis of the interchangeable core. In a further variation thereof, the translation of the operator actuatable input device along the longitudinal axis of the interchangeable core precedes the rotation of the operator actuatable input device about the longitudinal axis of the interchangeable core.
In another example thereof, the first broadcast message includes an interchangeable core identifier of the interchangeable core and a challenge number and the second broadcast message includes an operator device identifier and an encrypted challenge response generated with a first key accessible by the operator device. In a variation thereof, the step of determining that the received electronic credentials provide access to actuate the interchangeable lock core to actuate the lock device includes the steps of: selecting a second key accessible by the interchangeable lock core, the second key being associated with the operator device identifier; encrypting the challenge number with the second key; and determining that the encrypted challenge number matches the received encrypted challenge response.
In still another example thereof, the first broadcast message is a BLUETOOTH advertising packet. In yet another example thereof, the second broadcast message is a BLUETOOTH advertising packet.
In a further still example, the first broadcast message includes a current state of the interchangeable core and the second broadcast message includes a requested state of the interchangeable core. In a variation thereof, the method further comprises the steps of updating the current state of the interchangeable core to the requested state. In a further yet example, the challenge number is a random number.
In another yet still exemplary embodiment of the present disclosure, an interchangeable lock core for use with a lock device having a locked state and an unlocked state and an operator device positioned proximate the interchangeable core is provided. The interchangeable core comprising: a lock core body having an interior and a longitudinal axis; a moveable plug positioned within the interior of the lock core body along the longitudinal axis of the lock core body and proximate a first end of the lock core body, the moveable plug having a first position relative to the lock core body which corresponds to the lock device being in the locked state and a second position relative to the lock core body which corresponds to the lock device being in the unlocked state; an electronically controlled blocker positioned in the interior of the lock core body, the electronically controlled blocker having a blocking position which restricts an engagement with the moveable plug to rotate the moveable plug from the first position of the moveable plug to the second position of the moveable plug and a release position which permits the engagement with the moveable plug to rotate the moveable plug from the first position of the moveable plug to the second position of the moveable plug; an operator actuatable assembly including an operator actuatable input device having an exterior, the operator actuatable input device extending from a second end of the lock core body; and an electronic controller configured to (1) broadcast a first broadcast message in response to a first physical input through the exterior of the operator actuatable input device, (2) receive a second broadcast message including an electronic credentials of the operator device proximate the interchangeable lock core in response to the first broadcast message, (3) determine that the received electronic credentials provide access to move the moveable plug from the first position of the moveable plug to the second position of the moveable plug, and (4) in response to the determination that the received electronic credentials provide access to move the moveable plug from the first position of the moveable plug to the second position of the moveable plug, move the blocker from the blocking position to the release position to permit the operator actuatable input device to translate along the longitudinal axis of the lock core body to actuate the moveable plug.
In an example thereof, the electronically controlled blocker is positioned outside of an envelope of the moveable plug.
In another example thereof, the first broadcast message includes an interchangeable core identifier of the interchangeable core and a challenge number and the second broadcast message includes an operator device identifier and an encrypted challenge response generated with a first key accessible by the operator device. In a variation thereof, the electronic controller determines that the received electronic credentials provide access to move the moveable plug from the first position of the moveable plug to the second position of the moveable plug by encrypting the challenge number with a second key accessible by the electronic controller and associated with the operator device identifier and determining that the encrypted challenge number matches the received encrypted challenge response.
In a further example thereof, the first broadcast message is a BLUETOOTH advertisement message. In yet a further example thereof, the second broadcast message is a BLUETOOTH advertisement message.
In still a further example thereof, the first broadcast message includes a current state of the interchangeable core and the second broadcast message includes a requested state of the interchangeable core.
In a further yet exemplary embodiment of the present disclosure, a method of actuating a lock device with an interchangeable lock core having a longitudinal axis is provided. The method comprising the steps of: (a) receiving a first physical input through an exterior of an operator actuatable input device of an operator actuatable assembly of the interchangeable lock core; (b) scanning for a first wireless signal from an operator device proximate the interchangeable lock core; (c) generating a first broadcast message with an electronic controller positioned within the interchangeable lock core in response to receiving the first physical input and receiving the first wireless signal from the operator device proximate the interchangeable lock core; (d) broadcasting the first broadcast message; (e) receiving a second broadcast message from the operator device positioned proximate the interchangeable lock core, the second broadcast message including an electronic credentials of the operator device proximate the interchangeable lock core; (f) determining that the received electronic credentials provide access to actuate the interchangeable lock core to actuate the lock device; (g) moving a blocker of the interchangeable lock core from a blocking position to a release position to permit a rotation of a moveable plug of the interchangeable core; and (h) receiving at least a second physical input through the operator actuatable assembly to rotate the moveable plug of the interchangeable lock core, the second physical input including a translation of the operator actuatable input device along the longitudinal axis of the interchangeable core.
In a still further yet exemplary embodiment of the present disclosure, a method of actuating a lock device with an interchangeable lock core having a longitudinal axis is provided. The method comprising the steps of: (a) receiving a broadcast message from an operator device positioned proximate the interchangeable lock core, the broadcast message including an electronic credentials of the operator device proximate the interchangeable lock core; (b) determining that the received electronic credentials provide access to actuate the interchangeable lock core to actuate the lock device; (c) determining if this is an inaugural attempt to use the electronic credentials to actuate the lock device, and if so, launch instructional information on a display of the operator device; (d) subsequent to the instructional information on the display of the operator device being displayed, moving a blocker of the interchangeable lock core from a blocking position to a release position to permit an engagement of a moveable plug of the interchangeable core; and (e) receiving at least one physical input through an operator actuatable input device to rotate the moveable plug of the interchangeable lock core.
In an example thereof, the at least one physical input includes a translation of the operator actuatable input device along the longitudinal axis of the interchangeable core. In a variation thereof, the at least one physical input further includes a rotation of the operator actuatable input device about the longitudinal axis of the interchangeable core. In a further variation thereof, the translation of the operator actuatable input device along the longitudinal axis of the interchangeable core precedes the rotation of the operator actuatable input device about the longitudinal axis of the interchangeable core.
In another example thereof, the method further comprises the steps of: detecting an improper operation of the interchangeable core; and providing a notification on the display of the operator device of the improper operation.
In a further yet still exemplary embodiment of the present disclosure, a method of generating keys for a plurality of operator devices, the electronic keys providing access to a plurality of interchangeable electro-mechanical lock cores, is provided. The method comprising the steps of: (a) receiving a plurality of core electronic keys associated with the plurality of interchangeable electro-mechanical lock cores, each of the plurality of core electronic keys being based on a system master electronic key and at least one identifier associated with the respective interchangeable electro-mechanical lock core; and (b) for each of the plurality of operator devices, generating an operator device key for at least one of the plurality of interchangeable electro-mechanical lock cores, a first operator device key for a first operator device of the plurality of operator devices being based on the core electronic key for a first interchangeable electro-mechanical lock core of the plurality of interchangeable electro-mechanical lock cores, at least one identifier associated with the first operator device, and access rights assigned to the first operator device for the first interchangeable electro-mechanical lock core of the plurality of interchangeable electro-mechanical lock cores.
The above-mentioned and other features and advantages of this disclosure, and the manner of attaining them, will become more apparent and will be better understood by reference to the following description of exemplary embodiments taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplification set out herein illustrate exemplary embodiments of the present disclosure and such exemplifications are not to be construed as limiting the scope of the present disclosure in any manner.
For the purposes of promoting an understanding of the principles of the present disclosure, reference is now made to the embodiments illustrated in the drawings, which are described below. The embodiments disclosed herein are not intended to be exhaustive or limit the present disclosure to the precise form disclosed in the following detailed description. Rather, the embodiments are chosen and described so that others skilled in the art may utilize their teachings. Therefore, no limitation of the scope of the present disclosure is thereby intended. Corresponding reference characters indicate corresponding parts throughout the several views.
The terms “couples”, “coupled”, “coupler” and variations thereof are used to include both arrangements wherein the two or more components are in direct physical contact and arrangements wherein the two or more components are not in direct contact with each other (e.g., the components are “coupled” via at least a third component), but yet still cooperate or interact with each other).
In some instances throughout this disclosure and in the claims, numeric terminology, such as first, second, third, and fourth, is used in reference to various components or features. Such use is not intended to denote an ordering of the components or features. Rather, numeric terminology is used to assist the reader in identifying the component or features being referenced and should not be narrowly interpreted as providing a specific order of components or features.
Referring to
The interior 104 of lock core body 102 includes a moveable core plug 106 which may be operatively coupled to a lock device 110 through a lock device interface 112 of lock core body 102. Lock device 110 has a locked configuration wherein access is denied to an area, an article, a mechanical actuator, an electrical actuator (e.g. a switch), or other device and an unlocked configuration wherein access is permitted to the area, the article, the mechanical actuator, the electrical actuator, or other device. For instance, a lock device may be part of a door lock system (see for example
Moveable core plug 106 may further be operatively coupled to an operator actuatable assembly 120 through an operator actuatable assembly interface 122. Moveable core plug 106 may be a single unitary component or a multi-piece assembly. Exemplary operator actuatable assemblies include operator actuatable input devices, such as knobs, levers, handles, and other suitable devices for actuation by a human operator.
Interchangeable electro-mechanical lock core 100 is received in an opening 124 of a housing 126. Exemplary housings include lock cylinders, such as for mortise locks or rim cylinders, handles, knobs, and padlock bodies.
Interchangeable electro-mechanical lock core 100 further includes a core keeper 130. Core keeper 130, also known as a control element or side bar in the art, interacts with a retainer 132 of housing 126. Exemplary retainers 132 include recesses in the wall of the housing 126 or other suitable features. In one example, core keeper 130 projects from an envelope of lock core body 102 (such as envelope 236 in
Moveable core plug 106 has a first position relative to lock core body 102 which corresponds to lock device 110 being in a locked state and a second position relative to lock core body 102 which corresponds to lock device 110 being in an unlocked state. Moveable core plug 106 is moveable between the first position and the second position. In one embodiment, moveable core plug 106 is rotatable between the first position and the second position about a moveable plug axis.
Interchangeable electro-mechanical lock core 100 further includes a blocker 140. Blocker 140 is positioned in interior 104 of lock core body 102 and has a first blocking position which restricts a movement of moveable core plug 106 from the first position to the second position through an actuation of operator actuatable assembly 120 and a release position which permits a movement of moveable core plug 106 from the first position to the second position through an actuation of operator actuatable assembly 120. In one embodiment, blocker 140 prevents an engagement of moveable core plug 106 by operator actuatable assembly 120 or an intermediate component or assembly actuated by operator actuatable assembly 120 when blocker 140 is in the blocked position and permits an engagement of moveable core plug 106 by operator actuatable assembly 120 or an intermediate component or assembly when blocker 140 is in the release position. In one example, a clutch is provided between moveable core plug 106 and operator actuatable assembly 120. When blocker 140 is in the blocked position, the clutch is maintained in a spaced apart relationship relative to the moveable plug 106 and when blocker 140 is in the release position the clutch is moveable into engagement with moveable core plug 106. Exemplary embodiments 200 and 700 of interchangeable electro-mechanical lock core are disclosed herein and each includes a clutch 280, 780 which interacts with a corresponding blocker 260 and moveable plug 220, 720.
Interchangeable electro-mechanical lock core 100 further includes an electronic controller 142. Electronic controller 142 includes logic which controls the position of blocker 140 in either the blocking position or the release position. The term “logic” as used herein includes software and/or firmware executing on one or more programmable processors, application-specific integrated circuits, field-programmable gate arrays, digital signal processors, hardwired logic, or combinations thereof. Therefore, in accordance with the embodiments, various logic may be implemented in any appropriate fashion and would remain in accordance with the embodiments herein disclosed. A non-transitory machine-readable medium comprising logic can additionally be considered to be embodied within any tangible form of a computer-readable carrier, such as solid-state memory, magnetic disk, and optical disk containing an appropriate set of computer instructions and data structures that would cause a processor to carry out the techniques described herein. This disclosure contemplates other embodiments in which electronic controller 142 is not microprocessor-based, but rather is configured to control operation of blocker 140 and/or other components of interchangeable electro-mechanical lock core 100 based on one or more sets of hardwired instructions. Further, electronic controller 142 may be contained within a single device or be a plurality of devices networked together or otherwise electrically connected to provide the functionality described herein.
A power source 144 is also included in interchangeable electro-mechanical lock core 100. Power source 144 is an electrical energy storage device which provides power to electronic controller 142 and other components of interchangeable electro-mechanical lock core 100. Exemplary electrical energy storage devices include capacitors, flywheels, batteries, and other devices which store energy that may be used to generate electrical energy. In one embodiment, power source 144 is positioned in interior 104 of lock core body 102. In another embodiment, power source 144 is replaced with a power source 146 supported by operator actuatable assembly 120, such as a battery provided in a knob or other operator actuatable input device of operator actuatable assembly 120. In one embodiment, interchangeable electro-mechanical lock core 100 includes both power source 144 and power source 146. For example, power source 144 may be a capacitor which is charged by power source 146 which may be a battery.
Referring to
An operator actuatable assembly 210 is shown supported by interchangeable electro-mechanical lock core 200. Operator actuatable assembly 210 is operatively coupled to a moveable core plug 220 (see
Referring to
Interchangeable electro-mechanical lock core 200 may be received in corresponding openings in a plurality of different types of housings. Referring to
Referring to
Referring to
Interchangeable electro-mechanical lock core 200 further includes a control assembly 252 positioned in first cylindrical portion 232 of lock core body 202. Control assembly 252 includes an electronic controller 254 and a power source 256. Power source 256 provides electrical power to electronic controller 254. As explained in more detail herein, control assembly 252 controls the operation of interchangeable electro-mechanical lock core 200 including when moveable core plug 220 may be engaged to rotate about moveable plug axis 250 from the first position wherein lock device 110 is in the locked state to the second position wherein lock device 110 is in the unlocked state and when a core keeper 242 of interchangeable electro-mechanical lock core 200 may be engaged to move core keeper 242 within the envelope 236 of lock core body 202. In one embodiment, power source 256 is a battery. In another embodiment, power source 256 includes a battery and a capacitor, as discussed in more detail herein in connection with
Interchangeable electro-mechanical lock core 200 further includes a blocker 260 operatively coupled to electronic controller 254. Blocker 260 includes a first portion 262 having a threaded opening which is engaged with a threaded shaft 264 of a motor 266 and a second portion 268 which extends downward from first portion 262. Motor 266 is controlled by electronic controller 254. As illustrated in
As explained in more detail herein, blocker 260 engages with a clutch 280 of interchangeable electro-mechanical lock core 200 which is positioned in second cylindrical portion 238 of lock core body 202. Clutch 280 includes a circumferential groove 282 which receives second portion 268 of blocker 260, as illustrated in
A biasing member 290 biases clutch 280 in direction 286 to maintain clutch 280 in a spaced apart relationship relative to moveable core plug 220. As shown in
In the illustrated embodiment, engagement features 292 and engagement features 294 are a plurality of interlocking protrusions carried by clutch 280 and recesses carried by moveable core plug 220, respectively. In other embodiments, engagement features 292 may be one or more protrusions received by one or more recess of engagement features 294 or vice versa. Additionally, engagement features 292 and engagement features 294 may be generally planar frictional surfaces which when held in contact couple clutch 280 and moveable core plug 220 to rotate together. By including a plurality of interlocking protrusions and recesses, as shown in the illustrated embodiment, clutch 280 may have multiple rotational positions relative to moveable core plug 220 about moveable plug axis 250 wherein engagement features 292 of clutch 280 may engage engagement features 294 of moveable core plug 220.
Referring to
As mentioned herein, blocker 260 cooperates with clutch 280 to deny or grant access to moveable core plug 220. As shown in
Referring to
Returning to
Various operations of interchangeable electro-mechanical lock core 200 are explained with reference to
Referring to
As shown in
An advantage, among others, for the inclusion of biasing member 320 and the geometry of operator actuatable input device 212 and clutch 280 is that the operator actuatable assembly 210 as opposed to clutch 280 and blocker 260 will absorb the excess force (which is passed on to lock core body 202 when operator actuatable assembly 210 contacts lock core body 202) thereby increasing the durability of interchangeable electro-mechanical lock core 200 from being damaged. Biasing member 320 also absorbs an initial large spike of the external force and assists in returning operator actuatable input device 212 to the position shown in
Returning to
Turning to
Referring to
Referring to
A blocker 400 is positioned along a first side of central support 394 and is moveable in cavity 390 in direction 430 and direction 432. A side surface 434 of blocker 400 urges coupler 312 into interior 398 of central support 396 when blocker 400 is in the illustrated position. As blocker 400 is moved in direction 432, coupler 312 may be received in a recess (not shown) in side surface 434 of blocker 400 to permit coupler 312 to exit groove 314 of extension 310. Blocker 400 is biased to the illustrated position through a biasing member, illustratively spring 404, biasing blocker 400 in direction 430.
Blocker 400 is moved in direction 432 due to a rotation of a lever 412 positioned in cavity 390 about a fulcrum 414. Blocker 400 is coupled to a first lever arm 416 of lever 412 through a wire 410. A second lever arm 418 of lever 412 is coupled to a Nitinol wire 420 which contracts when an electrical current is applied to the wire and returns to its original length when the electrical current is removed. Wire 420 is coupled to a knob release controller 422 which applies a current to nitinol wire 420 when operator actuatable input device 212 is to be removed. When nitinol wire 420 contracts, second lever arm 418 is moved in direction 430 which in turn causes first lever arm 416 to move in direction 432. The movement of first lever arm 416 in direction 432 in turn raises blocker 400 in direction 432 against the bias of spring 404.
In one embodiment, knob release controller 422 includes logic which determines whether appropriate electronic credentials have been presented to remove operator actuatable input device 212. In another embodiment, knob release controller 422 communicates with electronic controller 254 and electronic controller 254 includes logic which determines whether appropriate electronic credentials have been presented. If appropriate electronic credentials have been presented electronic controller 254 provides a command to knob release controller 422 to apply a sufficient current to nitinol wire 420 to move blocker 400 and allow coupler 312 to exit groove 314 of extension 310.
Although nitinol wire 420 is shown actuating a lever 412 other arrangements are contemplated. In one embodiment, nitinol wire 420 is directly coupled to blocker 400 to actuate blocker 400. One advantage, among others, of incorporating lever 412 is the force multiplication of lever 412 and the movement range multiplication of lever 412 due to the unequal lengths of first lever arm 416 and second lever arm 418. In another embodiment, nitinol wire 420 is directly coupled to coupler 312 to move coupler 312 out of interior 398 of central support 396.
As explained in more detail herein, electronic controller 254 has a sleep mode and an awake mode. An advantage, among others, for having a sleep mode is the ability to increase battery life. As mentioned in connection with
Referring to
Referring to
Referring to
An advantage, among others, of a system which detects an axial external force in direction 284 along moveable plug axis 250 is that the system may also be used as a safety feature to limit damage to blocker 260, motor 266, and clutch 280. If an operator awakes electronic controller 254 and continues to apply an external force in direction 284 along moveable plug axis 250, electronic controller 254 may alert the operator to release operator actuatable input device 212. In one example, electronic controller 254 sends a signal to operator devices 902 proximate to interchangeable electro-mechanical lock core 200 to release operator actuatable input device 212. In another example, either operator actuatable input device 212 or lock core body 202 includes visual indicators, such as light emitting diodes 488 (see
Another advantage, among others, of the systems described in connection with
Referring to
Referring to
In one embodiment, power source 256 is a battery which powers electronic controller 254 and motor 266. In another embodiment, power source 256 is a capacitor which receives power from a battery positioned in operator actuatable input device 212. Referring to
Battery 490 is electrically connected to a current regulation circuit 492 of electronic controller 254 positioned in lock core body 202 of interchangeable electro-mechanical lock core 200. In one example, battery 490 is connected to current regulation circuit 492 through brush contacts 494 which permit the rotation of operator actuatable input device 212 about moveable plug axis 250 relative to lock core body 202. In one example, current regulation circuit 492 is a constant current charger circuit. Current regulation circuit 492, in turn, is electrically coupled to a capacitor 496 positioned in lock core body 202 to charge capacitor 496. In one example, capacitor 496 is positioned in the location of power source 256 in
Capacitor 496 is electrically coupled to a voltage boost regulator circuit 498 of electronic controller 254 positioned in lock core body 202 of interchangeable electro-mechanical lock core 200. Voltage boost regulator circuit 498 is activated when motor 266 is to run to move blocker 260. Voltage boost regulator circuit 498 boosts the voltage of capacitor 496 to a voltage level needed by motor 266. An advantage, among others, for placement of battery 490 in operator actuatable input device 212 is that a larger capacity battery may be utilized due to additional space in operator actuatable input device 212. Further, battery 490 may be replaced without removing interchangeable electro-mechanical lock core 200 from opening 124 of housing 126 (See
Referring to
Assembly 500 includes a base 502 and a cover 504. Base 502 and cover 504 cooperate to house electronic controller 254, power source 256, and motor 266. In one embodiment, assembly 500 also houses or supports blocker 260. Cover 504 has a cylindrical shape 506 which generally matches the shape of first cylindrical portion 232 of upper portion 230. Assembly 500 is inserted into a cavity 530 of lock core body 202′ from a rear portion of lock core body 202′.
A front section of assembly 500 is received by opening 532 in upper portion 230 of lock core body 202′. A front wall 510 of assembly 500 is generally flush with second end 206 of lock core body 202′ when assembly 500 is assembled to the remainder of lock core body 202′. A front wall 508 of cover 504 abuts upper portion 230 when assembly 500 is assembled to the remainder of lock core body 202′ A rear portion of assembly 500 includes a plurality of clips 520 which are received in openings 522 in lock core body 202′ An advantage, among others, for having electronic controller 254, power source 256, and motor 266 housed in a separate assembly 500 is the ease of assembly of electronic controller 254, power source 256, and motor 266 outside of the interior of lock core body 202.
Referring to
An operator actuatable assembly 610 is shown supported by interchangeable electro-mechanical lock cores 700. Operator actuatable assembly 610 is operatively coupled to a moveable core plug 720 (see
Referring to
Interchangeable electro-mechanical lock core 700 includes motor 266 and blocker 260 from interchangeable electro-mechanical lock core 200. Additionally, electronic controller 254 and power source 256 are included as part of interchangeable electro-mechanical lock core 700. Electronic controller 254, power source 256, motor 266, and blocker 260 are part of an assembly, similar to assembly 500 of
As shown in
Referring to
Clutch 780 includes a circumferential groove 782, which like circumferential groove 282 of clutch 280, receives second portion 268 of blocker 260. Circumferential groove 782 is bounded by a first shoulder 784 and a second shoulder 786.
Referring to
Referring to
Clutch 780 includes an extension 788 having a U-shaped channel 792. U-shaped channel 792 and channel 748 receive key 352 to actuate control element 750, as described in more detail herein. Similar to the removal of operator actuatable input device 212 of operator actuatable assembly 210 to access central channel 340 of moveable core plug 220 and channel 346 of clutch 280 of interchangeable electro-mechanical lock core 200, operator actuatable input device 612 of operator actuatable assembly 610 is removed to access u-shaped channel 792 of clutch 780 and channel 748 of moveable core plug 720.
Referring to
As mentioned herein, blocker 260 cooperates with clutch 780 to deny or grant access to moveable core plug 720. As shown in
Referring to
As shown in
An advantage, among others, for the inclusion of biasing member 320 and the geometry of operator actuatable input device 612 and clutch 780 is that the operator actuatable assembly 610 as opposed to clutch 780 and blocker 260 will absorb the excess force (which is passed on to lock core body 702 when operator actuatable assembly 610 contacts lock core body 702) thereby increasing the durability of interchangeable electro-mechanical lock core 700 from being damaged. Biasing member 320 also absorbs an initial large spike of the external force and assists in returning operator actuatable input device 612 to the position shown in
Referring to
Turning to
Referring to
Referring to
Referring to
Motor 266 is operatively coupled to electronic controller 142 and circuitry 912. Circuitry 912 includes circuitry on one or more circuit boards and components. In the example illustrated in
Wireless communication system 904 includes a transceiver and other circuitry needed to receive and send communication signals to other wireless devices, such as an operator device 902. In one embodiment, wireless communication system 904 includes a radio frequency antenna and communicates with other wireless devices over a wireless radio frequency network, such as a BLUETOOTH network or a WIFI network. In one embodiment, wireless communication system 904 includes a near field antenna and communicates with other wireless devices over a near field communication network. In one embodiment, wireless communication system 904 includes both a BLUETOOTH network capability and a near field communication network capability.
In one embodiment, electro-mechanical lock core 100 communicates with operator device 902 without the need to communicate with other electro-mechanical lock cores 100. Thus, electro-mechanical lock core 100 does not need to maintain an existing connection with other electro-mechanical locking cores 100 to operate. One advantage, among others, is that electro-mechanical lock core 100 does not need to maintain network communications with other electro-mechanical lock cores 100 thereby increasing the life of power source 146. In one embodiment, electro-mechanical lock core 100 does maintain communication with other electro-mechanical locking cores 100 and is part of a network of electro-mechanical locking cores 100. Exemplary networks include a local area network and a mesh network. Additional details regarding exemplary networked systems are included in the disclosure of U.S. Provisional Patent Application Ser. No. 62/410,186, filed Oct. 19, 2016, titled ELECTRO-MECHANICAL CORE APPARATUS, SYSTEM, AND METHODS OF OPERATING AN ELECTRO-MECHANICAL CORE APPARATUS, the entire disclosure of which is expressly incorporated by reference herein.
Exemplary input devices 906 include buttons, switches, levers, a touch display, keys, and other operator actuatable devices which may be actuated by an operator to provide an input to electronic controller 142. Once communication has been established with operator device 902, various input devices 924 of operator device 902 may be actuated by an operator to provide an input to electronic controller 142. In one embodiment, electro-mechanical lock core 100 requires an actuation of an input device 906 of electro-mechanical lock core 100 prior to taking action based on communications from operator device 902. In another embodiment, elector-mechanical lock core 100 periodically scans for operator devices 902 without requiring an actuation of an input device 906 of electro-mechanical lock core 100 prior to taking action. An advantage, among others, for requiring an actuation of an input device 906 of electro-mechanical lock core 100 prior to taking action based on communications from operator device 902 is that electro-mechanical lock core 100 does not need to evaluate every wireless device that comes into proximity with electro-mechanical lock core 100. Rather, electro-mechanical lock core 100 may use the actuation of input devices 906 to start listening for communications from operator device 902. As explained in more detail herein, in one embodiment, operator actuation assembly 120 functions as an input device 906. As discussed herein, operator actuation assembly 120 may be rotated or translated to wake-up electronic controller 142. Further, operator actuation assembly 120 may be configured to capacitively sense an operator tap on operator actuation assembly 120 or in close proximity to operator actuation assembly 120, ultrasonically sense an operator device in close proximity to operator actuation assembly 120, or inductively sense an operator device in close proximity to operator actuation assembly 120.
Exemplary output devices 908 include visual output devices, audio output device, and/or tactile output devices. Exemplary visual output devices include lights, segmented displays, touch displays, and other suitable devices for providing a visual cue or message to an operator of operator device 902. Exemplary audio output devices include speakers, buzzers, bells and other suitable devices for providing an audio cue or message to an operator of operator device 902. Exemplary tactile output devices include vibration devices and other suitable devices for providing a tactile cue to an operator of operator device 902. In one embodiment, electro-mechanical lock core 100 sends one or more output signals from wireless communication system 904 to operator device 902 for display on operator device 902.
Operator device 902 is carried by an operator, Exemplary operator devices 902 include cellular phones, tablets, personal computing devices, watches, badges, and other suitable devices associated with an operator that are capable of communicating with electro-mechanical lock core 100 over a wireless network. Exemplary cellular phones, include the IPHONE brand cellular phone sold by Apple Inc., located at 1 Infinite Loop, Cupertino, CA 95014 and the GALAXY brand cellular phone sold by Samsung Electronics Co., Ltd.
Operator device 902 includes an electronic controller 920, a wireless communication system 922, one or more input devices 924, one or more output devices 926, a memory 928, and a power source 930 all electrically interconnected through circuitry 932. In one embodiment, electronic controller 920 is microprocessor-based and memory 928 is a non-transitory computer readable medium which includes processing instructions stored therein that are executable by the microprocessor of operator device 902 to control operation of operator device 902 including communicating with electro-mechanical lock core 100. Exemplary non-transitory computer-readable mediums include random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (e.g., EPROM, EEPROM, or Flash memory), or any other tangible medium capable of storing information.
Referring to
Electronic controller 142 receives an operator interface authentication request, as represented by block 942. In one embodiment, operator interface authentication request 942 is a message received over the wireless network from operator device 902. In one embodiment, operator interface authentication request 942 is an actuation of one or more of input devices 906. As explained in more detail herein, in one embodiment, operator actuation assembly 120 functions as an input device 906. Operator actuation assembly 120 may be rotated or translated to signal an operator interface authentication request or may capacitively sense an operator tap on operator actuation assembly 120 or in close proximity to operator actuation assembly 120 as an operator interface authentication request 942, ultrasoncially sense an operator device in close proximity to operator actuation assembly 120, or inductively sense an operator device in close proximity to operator actuation assembly 120.
Electronic controller 142 further receives authentication criteria 944 which relate to the identity and/or access level of the operator of operator device 902. In one embodiment, the authentication criteria 944 is received from operator device 902 or communicated between electronic controller 142 and operator device 902.
Access granted logic 940 based on operator interface authentication request 942 and authentication criteria 944 determines whether the operator of operator device 902 is granted access to actuate moveable core plug 106 which in turn actuates lock device interface 112. If the operator of operator device 902 is granted access to actuate moveable core plug 106, access granted logic 940 powers motor 266 to move blocker 140 to the release position, as represented by block 946. If the operator of operator device 902 is denied access to actuate moveable core plug 106, access granted logic 940 maintains blocker 140 in the blocking position, as represented by block 948.
Referring to
An advantage, among others, of using an encrypted challenge/response authentication system via BLUETOOTH advertising packets is that user authentication can be realized quickly. BLUETOOTH advertising packets allow interchangeable electro-mechanical lock core 100 and operator device 902 to exchange data without manual intervention and without pairing interchangeable electro-mechanical lock core 100 and operator device 902. Quick authentication is necessary to provide an acceptable user experience. BLUETOOTH advertising is based on specifications maintained by the Bluetooth Special Interest Group (Bluetooth SIG).
Referring to
Interchangeable electro-mechanical lock core 100 generates a packet 1004 (see
In the illustrated embodiment, packet 1004 is broadcast by wireless communication system 904 of interchangeable electro-mechanical lock core 100 as part of a BLUETOOTH advertising datagram, as represented by block 1014. BLUETOOTH advertising datagrams are broadcast and receivable by devices, such as interchangeable electro-mechanical lock core 100 and operator device 902, without first establishing a persistent connection between interchangeable electro-mechanical lock core 100 and operator device 902. In one example, packet 1004 is broadcast as plain text.
The application running on operator device 902 is actively scanning for BLUETOOTH advertising datagrams, as represented by block 1016. Once the packet 1004 broadcast by interchangeable electro-mechanical lock core 100 in block 1014 is received by operator device 902, the application on operator device 902 compares the identifier 1008 included in packet 1004 to a list of identifiers 1018 that operator device 902 is configured to recognize, as represented by block 1020. If identifier 1008 is not in the list of identifiers 1018, the application on operator device 902 returns to block 1016 to scan for further packets.
If identifier 1008 is in the list of identifiers, the application on operator device 902 encrypts the received random number 1010 with a key 1022 stored on operator device 902, as represented by block 1024. Key 1022 is also stored on interchangeable electro-mechanical lock core 100. In one example, key 1022 is specific to operator device 902 or the operator associated with operator device 902. In one embodiment, multiple keys 1022 for multiple interchangeable electro-mechanical lock cores 100 may be stored on operator device 902 in a local database or stored remotely in a database accessible by operator device 902. Exemplary keys 1022A-H are illustrated in
Operator device 902 generates a packet 1025 (see
In the illustrated embodiment, packet 1025 is broadcast by wireless communication system 922 of operator device 902 as part of a BLUETOOTH advertising datagram, as represented by block 1032. The advertisement process on operator device 902 will continue until terminated by the user, by a response from interchangeable electro-mechanical lock core 100 and/or a timeout from the unlocking application on operator device 902.
When interchangeable electro-mechanical lock core 100 sent packet 1004 in block 1014, interchangeable electro-mechanical lock core 100 began scanning for BLUETOOTH advertising datagrams, as represented by block 1034. These advertising and scanning processes of interchangeable electro-mechanical lock core 100 will continue until a valid response is received; a timeout has been reached, or some other hardware/software event has occurred. In one example, the operator must continue to actuate operator actuatable assembly 120 or another input device 906 until packet 1025 is validated by interchangeable electro-mechanical lock core 100. The validation of packet 1025 may be communicated to the operator by output devices 908 of interchangeable electro-mechanical lock core 100 or the application 1001 running on operator device 902.
When packet 1025 is received by interchangeable electro-mechanical lock core 100, the operator device identifier 1026 is compared to a listing of operator device identifiers 1038 stored on memory 910 of interchangeable electro-mechanical lock core 100. The received operator device identifier may be specific to a single unlocking application running on a single operator device 902 or a family, class or general version of an unlocking application. Interchangeable electro-mechanical lock core 100 determines if identifier 1026 matches one of operator device identifiers 1038, as represented by block 1036. If not, interchangeable electro-mechanical lock core 100 continues to scan for BLUETOOTH advertising packets. If a match exists, interchangeable electro-mechanical lock core 100 encrypts the random number 1010 most recently broadcast by interchangeable electro-mechanical lock core 100 with the keys 1023 stored on or available to interchangeable electro-mechanical lock core 100, as represented by block 1040.
Each of the encrypted versions of random number 1010 are compared with the received encrypted random number 1027, as represented by block 1042. If no match is found, interchangeable electro-mechanical lock core 100 continues to scan for BLUETOOTH advertising packets. If a match is found, interchangeable electro-mechanical lock core 100 enters an unsecured state, as represented by block 1044. In one embodiment, prior to entering the unsecure state, the electronic controller determines if this is an inaugural attempt to use the electronic credentials to actuate the lock device, and if so, the electronic controller sends instructions to the operator device 902 to launch instructional information on a display of the operator device 902. The instructional information may include instructions on the proper use of the interchangeable lock core. In addition, at any time that the electronic controller detects improper use of the interchangeable lock core, the electronic controller may broadcast instructions to all operator devices in the proximity of the interchangeable lock core to display information on the display of the operator device. Exemplary improper use includes repeating depressing of the operator actuatable input device or continued force on operator actuatable input device prior to the blocker moving to the release position.
In one embodiment, the type of unsecured state is based on the permissions associated with the matched key 1023. For example, a key 1 of keys 1023 may be an administrative key, a key 2 of keys 1023 may be a super user key, and a key 3 of keys 1023 may be a user key. Upon receiving a datagram encrypted using key 1, interchangeable electro-mechanical lock core 100 may enter into a state allowing Generic Attribute Profile (“GATT”) services to be enabled and allowing the user full access to change firmware, delete users etc. on interchangeable electro-mechanical lock core 100. In one example, for key 1, interchangeable electro-mechanical lock core 100 and operator device 902 establish a secure paired connection. If the datagram interchangeable electro-mechanical lock core 100 received was encrypted with key 2, interchangeable electro-mechanical lock core 100 may enter into a state with limited GATT services enabled and be allowed to add a temporary user or restrict access temporarily. If the datagram interchangeable electro-mechanical lock core 100 received was encrypted with key 3, interchangeable electro-mechanical lock core 100 may keep the GATT interface off and only enter the state where the locking device is allowed to be mechanically actuated. For example, in response to key 3, electronic controller 142 of interchangeable electro-mechanical lock core 100 causes motor 266 to move blocker 140 from the blocking position (see
When interchangeable electro-mechanical lock core 100 enters an unsecured state, interchangeable electro-mechanical lock core 100 may terminate communication with operator device 902, continue advertising waiting for a change in the status registers, or wait for some other user interaction to signal the intent to return to a secured state of interchangeable electro-mechanical lock core 100. Additionally, this exchange can be utilized to provide service such as checking battery level of interchangeable electro-mechanical lock core 100 or retrieving logged data from interchangeable electro-mechanical lock core 100. The logged data may include information on operator device identifiers 1026 associated with successful matches and operator device identifiers 1026 associated with unsuccessful matches.
Referring to
Referring to
Operator device 902 receives packet 1105, as represented by block 1016 and determines if operator device 902 is associated with interchangeable electro-mechanical lock core 100, as represented by block 1020. If associated with interchangeable electro-mechanical lock core 100, application 1001 of operator device 902 decrypts the encrypted portions of packet 1105 with a key 1142 stored on or available to operator device 902 for interchangeable electro-mechanical lock core 100, as represented by block 1024. If the decrypted packet is a valid message, application 1001 continues to block 1116, otherwise, application 1001 returns to block 1016 to scan for additional packets.
The decrypted packet includes a current state of interchangeable electro-mechanical lock core 100. A user interface 1112 of application 1001 may display the current state of interchangeable electro-mechanical lock core 100 on a display of operator device 902. The operator may select a desired state 1128 for interchangeable electro-mechanical lock core 100 with application 1001, as represented by block 1114. The state table on operator device 902 is updated to the desired state 1128, as represented by block 1116. Operator device 902 broadcasts a BLUETOOTH advertising packet 1132 (see
Interchangeable electro-mechanical lock core 100 receives packet 1132, as represented by block 1034 and determines if operator device 902 is associated with interchangeable electro-mechanical lock core 100, as represented by block 1036. If associated with operator device 902, interchangeable electro-mechanical lock core 100 decrypts the encrypted portions of packet 1132 with the keys 1023 stored on or available to interchangeable electro-mechanical lock core 100 for the operator of operator device 902, as represented by block 1118. Interchangeable electro-mechanical lock core 100 determines if the decrypted packet includes a random number that matches the most recent random number broadcast by interchangeable electro-mechanical lock core 100, as represented by block 1042. If so, interchangeable electro-mechanical lock core 100 updates the state table of interchangeable electro-mechanical lock core 100 to include desired state 1128 as the current state 1108, as represented by block 1120. Based on the now current state of interchangeable electro-mechanical lock core 100, interchangeable electro-mechanical lock core 100 may alter the configuration of interchangeable electro-mechanical lock core 100. In one example, interchangeable electro-mechanical lock core 100 may move blocker 140 from the blocking position (see
Referring to
In addition to transmitting the above-described packets, many NFC implementations support energy harvesting either inductively or through radio frequency (“RF”) rectification. Inductive coupling is in widespread deployment in various types of operator devices 902, such as smart phones. To implement energy harvesting, operator device 902 will transmit excitation pulses to interchangeable electro-mechanical lock core 100 once the operator or application 1001 on operator device 902 indicates that the two devices, operator device 902 and interchangeable electro-mechanical lock core 100, are within close proximity. These excitation pulses will impart a charge onto an electrical energy storage device (e.g. capacitor or battery) within interchangeable electro-mechanical lock core 100. Once the charge has built to a sufficient level interchangeable electro-mechanical lock core 100 will indicate to operator device 902 that interchangeable electro-mechanical lock core 100 is ready to proceed with the communication steps outlined in the embodiments of access granted logic 940 disclosed herein. Operator device 902 will continue to periodically transmit excitation pulses to ensure that sufficient energy is provided to interchangeable electro-mechanical lock core 100 throughout the execution of access granted logic 940. Operator device 902 may be required to transmit additional or longer excitation pulses to ensure that sufficient energy is available to interchangeable electro-mechanical lock core 100. The need for additional or longer pulses may be communicated as part of status information 1012 from interchangeable electro-mechanical lock core 100 to operator device 902 or operator device 902 may use a secondary characteristic such as a received signal strength from interchangeable electro-mechanical lock core 100 to determine the appropriate excitation pulses.
Using energy harvesting it is possible to operate passive or small active electro-mechanical devices to perform the function of securing or actuating the positioning blocker 140 of interchangeable electro-mechanical lock core 100. An example of a passive locking mechanism would be to ‘short circuit’ a motor to impart a reaction torque or a shaft thus retarding motion. A passive system such as this would be a candidate to work with a system energized via energy harvesting. This is because to short circuit the motor a MOSFET could be utilized which will require extremely small amounts of energy to change and maintain an on or off state (short or open circuit). Similarly a small magnetic coil can be briefly activated using energy harvested and stored in a capacitor. The amount of energy available for this actuator will depend on the size of the capacitor and the quantity of excitation energy transferred to the locking device.
By using energy harvested by the NFC device a battery, capacitor and/or combination of both of interchangeable electro-mechanical lock core 100 can be charged with the stored energy be used to actuate an electro-mechanical system, such as blocker 260 and motor 266. The charge controller can communicate with operator device 902 (device providing RF coupled energy to the NFC locking device) state of charge and request higher rates of charge as needed. Likewise this battery charge information could be used to alert the operator of operator device 902 to keep the devices connected for a time period to allow charging of the battery.
Additionally, a second channel of communication (for example BLUETOOTH) could be employed that uses energy harvested from the near field communication system to provide the electrical energy necessary for operation.
In one embodiment a diversified key system 1200 (see
Each operator or operator device 902 will have a unique identifier associated therewith, such as identifier 1026. Each operator device 902 will store a small database or table of interchangeable electro-mechanical lock cores 100 that the operator device 902 has access to. Each entry in this database contains the identifier 1008 of said interchangeable electro-mechanical lock core 100. Each database entry also contains an operator device diversified key 1220 which is unique to that particular operator device 902 for the particular interchangeable electro-mechanical lock core 100. No two keys in the database on the operator device 902 are alike. The operator device diversified keys 1220 stored on operator device 902 are generated centrally in the system software. The keys may be generated by the process described in section 2.2 of AN10922 using the specific unique core diversified master key 1210 for the specific interchangeable electro-mechanical lock core 100 (stored only on interchangeable electro-mechanical lock core 100, not operator device 902), the identifier 1026 of operator device 902, and the associated access rights 1214 of operator device 902 to interchangeable electro-mechanical lock core 100 (e.g. Monday-Friday from 8 am to 5 pm).
At this second level of diversification, a unique system master key 1202 for a particular system, a unique core diversified master key 1210 for each individual interchangeable electro-mechanical lock core 100, and a unique operator device diversified key 1220 for each interchangeable electro-mechanical lock core 100 that the operator device 902 has access to are provided. An advantage, among others, is that compromising the keys 1220 stored on operator device 902 does not compromise the system master key 1202 or the unique core diversified master key 1210 for each individual interchangeable electro-mechanical lock core 100 stored on the respective interchangeable electro-mechanical lock core 100.
Because the associated access rights 1214 of a particular operator device 902 to an individual interchangeable electro-mechanical lock core 100 are used as an input to the key diversification algorithm to generate operator device diversified key 1220 these associated access rights 1214 cannot be modified locally at the operator device 902 without invalidating operator device diversified key 1220 resulting in an access denied event at an interchangeable electro-mechanical lock core 100. An advantage, among others, is that an operator cannot maliciously modify their access rights to interchangeable electro-mechanical lock core 100 in order to gain additional access. A change in associated access rights 1214 requires a new operator device diversified key 1220 to be generated and requires unique core diversified master key 1210 to generate the new key.
In addition to the diversified key system 1200 described herein, a “key index” can be added to each of the diversified keys as an input to the diversification algorithm. This key index could be as simple as an enumeration (0, 1, 2 . . . ) or a randomly generated number of some length. This indexed list of keys would be stored on interchangeable electro-mechanical lock core 100 so at the time a core is setup in the system it would have a list of potentially hundreds of keys it could use. Any time this key index is incremented or changed the keys associated downstream would be required to be updated. This would allow a system to roll keys on a schedule or on demand.
Referring to
Operator device 902 determines if the received identifier 1008 has a match in local database 1304, as represented by block 1310. If not, access to interchangeable electro-mechanical lock core 100 is denied, as represented by block 1312. If found, operator device 902 encrypts the received random number 1010 with the operator device diversified key 1220 in local database 1304 corresponding to the matched interchangeable electro-mechanical lock core 100, as represented by block 1314. Operator device 902 then generates a response packet including the encrypted random number, the operator device identifier 1315 for operator device 902 (used to generate operator device diversified key 1220), and the access data 1308 operator device 902 has for interchangeable electro-mechanical lock core 100 stored in local database 1304 (used to generate operator device diversified key 1220). The response packet is sent to interchangeable electro-mechanical lock core 100, as represented by blocks 1032 and 1034.
Interchangeable electro-mechanical lock core 100 determines a local copy of operator device diversified key 1220, denoted as key 1330 in
Referring to
Referring to
Exterior operator actuatable device 1510 of locking device 1502 includes interchangeable electro-mechanical lock core 100. Interior operator actuatable device 1512 of locking device 1502 includes a privacy button 1520 which is part of a privacy unit 1550 (see
Referring to
Electronic controller 142 of interchangeable electro-mechanical lock core 100 controls the position of blocker 140 as described herein including with respect to interchangeable electro-mechanical lock core 200 and interchangeable electro-mechanical lock core 700. In one embodiment, electronic controller 142 moves blocker 140 to a release position in response to both (a) a received at least one wireless input signal from an operator device 902 indicating an authorized operator and (b) an indication that privacy button 1520 has not been actuated. In one example, interchangeable electro-mechanical lock core 100 receives a wireless signal 1528 from privacy controller 1552 associated with privacy button 1520 providing an indication that privacy button 1520 has been actuated. This is an indication that would prevent interchangeable electro-mechanical lock core 100 from moving blocker 140 to a release position for an authorized operator. In another example, interchangeable electro-mechanical lock core 100 receives a wireless signal 1528 from privacy controller 1552 associated with privacy button 1520 when privacy button 1520 has not been actuated. The absence of a signal from privacy button 1520, in this example, is an indication that would prevent interchangeable electro-mechanical lock core 100 from moving blocker 140 to a release position for an authorized operator. The wireless signals 1528 may be BLUETOOTH advertising packets.
In one embodiment, a first antenna 1530 is positioned on an exterior side of door 1500 and a second antenna 1532 is positioned on an interior side of door 1500. In one example, second antenna 1532 is antenna 1555 of privacy unit 1550. Both first antenna 1530 and second antenna 1532 are operatively coupled to electronic controller 142, either as part of wireless communication system 904 of interchangeable electro-mechanical lock core 100 or in wireless communication with wireless communication system 904 of interchangeable electro-mechanical lock core 100. Electronic controller 142 determines which one of first antenna 1530 and second antenna 1532 receives a wireless input signal from an operator device 902 (or which one received a stronger signal) and discards the wireless input signal if received by the second antenna 1532 positioned on the interior side of door 1500. An advantage, among others, of utilizing first antenna 1530 and second antenna 1532 in the decision process of whether to ignore an authorized operator device 902, if the authorized operator device 902 is on the interior side of the door 1500, is the prevention of unintended actuation of blocker 140 of interchangeable electro-mechanical lock core 100 by a person answering the door 1500 with their operator device 902 in their pocket.
Additional details of exemplary systems for use with interchangeable elector-mechanical lock cores 100 and details on exemplary interchangeable elector-mechanical lock cores 100 are provided in the disclosure of U.S. Provisional Patent Application Ser. No. 62/410,186, filed Oct. 19, 2016, titled ELECTRO-MECHANICAL CORE APPARATUS, SYSTEM, AND METHODS OF OPERATING AN ELECTRO-MECHANICAL CORE APPARATUS, the entire disclosure of which is expressly incorporated by reference herein.
While this invention has been described as having exemplary designs, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/410,186, filed Oct. 19, 2016, titled ELECTRO-MECHANICAL CORE APPARATUS, SYSTEM, AND METHODS OF OPERATING AN ELECTRO-MECHANICAL CORE APPARATUS, the entire disclosure of which is expressly incorporated by reference herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/057123 | 10/18/2017 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/075605 | 4/26/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3298211 | Russell et al. | Jan 1967 | A |
3347072 | Rose | Oct 1967 | A |
3824817 | Orr | Jul 1974 | A |
3905213 | Roberts | Sep 1975 | A |
3990283 | Nelson | Nov 1976 | A |
4386510 | Best et al. | Jun 1983 | A |
4484462 | Berkowitz | Nov 1984 | A |
RE31910 | Oliver | Jun 1985 | E |
4526256 | Urdal | Jul 1985 | A |
4745785 | Uebersax | May 1988 | A |
4747281 | Monahan | May 1988 | A |
4789859 | Clarkson et al. | Dec 1988 | A |
4850210 | Adler et al. | Jul 1989 | A |
4876783 | Campion et al. | Oct 1989 | A |
4972694 | Aulbers et al. | Nov 1990 | A |
4995249 | Preissler et al. | Feb 1991 | A |
4998422 | Borgmann et al. | Mar 1991 | A |
4998423 | Hsu | Mar 1991 | A |
5010753 | Boris, Jr. | Apr 1991 | A |
5044180 | Lebrecht | Sep 1991 | A |
5121618 | Scott | Jun 1992 | A |
5209087 | Cox | May 1993 | A |
5235832 | Lux et al. | Aug 1993 | A |
5367295 | Gokcebay et al. | Nov 1994 | A |
5507162 | Chhatwal | Apr 1996 | A |
5552777 | Gokcebay et al. | Sep 1996 | A |
5654696 | Barrett et al. | Aug 1997 | A |
5682779 | Dolev | Nov 1997 | A |
5701773 | Markisello | Dec 1997 | A |
5749253 | Glick et al. | May 1998 | A |
5752399 | Shen | May 1998 | A |
5752400 | Kim | May 1998 | A |
5813260 | Widen | Sep 1998 | A |
5816085 | Winardi et al. | Oct 1998 | A |
5839305 | Aston | Nov 1998 | A |
5839307 | Field et al. | Nov 1998 | A |
5921123 | Schwarzkopf et al. | Jul 1999 | A |
5931030 | Chen | Aug 1999 | A |
5933086 | Tischendorf et al. | Aug 1999 | A |
5974912 | Cheng et al. | Nov 1999 | A |
6000609 | Gokcebay et al. | Dec 1999 | A |
6014877 | Shen | Jan 2000 | A |
6035673 | Harrison | Mar 2000 | A |
6125673 | Luker | Oct 2000 | A |
6158259 | Schmitz et al. | Dec 2000 | A |
6227020 | Lerchner | May 2001 | B1 |
6264256 | Hankel et al. | Jul 2001 | B1 |
6292893 | Micali | Sep 2001 | B1 |
6317313 | Mosgrove et al. | Nov 2001 | B1 |
6334347 | Iscla | Jan 2002 | B1 |
6337618 | Craig et al. | Jan 2002 | B1 |
6338261 | Liu | Jan 2002 | B1 |
6363762 | Kueng | Apr 2002 | B1 |
6370928 | Chies et al. | Apr 2002 | B1 |
6374653 | Gokcebay et al. | Apr 2002 | B1 |
6382006 | Field et al. | May 2002 | B1 |
6384711 | Cregger et al. | May 2002 | B1 |
6412321 | Aramburu | Jul 2002 | B1 |
6442986 | Russell | Sep 2002 | B1 |
6463773 | Dimig | Oct 2002 | B1 |
6474122 | Davis | Nov 2002 | B2 |
6523377 | Vonlanthen | Feb 2003 | B1 |
6544627 | Vijayen et al. | Apr 2003 | B1 |
6552650 | Gokcebay et al. | Apr 2003 | B1 |
6554326 | Goldman | Apr 2003 | B1 |
6564601 | Hyatt, Jr. | May 2003 | B2 |
6581426 | Bates et al. | Jun 2003 | B2 |
6604394 | Davis | Aug 2003 | B2 |
6615625 | Davis | Sep 2003 | B2 |
6668606 | Russell et al. | Dec 2003 | B1 |
6705140 | Dimig et al. | Mar 2004 | B1 |
6708539 | Widen | Mar 2004 | B1 |
6718806 | Davis | Apr 2004 | B2 |
6764013 | Ben-Aissa | Jul 2004 | B2 |
6766673 | Gast et al. | Jul 2004 | B2 |
6786070 | Dimig et al. | Sep 2004 | B1 |
6807834 | Tsai | Oct 2004 | B2 |
6822552 | Liden et al. | Nov 2004 | B2 |
6826935 | Gokcebay et al. | Dec 2004 | B2 |
6840072 | Russell et al. | Jan 2005 | B2 |
6848286 | Dimig | Feb 2005 | B2 |
6865916 | Goldman | Mar 2005 | B2 |
6880376 | Ko | Apr 2005 | B1 |
6927670 | Gokcebay et al. | Aug 2005 | B1 |
6967562 | Menard et al. | Nov 2005 | B2 |
6973576 | Giobbi | Dec 2005 | B2 |
6975202 | Rodriguez et al. | Dec 2005 | B1 |
7012503 | Nielsen | Mar 2006 | B2 |
7021092 | Loughlin et al. | Apr 2006 | B2 |
7036344 | Gast et al. | May 2006 | B2 |
7042334 | Mosgrove et al. | May 2006 | B2 |
7061367 | Mosgrove et al. | Jun 2006 | B2 |
7099474 | Liden et al. | Aug 2006 | B1 |
7111165 | Liden et al. | Sep 2006 | B2 |
7114357 | Armstrong et al. | Oct 2006 | B2 |
7123127 | Mosgrove et al. | Oct 2006 | B2 |
7205882 | Libin | Apr 2007 | B2 |
7222508 | Dickhans et al. | May 2007 | B2 |
7229013 | Ben-Aissa | Jun 2007 | B2 |
7251474 | Engstrom et al. | Jul 2007 | B2 |
7278025 | Saito et al. | Oct 2007 | B2 |
7296447 | Priest et al. | Nov 2007 | B2 |
7305560 | Giobbi | Dec 2007 | B2 |
7334443 | Meekma et al. | Feb 2008 | B2 |
7337315 | Micali | Feb 2008 | B2 |
7353396 | Micali et al. | Apr 2008 | B2 |
7363788 | Dimig et al. | Apr 2008 | B2 |
7380279 | Prokupets et al. | May 2008 | B2 |
7424812 | Loughlin et al. | Sep 2008 | B2 |
7434426 | Loughlin et al. | Oct 2008 | B2 |
7437755 | Farino et al. | Oct 2008 | B2 |
7446644 | Schaffzin et al. | Nov 2008 | B2 |
7471199 | Zimmerman et al. | Dec 2008 | B2 |
7472280 | Giobbi | Dec 2008 | B2 |
7591160 | Keller | Sep 2009 | B2 |
7600129 | Libin et al. | Oct 2009 | B2 |
7624280 | Oskari | Nov 2009 | B2 |
7624606 | Huang et al. | Dec 2009 | B1 |
7628048 | Huang et al. | Dec 2009 | B2 |
7640773 | Bellamy et al. | Jan 2010 | B2 |
7660994 | Libin et al. | Feb 2010 | B2 |
7673481 | Amir | Mar 2010 | B2 |
7690231 | Field et al. | Apr 2010 | B1 |
7694542 | Loughlin et al. | Apr 2010 | B2 |
7706778 | Lowe | Apr 2010 | B2 |
7712342 | Loughlin et al. | May 2010 | B2 |
7716486 | Libin et al. | May 2010 | B2 |
7802293 | Boyer et al. | Sep 2010 | B2 |
7822989 | Libin et al. | Oct 2010 | B2 |
7845201 | Meyerle et al. | Dec 2010 | B2 |
7845202 | Padilla et al. | Dec 2010 | B2 |
7870769 | Andersson | Jan 2011 | B2 |
7870770 | Blanch | Jan 2011 | B2 |
7874190 | Krisch et al. | Jan 2011 | B2 |
7905125 | Herdman | Mar 2011 | B2 |
7934406 | Loughlin et al. | May 2011 | B2 |
7958759 | Herdman | Jun 2011 | B2 |
7966854 | Imedio Ocana | Jun 2011 | B2 |
7980106 | Huang et al. | Jul 2011 | B2 |
7992346 | Finke | Aug 2011 | B2 |
8011217 | Marschalek et al. | Sep 2011 | B2 |
8015597 | Libin et al. | Sep 2011 | B2 |
8028553 | Lange | Oct 2011 | B2 |
8035478 | Lee | Oct 2011 | B2 |
8047027 | Loughlin et al. | Nov 2011 | B2 |
8070061 | Habraken | Dec 2011 | B2 |
8074271 | Davis et al. | Dec 2011 | B2 |
8074479 | Harley | Dec 2011 | B2 |
8079240 | Brown et al. | Dec 2011 | B2 |
8122746 | Hyatt, Jr. | Feb 2012 | B2 |
8144941 | Adams et al. | Mar 2012 | B2 |
8151611 | Herdman | Apr 2012 | B2 |
8161783 | Huang et al. | Apr 2012 | B2 |
8166532 | Chowdhury et al. | Apr 2012 | B2 |
8222993 | Bliding et al. | Jul 2012 | B2 |
8256254 | Bellamy | Sep 2012 | B2 |
8261319 | Libin et al. | Sep 2012 | B2 |
8272241 | Brown et al. | Sep 2012 | B2 |
8276414 | Luo | Oct 2012 | B2 |
8325039 | Picard et al. | Dec 2012 | B2 |
8331544 | Kraus et al. | Dec 2012 | B2 |
8336349 | Thimmappa et al. | Dec 2012 | B2 |
8352730 | Giobbi | Jan 2013 | B2 |
8368507 | Conreux et al. | Feb 2013 | B2 |
8370911 | Mallard | Feb 2013 | B1 |
8375753 | Goldman | Feb 2013 | B2 |
8419083 | Burmesch | Apr 2013 | B2 |
8447969 | Robinton et al. | May 2013 | B2 |
8448484 | Huang et al. | May 2013 | B2 |
8453481 | Meekma | Jun 2013 | B2 |
8456277 | Gillert et al. | Jun 2013 | B2 |
8459071 | Andersson | Jun 2013 | B2 |
8466773 | Willgert | Jun 2013 | B2 |
8468861 | Pukari et al. | Jun 2013 | B2 |
8482378 | Sadighi et al. | Jul 2013 | B2 |
8482379 | Conreux et al. | Jul 2013 | B2 |
8490443 | Gokcebay | Jul 2013 | B2 |
8490444 | Saari | Jul 2013 | B2 |
8495898 | Gokcebay | Jul 2013 | B2 |
8511552 | Habraken | Aug 2013 | B2 |
8516865 | Ferreira Sanchez | Aug 2013 | B2 |
8525686 | Burdenko | Sep 2013 | B2 |
8528373 | Hyatt et al. | Sep 2013 | B2 |
8539802 | Meyerle | Sep 2013 | B2 |
8543684 | Hulusi et al. | Sep 2013 | B2 |
8544303 | Andersson | Oct 2013 | B2 |
8552875 | Burdenko | Oct 2013 | B2 |
8581690 | Lappalainen et al. | Nov 2013 | B2 |
8593249 | Bliding et al. | Nov 2013 | B2 |
8604903 | Bowen et al. | Dec 2013 | B2 |
8616031 | Ullrich et al. | Dec 2013 | B2 |
8620268 | Metivier | Dec 2013 | B2 |
8628019 | Audebert et al. | Jan 2014 | B2 |
8635462 | Ullmann | Jan 2014 | B2 |
8640513 | Goren et al. | Feb 2014 | B2 |
8640514 | Goren et al. | Feb 2014 | B2 |
8643469 | Haberli | Feb 2014 | B2 |
8683833 | Marschalek et al. | Apr 2014 | B2 |
8689013 | Habraken | Apr 2014 | B2 |
8712365 | Metivier | Apr 2014 | B2 |
8720238 | Davis | May 2014 | B1 |
8730004 | Elfstrom et al. | May 2014 | B2 |
8736418 | Bozionek et al. | May 2014 | B2 |
8776557 | Wang | Jul 2014 | B2 |
8776561 | Jones | Jul 2014 | B1 |
8780201 | Scalisi et al. | Jul 2014 | B1 |
8787902 | Kim | Jul 2014 | B2 |
8793784 | Metivier et al. | Jul 2014 | B2 |
8794042 | Herdman | Aug 2014 | B2 |
8800402 | Weum | Aug 2014 | B2 |
8805434 | Vasudevan | Aug 2014 | B2 |
8823795 | Scalisi et al. | Sep 2014 | B1 |
8836470 | Pineau et al. | Sep 2014 | B2 |
8840020 | Litz et al. | Sep 2014 | B2 |
8842180 | Kasmir et al. | Sep 2014 | B1 |
8854177 | Pineau et al. | Oct 2014 | B2 |
8872915 | Scalisi et al. | Oct 2014 | B1 |
8881252 | Van et al. | Nov 2014 | B2 |
8893420 | Milde et al. | Nov 2014 | B2 |
8907763 | Pineau et al. | Dec 2014 | B2 |
8912879 | Fyke et al. | Dec 2014 | B2 |
8919024 | Milde, Jr. | Dec 2014 | B2 |
8922333 | Kirkjan | Dec 2014 | B1 |
8928457 | Jin et al. | Jan 2015 | B2 |
8931195 | Milde, Jr. | Jan 2015 | B2 |
8933778 | Birkel et al. | Jan 2015 | B2 |
8937659 | Scalisi et al. | Jan 2015 | B1 |
8941465 | Pineau et al. | Jan 2015 | B2 |
8941736 | Scalisi | Jan 2015 | B1 |
8947530 | Scalisi | Feb 2015 | B1 |
8953040 | Scalisi et al. | Feb 2015 | B1 |
8970344 | Payson et al. | Mar 2015 | B2 |
8973417 | Bench et al. | Mar 2015 | B2 |
8990889 | Van et al. | Mar 2015 | B2 |
D727769 | Scalisi | Apr 2015 | S |
9002536 | Hatton | Apr 2015 | B2 |
9010163 | Romero | Apr 2015 | B2 |
9010650 | Audebert et al. | Apr 2015 | B2 |
9013575 | Scalisi | Apr 2015 | B2 |
9019067 | Bryla et al. | Apr 2015 | B2 |
9020854 | Giobbi | Apr 2015 | B2 |
D729678 | Scalisi | May 2015 | S |
9024759 | Uyeda et al. | May 2015 | B2 |
9027372 | Hickman | May 2015 | B2 |
9049352 | Scalisi et al. | Jun 2015 | B2 |
9051759 | Herdman | Jun 2015 | B2 |
9053622 | Scalisi | Jun 2015 | B2 |
9055202 | Scalisi et al. | Jun 2015 | B1 |
9057210 | Dumas et al. | Jun 2015 | B2 |
9058738 | Scalisi | Jun 2015 | B1 |
9060103 | Scalisi | Jun 2015 | B2 |
9060104 | Scalisi | Jun 2015 | B2 |
9065987 | Kasmir et al. | Jun 2015 | B2 |
9077716 | Myers et al. | Jul 2015 | B2 |
9085917 | Kriete et al. | Jul 2015 | B2 |
9087246 | Chin et al. | Jul 2015 | B1 |
9094584 | Scalisi et al. | Jul 2015 | B2 |
9098825 | Bashkin | Aug 2015 | B2 |
9098953 | Kincaid et al. | Aug 2015 | B2 |
9113051 | Scalisi | Aug 2015 | B1 |
9113052 | Scalisi et al. | Aug 2015 | B1 |
9118819 | Scalisi et al. | Aug 2015 | B1 |
9122856 | Litz et al. | Sep 2015 | B2 |
9129457 | Sumcad et al. | Sep 2015 | B2 |
9133647 | Oh et al. | Sep 2015 | B2 |
9140509 | Sullivan et al. | Sep 2015 | B2 |
9141090 | Kalous et al. | Sep 2015 | B2 |
9148416 | Tse | Sep 2015 | B2 |
9148417 | Fieweger | Sep 2015 | B2 |
9158288 | Libin et al. | Oct 2015 | B2 |
9160987 | Kasmir et al. | Oct 2015 | B1 |
9165444 | Scalisi | Oct 2015 | B2 |
9172920 | Kasmir et al. | Oct 2015 | B1 |
9172921 | Scalisi et al. | Oct 2015 | B1 |
9172922 | Kasmir et al. | Oct 2015 | B1 |
9179107 | Scalisi et al. | Nov 2015 | B1 |
9179108 | Scalisi et al. | Nov 2015 | B1 |
9179109 | Kasmir et al. | Nov 2015 | B1 |
9183683 | Osman et al. | Nov 2015 | B2 |
9196104 | Dumas et al. | Nov 2015 | B2 |
9196133 | Scalisi et al. | Nov 2015 | B2 |
9197867 | Scalisi et al. | Nov 2015 | B1 |
9206620 | Karsil et al. | Dec 2015 | B2 |
9208628 | Gokcebay | Dec 2015 | B2 |
9217616 | Sullivan et al. | Dec 2015 | B2 |
9218696 | Dumas et al. | Dec 2015 | B2 |
9222282 | Russo et al. | Dec 2015 | B2 |
9222284 | Gokcebay | Dec 2015 | B2 |
D747384 | Scalisi | Jan 2016 | S |
D747385 | Scalisi | Jan 2016 | S |
D747640 | Scalisi | Jan 2016 | S |
9230424 | Scalisi et al. | Jan 2016 | B1 |
9237318 | Kasmir et al. | Jan 2016 | B2 |
9247219 | Kasmir et al. | Jan 2016 | B2 |
9251360 | Meyer et al. | Feb 2016 | B2 |
9253176 | Ford et al. | Feb 2016 | B2 |
9253455 | Harrison et al. | Feb 2016 | B1 |
9258281 | Metivier et al. | Feb 2016 | B2 |
9273492 | Gokcebay | Mar 2016 | B2 |
9292985 | Ahearn et al. | Mar 2016 | B2 |
9303935 | Milde, Jr. | Apr 2016 | B2 |
9305412 | Winkelman | Apr 2016 | B2 |
9307403 | Neafsey et al. | Apr 2016 | B2 |
9310147 | Milde, Jr. | Apr 2016 | B2 |
9312926 | Neafsey et al. | Apr 2016 | B2 |
9316025 | Lien | Apr 2016 | B2 |
9316454 | Milde, Jr. | Apr 2016 | B2 |
9317985 | Tehranchi et al. | Apr 2016 | B2 |
9317986 | Tehranchi et al. | Apr 2016 | B2 |
9322194 | Cheng et al. | Apr 2016 | B2 |
9322201 | Cheng et al. | Apr 2016 | B1 |
9326094 | Johnson et al. | Apr 2016 | B2 |
D755037 | Czerwinski et al. | May 2016 | S |
9328533 | Wu | May 2016 | B2 |
9328535 | Baker et al. | May 2016 | B2 |
9330514 | Kuenzi et al. | May 2016 | B2 |
9332377 | Agardh et al. | May 2016 | B2 |
9336637 | Neil et al. | May 2016 | B2 |
9342936 | Scalisi | May 2016 | B2 |
9349113 | Bashkin | May 2016 | B2 |
9351100 | Tarnhed et al. | May 2016 | B2 |
9353551 | Martinez et al. | May 2016 | B2 |
9359794 | Cheng | Jun 2016 | B2 |
9363803 | Seo et al. | Jun 2016 | B2 |
9369454 | Porzio et al. | Jun 2016 | B2 |
9369455 | Huang et al. | Jun 2016 | B2 |
9374349 | Corlett et al. | Jun 2016 | B1 |
9378598 | Dumas et al. | Jun 2016 | B2 |
9378599 | Lee | Jun 2016 | B2 |
9382739 | Johnson et al. | Jul 2016 | B1 |
9390572 | Almomani | Jul 2016 | B2 |
9395133 | Milde et al. | Jul 2016 | B2 |
9406178 | Pukari | Aug 2016 | B2 |
9426653 | Becker et al. | Aug 2016 | B2 |
9437062 | Ahearn et al. | Sep 2016 | B2 |
9437063 | Schoenfelder et al. | Sep 2016 | B2 |
9443362 | Singh | Sep 2016 | B2 |
9443365 | Ahearn et al. | Sep 2016 | B2 |
9447609 | Johnson et al. | Sep 2016 | B2 |
9449443 | Libin et al. | Sep 2016 | B2 |
9449448 | Andersen | Sep 2016 | B2 |
9454889 | Kerning | Sep 2016 | B2 |
9462470 | Ehrensvard | Oct 2016 | B2 |
9464462 | Liu | Oct 2016 | B1 |
9467859 | Moss et al. | Oct 2016 | B2 |
9470017 | Cheng et al. | Oct 2016 | B1 |
9470018 | Cheng et al. | Oct 2016 | B1 |
9472034 | Ahearn et al. | Oct 2016 | B2 |
9476226 | Wheeler et al. | Oct 2016 | B2 |
9478084 | Robinson | Oct 2016 | B1 |
9489511 | Rodzevski et al. | Nov 2016 | B2 |
9489787 | Ives-Halperin et al. | Nov 2016 | B1 |
9500006 | Dayanikli et al. | Nov 2016 | B2 |
9501880 | Handville et al. | Nov 2016 | B2 |
9501883 | Handville et al. | Nov 2016 | B2 |
9508206 | Ahearn et al. | Nov 2016 | B2 |
9508239 | Harrison et al. | Nov 2016 | B1 |
9509719 | Neely | Nov 2016 | B2 |
9514327 | Ford | Dec 2016 | B2 |
9524594 | Ouyang et al. | Dec 2016 | B2 |
9524601 | Dumas | Dec 2016 | B1 |
9528294 | Johnson et al. | Dec 2016 | B2 |
9528296 | Cheng et al. | Dec 2016 | B1 |
9530262 | Johnson | Dec 2016 | B2 |
9530264 | Caterino et al. | Dec 2016 | B2 |
9530295 | Johnson | Dec 2016 | B2 |
9531721 | Neafsey et al. | Dec 2016 | B2 |
9534420 | Cheng et al. | Jan 2017 | B1 |
9536359 | Gokcebay | Jan 2017 | B1 |
9536363 | Ahearn et al. | Jan 2017 | B2 |
9540848 | Wu | Jan 2017 | B1 |
9542785 | Meganck et al. | Jan 2017 | B2 |
9546504 | Overgaard | Jan 2017 | B2 |
9548973 | Hulusi et al. | Jan 2017 | B2 |
9553860 | Meyer | Jan 2017 | B2 |
9562370 | Ohl et al. | Feb 2017 | B2 |
9567773 | Dore et al. | Feb 2017 | B2 |
9574372 | Johnson et al. | Feb 2017 | B2 |
9580931 | Myers et al. | Feb 2017 | B2 |
9587415 | Walls et al. | Mar 2017 | B2 |
9589397 | Christopher et al. | Mar 2017 | B1 |
9589403 | Lingan et al. | Mar 2017 | B2 |
9589406 | Borg et al. | Mar 2017 | B2 |
9591682 | Astrand et al. | Mar 2017 | B2 |
9593522 | Murar et al. | Mar 2017 | B1 |
9595148 | Borg et al. | Mar 2017 | B2 |
9613476 | Johnson | Apr 2017 | B2 |
9613483 | Giobbi | Apr 2017 | B2 |
9617757 | Lowder | Apr 2017 | B2 |
9619954 | Allibhoy et al. | Apr 2017 | B2 |
9624695 | Cheng et al. | Apr 2017 | B1 |
9626859 | Ribas et al. | Apr 2017 | B2 |
9631400 | Liu et al. | Apr 2017 | B2 |
9640001 | Vazquez et al. | May 2017 | B1 |
9640004 | Lowder | May 2017 | B2 |
9644398 | Cheng et al. | May 2017 | B1 |
9644399 | Johnson et al. | May 2017 | B2 |
9644400 | Cheng et al. | May 2017 | B1 |
9647996 | Johnson et al. | May 2017 | B2 |
9652913 | Drako et al. | May 2017 | B2 |
9652917 | Johnson et al. | May 2017 | B2 |
9654450 | Ford et al. | May 2017 | B2 |
9659422 | Lovelock et al. | May 2017 | B2 |
9659424 | Huber et al. | May 2017 | B2 |
9663972 | Ullrich et al. | May 2017 | B2 |
9666000 | Schoenfelder et al. | May 2017 | B1 |
9672345 | Davis et al. | Jun 2017 | B2 |
9672674 | Meganck et al. | Jun 2017 | B2 |
9679429 | Duncan et al. | Jun 2017 | B2 |
9681426 | Seo et al. | Jun 2017 | B2 |
9683391 | Johnson et al. | Jun 2017 | B2 |
9683392 | Cheng et al. | Jun 2017 | B1 |
9685015 | Johnson | Jun 2017 | B2 |
9685017 | Johnson | Jun 2017 | B2 |
9685018 | Johnson | Jun 2017 | B2 |
9690272 | Chin et al. | Jun 2017 | B2 |
9690348 | Chin et al. | Jun 2017 | B2 |
9690959 | Chin et al. | Jun 2017 | B2 |
9691198 | Cheng et al. | Jun 2017 | B2 |
9691205 | Robinson | Jun 2017 | B2 |
9691207 | Almomani | Jun 2017 | B2 |
9695616 | Johnson et al. | Jul 2017 | B2 |
9697656 | Trani | Jul 2017 | B2 |
9697657 | Anderson et al. | Jul 2017 | B2 |
9697664 | Ribas et al. | Jul 2017 | B2 |
9704314 | Johnson et al. | Jul 2017 | B2 |
9704316 | Kirkjan | Jul 2017 | B2 |
9704320 | Johnson et al. | Jul 2017 | B2 |
9705265 | Lowder | Jul 2017 | B2 |
9706365 | Johnson et al. | Jul 2017 | B2 |
9710987 | Scoggins et al. | Jul 2017 | B2 |
9713002 | Roy et al. | Jul 2017 | B2 |
9721413 | Dumas et al. | Aug 2017 | B2 |
9722756 | Seo et al. | Aug 2017 | B2 |
9725927 | Cheng | Aug 2017 | B1 |
9726448 | Milde et al. | Aug 2017 | B1 |
9727328 | Johnson | Aug 2017 | B2 |
9728022 | Gengler et al. | Aug 2017 | B2 |
9728023 | Johnson | Aug 2017 | B2 |
9736284 | Scalisi et al. | Aug 2017 | B2 |
9739555 | Milde et al. | Aug 2017 | B2 |
9741186 | Lemke | Aug 2017 | B1 |
9743049 | Scalisi et al. | Aug 2017 | B2 |
9747735 | Drako et al. | Aug 2017 | B1 |
9747737 | Kuenzi | Aug 2017 | B2 |
9747739 | Gengler et al. | Aug 2017 | B2 |
9754433 | Lagimodiere et al. | Sep 2017 | B2 |
9760705 | Davis et al. | Sep 2017 | B2 |
9761073 | Cheng et al. | Sep 2017 | B2 |
9761074 | Cheng et al. | Sep 2017 | B2 |
9763086 | Benoit et al. | Sep 2017 | B2 |
9767267 | Davis et al. | Sep 2017 | B2 |
9767630 | Kazerani et al. | Sep 2017 | B1 |
9767632 | Johnson | Sep 2017 | B2 |
9769161 | Davis et al. | Sep 2017 | B2 |
9769435 | Scalisi et al. | Sep 2017 | B2 |
9773364 | Kerning et al. | Sep 2017 | B2 |
9779569 | Yun | Oct 2017 | B2 |
9781599 | Myers et al. | Oct 2017 | B2 |
9786133 | Harrison et al. | Oct 2017 | B2 |
9792747 | Baumgarte et al. | Oct 2017 | B2 |
9797166 | Dore et al. | Oct 2017 | B2 |
9799183 | Harrison et al. | Oct 2017 | B2 |
9803942 | Milde, Jr. | Oct 2017 | B2 |
9805534 | Ho et al. | Oct 2017 | B2 |
9811960 | Voss | Nov 2017 | B2 |
9818247 | Johnson | Nov 2017 | B2 |
9826561 | Bolin et al. | Nov 2017 | B2 |
9836906 | Carstens et al. | Dec 2017 | B2 |
9841743 | Davis | Dec 2017 | B2 |
9842446 | Vecchiotti et al. | Dec 2017 | B2 |
9842447 | Badger, II | Dec 2017 | B2 |
9847020 | Davis | Dec 2017 | B2 |
9852559 | Rettig et al. | Dec 2017 | B2 |
9852562 | Belhadia et al. | Dec 2017 | B2 |
9852567 | Hild et al. | Dec 2017 | B2 |
9860928 | Astrand et al. | Jan 2018 | B2 |
9865112 | Maiwand et al. | Jan 2018 | B2 |
9865113 | Maiwand et al. | Jan 2018 | B2 |
9865144 | Trani | Jan 2018 | B2 |
9870460 | Eberwine et al. | Jan 2018 | B2 |
9870665 | Maiwand et al. | Jan 2018 | B2 |
9879932 | Milde et al. | Jan 2018 | B2 |
9883370 | Kerning et al. | Jan 2018 | B2 |
9886617 | Rowe et al. | Feb 2018 | B2 |
9886806 | Bashkin | Feb 2018 | B2 |
9888216 | Scalisi et al. | Feb 2018 | B2 |
9892579 | Ku | Feb 2018 | B2 |
9898880 | Nagisetty et al. | Feb 2018 | B2 |
9902368 | Maiwand et al. | Feb 2018 | B2 |
9913135 | Perold et al. | Mar 2018 | B2 |
9916707 | Vincent et al. | Mar 2018 | B2 |
9916746 | Johnson et al. | Mar 2018 | B2 |
9922473 | Haworth et al. | Mar 2018 | B1 |
9922481 | Johnson et al. | Mar 2018 | B2 |
9924319 | Hoyer et al. | Mar 2018 | B2 |
9934637 | Ribas et al. | Apr 2018 | B2 |
9940491 | Lim et al. | Apr 2018 | B2 |
9940768 | Carstens et al. | Apr 2018 | B2 |
9947153 | Bergerhoff et al. | Apr 2018 | B2 |
9947154 | Davis et al. | Apr 2018 | B2 |
9947155 | Trani | Apr 2018 | B2 |
9947158 | Baumgarte et al. | Apr 2018 | B2 |
9959690 | Zielinski et al. | May 2018 | B2 |
9959692 | Hild et al. | May 2018 | B2 |
9963107 | Murar et al. | May 2018 | B2 |
9965911 | Wishne | May 2018 | B2 |
9972144 | Klein et al. | May 2018 | B2 |
9985950 | Caterino et al. | May 2018 | B2 |
9997036 | Scalisi | Jun 2018 | B2 |
9998922 | Robinton et al. | Jun 2018 | B2 |
9999984 | Wilhelm et al. | Jun 2018 | B2 |
9999989 | Rago et al. | Jun 2018 | B2 |
10008057 | Ives-Halperin et al. | Jun 2018 | B2 |
10008061 | Klink et al. | Jun 2018 | B2 |
10009145 | Seo et al. | Jun 2018 | B2 |
10012010 | Baker et al. | Jul 2018 | B2 |
10013825 | Belhadia et al. | Jul 2018 | B2 |
10015653 | Lang et al. | Jul 2018 | B2 |
10017963 | Johnson et al. | Jul 2018 | B2 |
10026249 | Grandpre et al. | Jul 2018 | B2 |
10026253 | Giobbi | Jul 2018 | B2 |
10027170 | Holmstroem | Jul 2018 | B2 |
10033702 | Ford et al. | Jul 2018 | B2 |
10033972 | Almomani et al. | Jul 2018 | B2 |
10037525 | Neafsey | Jul 2018 | B2 |
10044519 | Kasmir et al. | Aug 2018 | B2 |
10050948 | Lagerstedt et al. | Aug 2018 | B2 |
10062232 | Allibhoy et al. | Aug 2018 | B2 |
10062251 | Kasmir et al. | Aug 2018 | B2 |
10074224 | Ho et al. | Sep 2018 | B2 |
10083559 | Schoenfelder et al. | Sep 2018 | B2 |
10083560 | Baumgarte et al. | Sep 2018 | B2 |
10115256 | Davis | Oct 2018 | B2 |
10125519 | Gengler et al. | Nov 2018 | B1 |
10181231 | Kristensen et al. | Jan 2019 | B2 |
10186099 | Ahearn et al. | Jan 2019 | B2 |
10192383 | Aase | Jan 2019 | B2 |
10249120 | Ahearn et al. | Apr 2019 | B2 |
10264433 | Ahearn et al. | Apr 2019 | B2 |
10282930 | Borg et al. | May 2019 | B2 |
10349279 | Myers et al. | Jul 2019 | B2 |
10360743 | Ahearn et al. | Jul 2019 | B2 |
10366551 | Drako et al. | Jul 2019 | B2 |
10453280 | Kontturi | Oct 2019 | B2 |
10472859 | Ku | Nov 2019 | B2 |
10490005 | Caterino et al. | Nov 2019 | B2 |
10492066 | Tarmey et al. | Nov 2019 | B2 |
10540835 | Kuenzi et al. | Jan 2020 | B2 |
10554644 | Toepke et al. | Feb 2020 | B2 |
10580240 | Caterino et al. | Mar 2020 | B2 |
11447980 | Snodgrass | Sep 2022 | B2 |
11466473 | Barnett, III et al. | Oct 2022 | B2 |
20020144526 | Ming-Chih | Oct 2002 | A1 |
20030217574 | Meis | Nov 2003 | A1 |
20040007032 | Davis | Jan 2004 | A1 |
20040055346 | Gillert | Mar 2004 | A1 |
20040069028 | Dimig et al. | Apr 2004 | A1 |
20040107751 | Hyatt | Jun 2004 | A1 |
20040154364 | Dimig et al. | Aug 2004 | A1 |
20040255628 | Meyerle | Dec 2004 | A1 |
20050050929 | Meyerle | Mar 2005 | A1 |
20050127687 | Dimig | Jun 2005 | A1 |
20060010945 | Herdman | Jan 2006 | A1 |
20060059548 | Hildre et al. | Mar 2006 | A1 |
20060170533 | Chioiu et al. | Aug 2006 | A1 |
20070017265 | Andersson | Jan 2007 | A1 |
20070084259 | Bellamy | Apr 2007 | A1 |
20070200665 | Studerus | Aug 2007 | A1 |
20070229257 | Bliding et al. | Oct 2007 | A1 |
20080072636 | Padilla et al. | Mar 2008 | A1 |
20080072637 | Padilla | Mar 2008 | A1 |
20080086844 | Meyerle | Apr 2008 | A1 |
20080180211 | Lien | Jul 2008 | A1 |
20080229793 | Lange | Sep 2008 | A1 |
20090013736 | Voosen | Jan 2009 | A1 |
20090127328 | Aissa | May 2009 | A1 |
20090280862 | Loughlin et al. | Nov 2009 | A1 |
20090320538 | Pellaton | Dec 2009 | A1 |
20100011822 | Imedio Ocana | Jan 2010 | A1 |
20100116007 | Thimmappa et al. | May 2010 | A1 |
20100194526 | Loughlin et al. | Aug 2010 | A1 |
20100194527 | Loughlin et al. | Aug 2010 | A1 |
20100199733 | Herdman | Aug 2010 | A1 |
20110232341 | Herdman | Sep 2011 | A1 |
20110291798 | Schibuk | Dec 2011 | A1 |
20120169461 | Dubois, Jr. | Jul 2012 | A1 |
20120213362 | Bliding et al. | Aug 2012 | A1 |
20120313383 | Lundberg et al. | Dec 2012 | A1 |
20130008213 | Brown et al. | Jan 2013 | A1 |
20130014552 | Bench et al. | Jan 2013 | A1 |
20130015671 | Calleberg | Jan 2013 | A1 |
20130061055 | Schibuk | Mar 2013 | A1 |
20130063246 | Kim | Mar 2013 | A1 |
20130139561 | Parto et al. | Jun 2013 | A1 |
20130212661 | Neafsey et al. | Aug 2013 | A1 |
20130257589 | Mohiuddin et al. | Oct 2013 | A1 |
20130312468 | Read et al. | Nov 2013 | A1 |
20130335193 | Hanson et al. | Dec 2013 | A1 |
20140002236 | Pineau et al. | Jan 2014 | A1 |
20140051407 | Ahearn et al. | Feb 2014 | A1 |
20140077929 | Dumas et al. | Mar 2014 | A1 |
20140145823 | Aase | May 2014 | A1 |
20140150502 | Duncan | Jun 2014 | A1 |
20140157842 | Almomani et al. | Jun 2014 | A1 |
20140165673 | Tyner et al. | Jun 2014 | A1 |
20140223976 | Chiou et al. | Aug 2014 | A1 |
20140260452 | Chen | Sep 2014 | A1 |
20140292481 | Dumas et al. | Oct 2014 | A1 |
20140298869 | Wang | Oct 2014 | A1 |
20140313010 | Huang et al. | Oct 2014 | A1 |
20140340196 | Myers et al. | Nov 2014 | A1 |
20140365773 | Gerhardt et al. | Dec 2014 | A1 |
20140365781 | Dmitrienko et al. | Dec 2014 | A1 |
20150101370 | Russo | Apr 2015 | A1 |
20150119019 | Minichmayr | Apr 2015 | A1 |
20150163206 | McCarthy et al. | Jun 2015 | A1 |
20150184423 | Chen | Jul 2015 | A1 |
20150184425 | Ellis et al. | Jul 2015 | A1 |
20150206367 | Goldman et al. | Jul 2015 | A1 |
20150233142 | Schweitzer et al. | Aug 2015 | A1 |
20150235492 | Hong et al. | Aug 2015 | A1 |
20150240531 | Blust et al. | Aug 2015 | A1 |
20150259950 | Schweitzer et al. | Sep 2015 | A1 |
20150279132 | Perotti | Oct 2015 | A1 |
20150287256 | Davis | Oct 2015 | A1 |
20150292240 | Ribas et al. | Oct 2015 | A1 |
20150292246 | Schweitzer et al. | Oct 2015 | A1 |
20150294517 | Herrala | Oct 2015 | A1 |
20150300048 | Yen et al. | Oct 2015 | A1 |
20150339870 | Cojocaru et al. | Nov 2015 | A1 |
20150350913 | Eberwine et al. | Dec 2015 | A1 |
20150356797 | McBride et al. | Dec 2015 | A1 |
20150356801 | Nitu et al. | Dec 2015 | A1 |
20160014103 | Masters et al. | Jan 2016 | A1 |
20160019733 | Robinton et al. | Jan 2016 | A1 |
20160035165 | Dumas et al. | Feb 2016 | A1 |
20160040452 | Ku | Feb 2016 | A1 |
20160042581 | Ku | Feb 2016 | A1 |
20160042582 | Hyde et al. | Feb 2016 | A1 |
20160047142 | Gengler et al. | Feb 2016 | A1 |
20160048673 | Marchiori et al. | Feb 2016 | A1 |
20160049027 | Soldner et al. | Feb 2016 | A1 |
20160086400 | Dumas et al. | Mar 2016 | A1 |
20160145900 | Kaiser | May 2016 | A1 |
20160189454 | Johnson et al. | Jun 2016 | A1 |
20160241559 | Trani et al. | Aug 2016 | A1 |
20160241999 | Chin et al. | Aug 2016 | A1 |
20160249159 | Berg et al. | Aug 2016 | A1 |
20160258189 | Frolov | Sep 2016 | A1 |
20160258202 | Scalisi | Sep 2016 | A1 |
20160261824 | Scalisi | Sep 2016 | A1 |
20160275733 | Carstens et al. | Sep 2016 | A1 |
20160275735 | Carstens et al. | Sep 2016 | A1 |
20160275739 | Scalisi | Sep 2016 | A1 |
20160275741 | Carstens et al. | Sep 2016 | A1 |
20160277383 | Guyomarc'h et al. | Sep 2016 | A1 |
20160277388 | Lowe et al. | Sep 2016 | A1 |
20160284147 | Trani | Sep 2016 | A1 |
20160284170 | Kasmir et al. | Sep 2016 | A1 |
20160284183 | Trani | Sep 2016 | A1 |
20160300417 | Hatton | Oct 2016 | A1 |
20160300476 | Kasmir et al. | Oct 2016 | A1 |
20160307380 | Ho et al. | Oct 2016 | A1 |
20160308859 | Barry et al. | Oct 2016 | A1 |
20160319569 | Johnson et al. | Nov 2016 | A1 |
20160319571 | Johnson | Nov 2016 | A1 |
20160330413 | Scalisi et al. | Nov 2016 | A1 |
20160341537 | Ku | Nov 2016 | A1 |
20160343188 | Johnson | Nov 2016 | A1 |
20160344091 | Trani | Nov 2016 | A1 |
20160358433 | Johnson | Dec 2016 | A1 |
20160358437 | Johnson et al. | Dec 2016 | A1 |
20170002587 | Wheeler | Jan 2017 | A1 |
20170009491 | Nguyen et al. | Jan 2017 | A1 |
20170016249 | Johnson et al. | Jan 2017 | A1 |
20170022733 | Lowder | Jan 2017 | A1 |
20170022735 | Lowder | Jan 2017 | A1 |
20170024693 | Wiechers | Jan 2017 | A1 |
20170030109 | Duncan et al. | Feb 2017 | A1 |
20170034485 | Scalisi | Feb 2017 | A1 |
20170048495 | Scalisi | Feb 2017 | A1 |
20170051533 | Kester et al. | Feb 2017 | A1 |
20170076520 | Ho et al. | Mar 2017 | A1 |
20170084132 | Scalisi | Mar 2017 | A1 |
20170085843 | Scalisi et al. | Mar 2017 | A1 |
20170085844 | Scalisi et al. | Mar 2017 | A1 |
20170098335 | Payack, Jr. | Apr 2017 | A1 |
20170109954 | Drako et al. | Apr 2017 | A1 |
20170132861 | Ho et al. | May 2017 | A1 |
20170145714 | Ohl et al. | May 2017 | A1 |
20170152677 | Klammer | Jun 2017 | A1 |
20170180539 | Payack, Jr. | Jun 2017 | A1 |
20170187995 | Scalisi et al. | Jun 2017 | A1 |
20170193724 | Johnson et al. | Jul 2017 | A1 |
20170211294 | Reese et al. | Jul 2017 | A1 |
20170213404 | Sivalingam et al. | Jul 2017 | A1 |
20170221291 | Gokcebay | Aug 2017 | A1 |
20170226772 | Lowder | Aug 2017 | A1 |
20170228603 | Johnson | Aug 2017 | A1 |
20170228953 | Lupovici | Aug 2017 | A1 |
20170236345 | Watters | Aug 2017 | A1 |
20170236346 | Murar et al. | Aug 2017 | A1 |
20170236350 | Lin | Aug 2017 | A1 |
20170236354 | Baker et al. | Aug 2017 | A1 |
20170241164 | Brown et al. | Aug 2017 | A1 |
20170243420 | Lien | Aug 2017 | A1 |
20170243455 | Johnson et al. | Aug 2017 | A1 |
20170251366 | Perna et al. | Aug 2017 | A1 |
20170263065 | Johnson | Sep 2017 | A1 |
20170284128 | Lim et al. | Oct 2017 | A1 |
20170302424 | Seo et al. | Oct 2017 | A1 |
20170311161 | Kuenzi | Oct 2017 | A1 |
20170321453 | Zheng et al. | Nov 2017 | A1 |
20170328661 | Milde, Jr. | Nov 2017 | A1 |
20170330226 | Kuenzi et al. | Nov 2017 | A1 |
20170337758 | Ahearn et al. | Nov 2017 | A1 |
20170345236 | Kuenzi et al. | Nov 2017 | A1 |
20170352207 | Siklosi | Dec 2017 | A1 |
20170365119 | Yun | Dec 2017 | A1 |
20180007041 | Davis et al. | Jan 2018 | A1 |
20180045479 | Milde, Jr. | Feb 2018 | A1 |
20180051484 | Picard et al. | Feb 2018 | A1 |
20180068503 | Prasad et al. | Mar 2018 | A1 |
20180069722 | Scalisi et al. | Mar 2018 | A1 |
20180073274 | Johnson et al. | Mar 2018 | A1 |
20180081335 | Davis | Mar 2018 | A1 |
20180082577 | Davis | Mar 2018 | A1 |
20180089915 | Lundberg | Mar 2018 | A1 |
20180091500 | Baty et al. | Mar 2018 | A1 |
20180091641 | Trani | Mar 2018 | A1 |
20180094456 | Lowder | Apr 2018 | A1 |
20180096593 | Davis | Apr 2018 | A1 |
20180103030 | Einberg et al. | Apr 2018 | A1 |
20180114384 | Graziano | Apr 2018 | A1 |
20180115897 | Einberg et al. | Apr 2018 | A1 |
20180122219 | Caterino et al. | May 2018 | A1 |
20180130273 | Eid | May 2018 | A1 |
20180135336 | Johnson et al. | May 2018 | A1 |
20180135337 | Johnson et al. | May 2018 | A1 |
20180146336 | Hoyer et al. | May 2018 | A1 |
20180151007 | Einberg et al. | May 2018 | A1 |
20180151013 | Carstens et al. | May 2018 | A1 |
20180179785 | Liddell et al. | Jun 2018 | A1 |
20180179786 | Johnson | Jun 2018 | A1 |
20180191889 | Gerhardt et al. | Jul 2018 | A1 |
20180204399 | Newman | Jul 2018 | A1 |
20180211457 | Haworth et al. | Jul 2018 | A1 |
20180211462 | Wendling et al. | Jul 2018 | A1 |
20180225899 | Baumgarte et al. | Aug 2018 | A1 |
20180253917 | Kazerani et al. | Sep 2018 | A1 |
20180261029 | Johnson et al. | Sep 2018 | A1 |
20180268675 | Johnson et al. | Sep 2018 | A1 |
20180270214 | Caterino et al. | Sep 2018 | A1 |
20180332033 | Lakhani et al. | Nov 2018 | A1 |
20180357845 | Berg et al. | Dec 2018 | A1 |
20190026731 | Neafsey | Jan 2019 | A1 |
20190035185 | Kuenzi | Jan 2019 | A1 |
20190035188 | Kuenzi et al. | Jan 2019 | A1 |
20190141504 | Ahearn et al. | May 2019 | A1 |
20190169874 | Gengler | Jun 2019 | A1 |
20190172281 | Einberg et al. | Jun 2019 | A1 |
20190279451 | Wishne | Sep 2019 | A1 |
20190325678 | Ahearn et al. | Oct 2019 | A1 |
20190335334 | Myers et al. | Oct 2019 | A1 |
20190340854 | Ahearn et al. | Nov 2019 | A1 |
20190347883 | Klink et al. | Nov 2019 | A1 |
20190362578 | Baker et al. | Nov 2019 | A1 |
20200024868 | Snodgrass | Jan 2020 | A1 |
20200040607 | Snodgrass et al. | Feb 2020 | A1 |
20200151986 | Kuenzi et al. | May 2020 | A1 |
20200199911 | Allen | Jun 2020 | A1 |
20200318392 | Barnett, III | Oct 2020 | A1 |
20210246689 | Allen et al. | Aug 2021 | A1 |
20220251879 | Allen et al. | Aug 2022 | A1 |
Number | Date | Country |
---|---|---|
1056921 | Dec 1991 | CN |
1181121 | May 1998 | CN |
1702274 | Nov 2005 | CN |
2858885 | Jan 2007 | CN |
1930351 | Mar 2007 | CN |
101065552 | Oct 2007 | CN |
101500861 | Aug 2009 | CN |
104763242 | Jul 2015 | CN |
105971401 | Sep 2016 | CN |
29703559 | Apr 1997 | DE |
19612156 | Jul 1998 | DE |
29911356 | Oct 1999 | DE |
19854454 | Sep 2000 | DE |
102007005214 | Jun 2008 | DE |
202008007068 | Oct 2009 | DE |
102018202563 | Aug 2019 | DE |
0588209 | Mar 1994 | EP |
0999328 | May 2000 | EP |
1065335 | Jan 2001 | EP |
1079051 | Feb 2001 | EP |
1174572 | Jan 2002 | EP |
1653415 | May 2006 | EP |
1903168 | Mar 2008 | EP |
2275628 | Jan 2011 | EP |
2348490 | Jul 2011 | EP |
2620919 | Jul 2013 | EP |
2725823 | Apr 2014 | EP |
2998485 | Mar 2016 | EP |
3009992 | Apr 2016 | EP |
3147868 | Mar 2017 | EP |
3156980 | Apr 2017 | EP |
3188136 | Jul 2017 | EP |
1908898 | Dec 2017 | EP |
3293995 | Mar 2018 | EP |
3327679 | May 2018 | EP |
3358534 | Aug 2018 | EP |
2178476 | Feb 1987 | GB |
2262770 | Mar 1995 | GB |
2004020767 | Mar 2004 | WO |
2004034336 | Apr 2004 | WO |
2007142405 | Dec 2007 | WO |
2012009607 | Jan 2012 | WO |
2012073265 | Jun 2012 | WO |
2013019281 | Feb 2013 | WO |
2014140922 | Sep 2014 | WO |
2014150172 | Sep 2014 | WO |
2014151692 | Sep 2014 | WO |
2015013275 | Jan 2015 | WO |
2015031812 | Mar 2015 | WO |
2015054646 | Apr 2015 | WO |
2015054667 | Apr 2015 | WO |
2015138726 | Sep 2015 | WO |
2015138740 | Sep 2015 | WO |
2015138747 | Sep 2015 | WO |
2016001489 | Jan 2016 | WO |
2016023558 | Feb 2016 | WO |
2016075545 | May 2016 | WO |
2016130777 | Aug 2016 | WO |
2016131416 | Aug 2016 | WO |
2016150951 | Sep 2016 | WO |
2016172119 | Oct 2016 | WO |
2016185013 | Nov 2016 | WO |
2016196025 | Dec 2016 | WO |
2016202796 | Dec 2016 | WO |
2017066849 | Apr 2017 | WO |
2017082823 | May 2017 | WO |
2017091826 | Jun 2017 | WO |
2017136110 | Aug 2017 | WO |
2017175020 | Oct 2017 | WO |
2017180381 | Oct 2017 | WO |
2017180388 | Oct 2017 | WO |
2017180454 | Oct 2017 | WO |
2017180563 | Oct 2017 | WO |
2017201029 | Nov 2017 | WO |
2017207476 | Dec 2017 | WO |
2018041904 | Mar 2018 | WO |
2018075605 | Apr 2018 | WO |
2018081697 | May 2018 | WO |
2018091660 | May 2018 | WO |
2018104383 | Jun 2018 | WO |
2018104384 | Jun 2018 | WO |
2018128754 | Jul 2018 | WO |
2018128755 | Jul 2018 | WO |
2018136740 | Jul 2018 | WO |
2018136744 | Jul 2018 | WO |
2019051337 | Mar 2019 | WO |
2019200257 | Oct 2019 | WO |
Entry |
---|
International Search Report and Written Opinion, ISA/US, PCT/US19/27220, dated Jun. 10, 2019, 13 pgs. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2017/057123, dated May 2, 2019, 27 pages. |
Computer Generated Translation for DE 102007005214 B3, Generated on Aug. 29, 2023, https://worldwide.espacenet.com/ (Year: 2023). |
Computer Generated Translation for DE 202008007068 U1, Generated on Aug. 29, 2023, https://worldwide.espacenet.com/ (Year: 2023). |
International Search Report, ISA/US, PCT/US2017/057123 dated Dec. 10, 2017. |
Written Opinion, ISA/US, PCT/US2017/057123 dated Dec. 10, 2017. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2019/027220, dated Oct. 22, 2020, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20190218826 A1 | Jul 2019 | US |
Number | Date | Country | |
---|---|---|---|
62410186 | Oct 2016 | US |