Electro-mechanical lock core

Information

  • Patent Grant
  • 11913254
  • Patent Number
    11,913,254
  • Date Filed
    Friday, September 7, 2018
    6 years ago
  • Date Issued
    Tuesday, February 27, 2024
    10 months ago
Abstract
An interchangeable electro-mechanical lock core for use with a lock device having a locked state and an unlocked state is disclosed. The interchangeable electro-mechanical lock core may include a moveable plug having a first position relative to a lock core body which corresponds to the lock device being in the locked state and a second position relative to a lock core body which corresponds to the lock device being in the unlocked state. The interchangeable electro-mechanical lock core may include a core keeper moveably coupled to a lock core body. The core keeper may be positionable in a retain position wherein the core keeper extends beyond an envelope of lock core body to hold the lock core body in an opening of the lock device and a remove position wherein the core keeper is retracted relative to the envelope of the lock core body to permit removal.
Description
FIELD

The present disclosure relates to lock cores and in particular to interchangeable lock cores having an electro-mechanical locking system.


BACKGROUND

Small format interchangeable cores (SFIC) can be used in applications in which re-keying is regularly needed. SFICs can be removed and replaced with alternative SFICs actuated by different keys, including different keys of the same format or different keys using alternative key formats such as physical keys and access credentials such as smartcards, proximity cards, key fobs, cellular telephones and the like.


SUMMARY

In embodiments, an interchangeable electro-mechanical lock core for use with a lock device having a locked state and an unlocked state is provided. The interchangeable electro-mechanical lock core may include a moveable plug having a first position relative to a lock core body which corresponds to the lock device being in the locked state and a second position relative to a lock core body which corresponds to the lock device being in the unlocked state. The interchangeable electro-mechanical lock core may include a core keeper moveably coupled to a lock core body. The core keeper may be positionable in a retain position wherein the core keeper extends beyond an envelope of lock core body to hold the lock core body in an opening of the lock device and a remove position wherein the core keeper is retracted relative to the envelope of the lock core body to permit removal of the lock core body from the opening of the lock device.


The disclosure, in one form thereof, provides an interchangeable lock core for use with a lock device having a locked state and an unlocked state, the interchangeable lock core removable from an opening of the lock device with the aid of a tool, the interchangeable lock core comprising: a lock core body having an exterior lock core body envelope, the lock core body including an upper lock core body having a first cylindrical portion with a first maximum lateral extent, a lower lock core body having a second cylindrical portion with a second maximum lateral extent, and a waist having a third maximum lateral extent, the third maximum lateral extent being less than the first maximum lateral extent and being less than the second maximum lateral extent; a moveable plug positioned within the lower portion of the lock core, the moveable plug having a first position relative to the lock core body which corresponds to the lock device being in the locked state and a second position relative to the lock core body which corresponds to the lock device being in the unlocked state, the moveable plug being rotatable between the first position and the second position about a moveable plug axis; an operator actuation assembly operable to selectively actuate the moveable plug, the operator actuation assembly moveably supported by the lock core body; a core keeper moveably coupled to the lock core body, the core keeper positionable in a retain position wherein the core keeper extends beyond the lock core body envelope to hold the lock core body in the opening of the lock device and a remove position wherein the core keeper is retracted relative to the lock core body envelope to permit removal of the lock core body from the opening of the lock device; and an actuator adjustably supported relative to the lock core body, a position of the actuator relative to the lock core body being adjustable, the actuator having an allow position allowing the core keeper to be actuated from the retain position to the remove position and a disallow position wherein the actuator does not allow the core keeper to be actuated by the interchangeable lock core between the retain position and the remove position, the actuator having a tool receiver adapted to be engaged with the tool such that the tool can move the actuator between the allow position and the disallow position, the tool receiver positioned within the operator actuation assembly envelope when viewed from a direction along the moveable plug axis.


In embodiments of the present disclosure, the moveable plug axis of the interchangeable lock core intersects the operator actuation assembly, and the operator actuation assembly envelope is defined about the moveable plug axis.


In embodiments of the present disclosure, the interchangeable lock core features a tool receiver of the actuator including a socket sized to receive the tool.


In embodiments of the present disclosure, the operator actuation assembly of the interchangeable lock core includes a cover removeable from a remainder of the operator actuation assembly to provide access to the tool receiver of the actuator.


In embodiments of the present disclosure, the interchangeable lock core further includes: a cam; and a control sleeve carrying the core keeper, the actuator operable in the allow position to position the cam to rotationally lock the control sleeve to the moveable plug, whereby rotational movement of the moveable plug when the control sleeve is rotationally locked to the moveable plug rotates the control sleeve to move the core keeper from the retain position to the remove position; in the allow position, the actuator is operatively coupled to the core keeper through the cam and the control sleeve.


In embodiments of the present disclosure, the cam comprises a bell crank.


In embodiments of the present disclosure, the actuator of the interchangeable lock core undergoes a rotation to move between the allow position and the disallow position.


In embodiments of the present disclosure the actuator of the interchangeable lock core undergoes both a rotation and a translation to move between the allow position and the disallow position.


In another form thereof, the present disclosure provides an interchangeable lock core for use with a lock device having a locked state and an unlocked state, the interchangeable lock core being removable from an opening of the lock device, the interchangeable lock core comprising: a lock core body having an exterior lock core body envelope; a moveable plug positioned in the lock core body, the moveable plug having a first position relative to the lock core body which corresponds to the lock device being in the locked state and a second position relative to the lock core body which corresponds to the lock device being in the unlocked state; a core keeper moveably coupled to the lock core body, the core keeper positionable in a retain position wherein the core keeper extends beyond the lock core body envelope to hold the lock core body in the opening of the lock device and a remove position wherein the core keeper is retracted relative to the lock core body envelope to permit removal of the lock core body from the opening of the lock device; an actuator moveable relative to the core keeper, the actuator supported by the lock core body and moveable relative to the lock core body in multiple degrees of freedom, the actuator having a first position corresponding to the remove position of the core keeper and a second position corresponding to the retain position of the core keeper, the actuator requiring a movement in each of two degrees of freedom to move from the second position to the first position.


In embodiments of the present disclosure, the movement in each of two degrees of freedom of the actuator comprises a translation and a rotation.


In embodiments of the present disclosure, after the translation, the actuator is operatively coupled to the core keeper, whereby, after the translation, the rotation of the actuator produces a rotation of the core keeper.


In embodiments of the present disclosure, the actuator comprises a tool receiving socket.


In embodiments of the present disclosure, the actuator comprises a control pin threadedly received in the interchangeable lock core.


In embodiments of the present disclosure, the actuator comprises a bell crank, and the two degrees of freedom comprise two rotational degrees of freedom.


In a further embodiment thereof, the present disclosure provides an interchangeable lock core for use with a lock device having a locked state and an unlocked state, the interchangeable lock core being removable from an opening of the lock device with the aid of a tool, the interchangeable lock core comprising: a lock core body having an exterior lock core body envelope; a moveable plug positioned in the lock core body, the moveable plug having a first position relative to the lock core body which corresponds to the lock device being in the locked state and a second position relative to the lock core body which corresponds to the lock device being in the unlocked state; a core keeper moveably coupled to the lock core body, the core keeper positionable in a retain position wherein the core keeper extends beyond the lock core body envelope to hold the lock core body in the opening of the lock device and a remove position wherein the core keeper is retracted relative to the lock core body envelope to permit removal of the lock core body from the opening of the lock device; and an actuator moveably supported relative to the lock core body, the actuator having an allow position allowing the core keeper to be actuated from the retain position of the core keeper to the remove position of the core keeper and a disallow position wherein the actuator does not allow the core keeper to be actuated by the interchangeable lock core between the retain position and the remove position, the actuator having a tool receiver adapted to be engaged with the tool such that a rotation of the tool relative to the plug will move the actuator between the allow position and the disallow position when the tool is engaged with the tool receiver.


In embodiments of the present disclosure, the tool receiver of the actuator includes a socket sized to receive the tool.


In embodiments of the present disclosure, the rotation of the tool relative to the plug to move the actuator between the first position and the second position causes a linear displacement of the actuator.


In embodiments of the present disclosure, the interchangeable lock core of further includes: a cam; and a control sleeve carrying the core keeper, the actuator operable in the allow position to position the cam to rotationally lock the control sleeve to the moveable plug, whereby rotational movement of the moveable plug when the control sleeve is rotationally locked to the moveable plug rotates the control sleeve to move the core keeper from the retain position to the remove position; in the allow position, the actuator operatively coupled to the core keeper through the cam and the control sleeve. In alternatives form of the disclosure, the cam comprises a bell crank.


In embodiments of the present disclosure, the actuator undergoes a rotation to move between the allow position and the disallow position.


In embodiments of the present disclosure, the actuator undergoes both a rotation and a translation to move between the allow position and the disallow position.


In yet another form thereof, the present disclosure provides an interchangeable lock core for use with a lock device having a locked state and an unlocked state, the interchangeable lock core being removable from an opening of the lock device, the interchangeable lock core comprising: a lock core body having an exterior lock core body envelope, a first end, and a second end; a moveable plug positioned in the lock core body proximate the first end of the lock core body, the moveable plug having a first position relative to the lock core body which corresponds to the lock device being in the locked state and a second position relative to the lock core body which corresponds to the lock device being in the unlocked state, the moveable plug being rotatable between the first position and the second position about a moveable plug axis; a control sleeve carrying a core keeper and moveably coupled to the lock core body, the core keeper positionable by the control sleeve in a retain position wherein the core keeper extends beyond the lock core body envelope to hold the lock core body in the opening of the lock device and a remove position wherein the core keeper is retracted relative to the lock core body envelope to permit removal of the lock core body from the opening of the lock device; a coupler moveably supported in the lock core body, an end of the coupler moveable in a movement toward the first end of the lock core body between a disallow position wherein the coupler does not allow the core keeper to be actuated by the interchangeable lock core between the retain position and the remove position and an allow position allowing the core keeper to be actuated between the retain position and the remove position, a further movement of the coupler while the coupler maintains the allow position resulting in a movement of the core keeper between the retain position and the remove position; and an actuator engageable with the coupler to actuate the coupler between the disallow position and the allow position.


In embodiments of the present disclosure, the further movement of the coupler while the coupler maintains the coupled position comprises a rotation of the coupler.


In embodiments of the present disclosure, the coupler comprises a bell crank rotatably supported in the lock core body and rotatable between the disallow position and the allow position, a rotation of the bell crank resulting in the movement of the end of the coupler toward the first end of the lock core body.


In embodiments of the present disclosure, the interchangeable lock core further includes an operator actuation assembly operable to selectively actuate the moveable plug, the operator actuation assembly moveably supported by the lock core body, the actuator rotatable about an actuator axis to actuate the coupler between the disallow position and the allow position, the actuator axis intersecting the operator actuation assembly.


In embodiments of the present disclosure, the actuator comprises a control pin rotatably supported in the lock core body.


In embodiments of the present disclosure, the actuator undergoes a movement in multiple degrees of freedom to actuate the coupler between the disallow position and the allow position. In certain alternative forms of the present disclosure, the movement in multiple degrees of freedom comprises a translation and a rotation. In further alternative forms of the present disclosure, the movement is relative to the moveable plug, wherein the actuator moves relative to the moveable plug to actuate the coupler between the disallow position and the allow position.


In yet a further embodiment, the present disclosure provides an interchangeable lock core for use with a lock device having a locked state and an unlocked state, the interchangeable lock core removable from an opening of the lock device, the interchangeable lock core comprising: a lock core body having an exterior lock core body envelope; a moveable plug positioned in the lock core body, the moveable plug having a first position relative to the lock core body which corresponds to the lock device being in the locked state and a second position relative to the lock core body which corresponds to the lock device being in the unlocked state, the moveable plug being rotatable between the first position and the second position about a moveable plug axis; a control sleeve positioned about the moveable plug; a core keeper moveably coupled to the lock core body, the core keeper positionable by the control sleeve in a retain position wherein the core keeper extends beyond the lock core body envelope to hold the lock core body in the opening of the lock device and a remove position wherein the core keeper is retracted relative to the lock core body envelope to permit removal of the lock core body from the opening of the lock device; a motor supported by the lock core body; and a blocker positioned within the lock core body and moveable by the motor between a first position and a second position; with the blocker in the first position, the control sleeve rotatable by the interchangeable lock core to move the core keeper between the retain position and the remove position; with the blocker in the second position, the control sleeve is not rotatable by the interchangeable lock core to move the core keeper between the retain position and the remove position.


In embodiments of the present disclosure, the interchangeable lock core further includes: an actuator, the actuator moveably supported relative to the lock core body, a position of the actuator relative to the lock core body being adjustable, the actuator having an allow position allowing the core keeper to be actuated between the retain position and the remove position, the actuator having a disallow position disallowing the core keeper to be actuated between the retain position and the remove position.


In embodiments of the present disclosure, the actuator comprises a control pin threadedly received in the interchangeable lock core.


In embodiments of the present disclosure, the actuator undergoes a movement in multiple degrees of freedom to actuate the actuator between the disallow position and the allow position. In certain alternative forms of the present disclosure, the movement in multiple degrees of freedom comprises a translation and a rotation. In further alternative forms of the present disclosure, the movement is relative to the moveable plug, wherein the actuator moves relative to the plug to actuate the coupler between the disallow position and the allow position.


In embodiments of the present disclosure, the actuator includes a tool receiver adapted to be engaged with a tool such that the tool can move the actuator between the allow position and the disallow position.


In embodiments of the present disclosure, the interchangeable lock core further includes an operator actuation assembly operable to selectively actuate the moveable plug, the operator actuation assembly moveably supported by the lock core body, the actuator rotatable about an actuator axis to actuate the coupler between the disallow position and the allow position, the actuator axis intersecting the operator actuation assembly.


In yet another embodiment, the present disclosure provides an interchangeable lock core for use with a lock device having a locked state and an unlocked state, the interchangeable lock core being removable from an opening of the lock device, the interchangeable lock core comprising: a lock core body having an exterior lock core body envelope, a first end, and a second end; a moveable plug positioned in the lock core body proximate the first end of the lock core body, the moveable plug having a first position relative to the lock core body which corresponds to the lock device being in the locked state and a second position relative to the lock core body which corresponds to the lock device being in the unlocked state, the moveable plug being rotatable between the first position and the second position about a moveable plug axis; a core keeper moveably coupled to the lock core body, the core keeper positionable in a retain position wherein the core keeper extends beyond the lock core body envelope to hold the lock core body in the opening of the lock device and a remove position wherein the core keeper is retracted relative to the lock core body envelope to permit removal of the lock core body from the opening of the lock device; and an actuator translationally supported within the lock core body, the actuator translatable in a direction toward the first end of the lock core body, the actuator having an allow position allowing the core keeper to be actuated between the retain position and the remove position and a disallow position wherein the actuator does not allow the core keeper to be actuated by the interchangeable lock core between the retain position and the remove position, the actuator biased toward the disallow position.


In embodiments of the present disclosure, the actuator is completely contained with the lock core body.


In embodiments of the present disclosure, the actuator undergoes a movement in multiple degrees of freedom to actuate the coupler between the disallow position and the allow position. In certain alternative forms of the present disclosure, the movement in multiple degrees of freedom comprises a translation and a rotation. In further alternative forms of the present disclosure, the movement is relative to the moveable plug, wherein the actuator moves relative to the plug between the disallow position and the allow position.


In embodiments of the present disclosure, the interchangeable lock core further includes: an operator actuation assembly operable to selectively actuate the moveable plug, the operator actuation assembly moveably supported by the lock core body, the actuator rotatable about an actuator axis to actuate the coupler between the disallow position and the allow position, the actuator axis intersecting the operator actuation assembly.


In embodiments of the present disclosure, the interchangeable lock core further includes: an operator actuation assembly operable to selectively actuate the moveable plug, the operator actuation assembly moveably supported by the lock core body, the actuator rotatable about an actuator axis to actuate the actuator between the disallow position and the allow position, the actuator axis intersecting the operator actuation assembly.


The disclosure, in an alternative form thereof, provides an interchangeable lock core for use with a lock device having a locked state and an unlocked state, the interchangeable lock core being removable from an opening of the lock device, the interchangeable lock core comprising: a lock core body having an exterior lock core body envelope, a first end, and a second end; a moveable plug positioned in the lock core body proximate the first end of the lock core body, the moveable plug having a first position relative to the lock core body which corresponds to the lock device being in the locked state and a second position relative to the lock core body which corresponds to the lock device being in the unlocked state, the moveable plug being rotatable between the first position and the second position about a moveable plug axis; an operator actuation assembly supported by the lock core body and extending beyond the second end of the lock core body, the operator actuatable assembly having a first configuration wherein the operator actuatable assembly is freely rotatable relative to the lock core body and is decoupled from the moveable plug and a second configuration wherein the operator actuatable assembly is coupled to the moveable plug to move the moveable plug from the first position to the second position, the operator actuatable assembly being coupled to the lock core body in both the first configuration and the second configuration; a core keeper moveably coupled to the lock core body, the core keeper positionable in a retain position wherein the core keeper extends beyond the lock core body envelope to hold the lock core body in the opening of the lock device and a remove position wherein the core keeper is retracted relative to the lock core body envelope to permit removal of the lock core body from the opening of the lock device; an actuator translationally supported within the lock core body, the actuator translatable in a direction toward the first end of the lock core body, the actuator having an allow position allowing the core keeper to be actuated from the retain position to the remove position and a disallow position wherein the actuator does not allow the core keeper to be acutated by the interchangeable lock core between the retain position and the remove position, the actuator biased toward the second position; and a motor supported by the lock core body, the motor controlling when the operator actuatable assembly is in the first configuration and when the actuator is in the second position.


In embodiments of the present disclosure, the actuator undergoes a movement in multiple degrees of freedom to actuate the actuator between the disallow position and the allow position. In certain alternatives forms, the movement in multiple degrees of freedom comprises a translation and a rotation. In further alternative forms, the movement is relative to the moveable plug, wherein the actuator moves relative to the moveable plug to actuate the coupler between the disallow position and the allow position.


In embodiments of the present disclosure, the actuator includes a control pin threadedly received in the interchangeable lock core.


In embodiments of the present disclosure, in the allow position, the actuator is operatively coupled to the core keeper, whereby a rotation of the actuator coincides with a rotation of the core keeper.


In embodiments of the present disclosure, in the allow position, the actuator is operatively coupled to the core keeper via the moveable plug.


In embodiments of the present disclosure, in the disallow position, the actuator is operatively decoupled from the core keeper.


In embodiments of the present disclosure, the interchangeable lock core further includes: an operator actuation assembly operable to selectively actuate the moveable plug, the operator actuation assembly moveably supported by the lock core body.


In embodiments of the present disclosure, the operator actuation assembly comprises a knob including a removeable knob cover selectively covering a power source located in the knob. In certain alternative forms of the present disclosure, the operator actuation assembly includes a power source. In alternatives of the present disclosure, the power source comprises a battery. In further alternatives of the present disclosure, the knob further comprises a tool access through which a tool can be positioned to enter the lock core body. In further yet alternatives of the present disclosure, the power source covers the tool access when the power source is operably engaged with the operator actuation assembly, whereby the power source must be removed from the operator actuation assembly to allow the tool to enter the lock core body through the tool access.


In embodiments of the present disclosure, the lock core body includes an upper lock core body having a first cylindrical portion with a first maximum lateral extent, a lower lock core body having a second cylindrical portion with a second maximum lateral extent, and a waist having a third maximum lateral extent, the third maximum lateral extent being less than the first maximum lateral extent and being less than the second maximum lateral extent. In certain alternative forms of the present disclosure, the core keeper extends from the waist of the lock core body in the retain position.


In embodiments of the present disclosure, the interchangeable lock core further includes a control sleeve carrying the core keeper. In alternative forms of the present disclosure, the moveable plug is positioned within the control sleeve.


In embodiments of the present disclosure, the interchangeable lock core further includes a cam positionable to rotationally lock the control sleeve to the moveable plug, whereby rotational movement of the moveable plug when the control sleeve is rotationally locked to the moveable plug rotates the control sleeve to move the core keeper from the retain position to the remove position. In certain alternative forms of the present disclosure, the cam comprises a bell crank.


In certain alternatives within the scope of the present disclosure, the operator actuation assembly and lock core body are removeable together as a subassembly from the lock device.


In embodiments of the present disclosure, the interchangeable lock core further features a core keeper that, in the remove position, is positioned completely within the lock core body envelope.


In embodiments of the present disclosure, the interchangeable lock core further includes a lock interface positioned proximate a first end of the lock core body. In certain alternatives, the lock interface includes a plurality of recesses sized to receive a plurality of lock pins of a lock cylinder. In certain alternative embodiments of the present disclosure, the interchangeable lock core further includes an operator actuation assembly operable to selectively actuate the moveable plug, the operator actuation assembly moveably supported by the lock core body, the operator actuation assembly positioned proximate a second end of the lock core body, the second end of the lock core body opposite the first end of the lock core body. In further alternatives, the core keeper is positioned intermediate the lock interface and the operator actuation assembly.


In embodiments of the present disclosure, the lock core body comprises: a core body, the moveable plug positioned in the core body; a top cover selectively securable to the core body; and a rear cover selectively securable to the top cover.


In alternative forms of the present disclosure, the moveable plug does not require a translational movement to move between the first position and the second position.


In embodiments of the present disclosure, the interchangeable lock core further includes: a clutch engageable with the moveable plug in an engage position in which the clutch is able to impart a rotation to the moveable plug to actuate the moveable plug between the first position and the second position. In certain alternative forms of the present disclosure the interchangeable lock core further includes a motor supported by the lock core body, the motor actuatable between a motor disallow position in which the clutch is disallowed from achieving the engage position and a motor allow position in which the clutch is allowed to achieve the engage position. In further alternative forms, a clutch engagement feature of the moveable plug is engageable with the clutch.


In embodiments of the present disclosure, the motor is positioned exterior to the moveable plug. In embodiments of the present disclosure, the interchangeable lock core further includes a motor control communicatively connected to the motor, the motor control positioned exterior to the moveable plug.


In embodiments of the present disclosure, the motor maintains a fixed spacing from the moveable plug.


In embodiments of the present disclosure, the lock core body comprises: a core body comprising the lower lock core body, the moveable plug positioned in the core body; a top cover selectively securable to the core body, the upper lock core body including the top cover; and a rear cover selectively securable to the top cover.


In certain embodiments of the present disclosure, the moveable plug is positioned in the lower lock core body.


In embodiments of the present disclosure, the interchangeable lock core further includes: a motor actuatable between a motor disallow position in which an operator is blocked from actuating the moveable plug to an allow position in which an operator is allowed to actuate the moveable plug. In certain alternatives of the present disclosure, the motor is positioned in the upper lock core body.


In embodiments of the present disclosure, the interchangeable lock core further includes: a motor actuatable between a motor disallow position in which the operator actuation assembly is disallowed from actuating the moveable plug and a motor allow position in which the operator actuation assembly is allowed to actuate the moveable plug.


In embodiments of the present disclosure, the interchangeable lock core further includes: an operator actuation assembly operable to selectively actuate the moveable plug, the operator actuation assembly moveably supported by the lock core body; and a motor actuatable between a motor disallow position in which the operator actuation assembly is disallowed from actuating the moveable plug and a motor allow position in which the operator actuation assembly is allowed to actuate the moveable plug.


In embodiments of the present disclosure, in the disallow position, the actuator is decoupled from the core keeper.


In a further yet alternative form, the present disclosure provides a method of actuating an interchangeable lock core to a removal position, comprising: inserting a tool into the interchangeable lock core, the inserting step comprising the step of actuating the tool relative to an actuator internal to the interchangeable lock core, the lock core body having a first end and a second end opposite the first end; with the tool, axially translating the actuator internal to the interchangeable lock core toward the first end of the lock core body of the interchangeable lock core to allow a core keeper to be positioned in a remove position permitting removal of the lock core body from a lock device; and positioning the core keeper in the remove position permitting removal of the lock core body from the lock device.


In alternative forms of the method of the present disclosure, the step of axially translating the actuator comprises the step of rotating the actuator thereby causing an axially translation of the actuator.


In alternative forms of the method of the present disclosure, the step of axially translating the actuator results in the additional step of actuating a coupler into a coupled positioned in which the coupler is coupled to the core keeper.


In alternative forms of the method of the present disclosure, the positioning step occurs after the translating step.


In alternative forms of the method of the present disclosure, the translating step comprises the step of rotating the tool.


In alternative forms of the method of the present disclosure, the inserting step comprising the step of inserting the tool through an opening in the lock core body, the method further comprising the step of piloting the tool from a position exterior of the lock core body through the opening and into an interior of the lock core body.


In alternative forms of the method of the present disclosure, the interchangeable lock core further includes an operator actuation assembly operable to selectively actuate the moveable plug, the operator actuation assembly moveably supported by the lock core body, the operator actuation assembly including a removeable cover selectively covering the remainder of the operator actuation assembly, the method further comprising the step of: removing the cover prior to the inserting step to uncover an access in the operator actuation assembly, the inserting step further comprising the step of inserting the tool through the access in the operator actuation assembly.


In alternative forms of the method of the present disclosure, the step of rotating the actuator relative to the interchangeable lock core.


In alternative forms of the method of the present disclosure, the interchangeable lock core further comprises a control sleeve carrying the core keeper, and wherein the step of translating the actuator comprises the step of translating the actuator relative to the control sleeve. In yet another form thereof, the present disclosure provides an electro-mechanical interchangeable locking core for use with a locking device, comprising: a housing;


an operator actuation assembly coupled to the housing; a lock actuator assembly positioned within the housing and operatively coupled to the operator actuation assembly, the lock actuator device including means for actuating the locking device; and a control assembly positioned within the housing, the control assembly including means for controlling when the lock actuator device may actuate the locking device.





BRIEF DESCRIPTION OF THE DRAWINGS

The above-mentioned and other features and advantages of this disclosure, and the manner of attaining them, will become more apparent and will be better understood by reference to the following description of exemplary embodiments taken in conjunction with the accompanying drawings, wherein:



FIG. 1 illustrates an exploded, front, perspective view of an electro-mechanical lock core for assembly to a lock cylinder shown with a partial cutaway;



FIG. 2 illustrates an exploded, rear perspective view of the electro-mechanical lock core and lock cylinder of FIG. 1;



FIG. 3 illustrates a front, perspective view of the electro-mechanical lock core and lock cylinder of FIG. 1 wherein electro-mechanical lock core is assembled to lock cylinder;



FIG. 4 illustrates a rear, perspective view of the electro-mechanical lock core and lock cylinder of FIG. 1 wherein electro-mechanical lock core is assembled to lock cylinder;



FIG. 5 illustrates a front, perspective view of the electro-mechanical lock core of FIG. 1;



FIG. 6 illustrates a rear, perspective view of the electro-mechanical lock core of FIG. 1;



FIG. 7 illustrates an exploded, front, perspective view of lock cylinder, lock actuator assembly, control assembly, and a power transfer assembly of the electro-mechanical lock core of FIG. 5;



FIG. 8 illustrates an exploded, rear, perspective view of lock cylinder, lock actuator assembly, control assembly, and a power transfer assembly of the electro-mechanical lock core of FIG. 5;



FIG. 9 illustrates an exploded, front, perspective view of lock actuator assembly of the electro-mechanical lock core of FIG. 5;



FIG. 10 illustrates an exploded, rear, perspective view of lock actuator assembly of the electro-mechanical lock core of FIG. 5;



FIG. 11 illustrates an exploded, front, perspective view of a core plug assembly of lock actuator assembly of FIG. 9;



FIG. 12 illustrates an exploded, rear, perspective view of a core plug assembly of lock actuator assembly of FIG. 9;



FIG. 13 illustrates a sectional view of lock actuator assembly along lines 13-13 in FIG. 7;



FIG. 14 illustrates an exploded, front, perspective, partial view of the control assembly of FIG. 7;



FIG. 15 illustrates another front, exploded, perspective view of the control assembly of FIG. 7;



FIG. 16 illustrates a rear, exploded, perspective view of the control assembly of FIG. 7;



FIG. 17 illustrates another rear, exploded, partial, perspective view of the control assembly of FIG. 7;



FIG. 18 illustrates a partial view of the control assembly of FIG. 7 illustrating an electrical contact and position sensing assembly;



FIG. 18A illustrates an exemplary position sensor;



FIG. 19 illustrates a front, perspective view of a blocker of the control assembly of FIG. 7;



FIG. 20 illustrates a partial sectional view of the electro-mechanical lock core along lines 20-20 in FIG. 5 illustrating the blocker in a first blocking position wherein the blocker is engaged with a clutch of the core plug assembly of FIG. 11;



FIG. 21 illustrates the sectional view of FIG. 20 illustrating the blocker in a second release position wherein the blocker is disengaged relative to the clutch of the core plug assembly of FIG. 11;



FIG. 22 illustrates a front, perspective view of an alternative blocker of the control assembly of FIG. 7;



FIG. 23 illustrates a front, perspective view of an assembled power transfer assembly of FIG. 7;



FIG. 24 illustrates an exploded, front, perspective view of an operator actuation assembly of the electro-mechanical lock core of FIG. 5, the operator actuation assembly including a knob;



FIG. 25 illustrates an exploded, rear, perspective view of the operator actuation assembly of the electro-mechanical lock core of FIG. 5;



FIG. 26 illustrates a sectional view of the electro-mechanical lock core of FIG. 5 along lines 26-26 of FIG. 5 with the blocker of the control assembly in the first blocking position of FIG. 20;



FIG. 27 illustrates a detail view of the sectional view of FIG. 26;



FIG. 27A illustrates a sectional view of an exemplary coupling arrangement between the operator actuation assembly of the electro-mechanical lock core and the clutch of the lock actuator assembly of the electro-mechanical locking core;



FIG. 28 illustrates the sectional view of FIG. 26 with the blocker of the control assembly in the second release position of FIG. 21 and the operator actuation assembly and clutch of the lock actuator assembly in a disengaged position relative to the core plug assembly of the lock actuator assembly;



FIG. 29 illustrates the sectional view of FIG. 26 with the blocker of the control assembly in the second release position of FIG. 21 and the knob assembly and clutch of the lock actuator assembly in an engaged position of the lock actuator assembly;



FIG. 30 illustrates the sectional view of FIG. 26 with the blocker of the control assembly in the first blocking position of FIG. 21 and the operator actuation assembly moved axially due to an external force;



FIG. 31 illustrates the sectional view of FIG. 26 with a control pin of the operator actuation assembly positioned in an active position compared to an inactive position shown in FIG. 26;



FIG. 32 illustrates the sectional view of FIG. 26 with the blocker of the control assembly in the second release position of FIG. 21 and the operator actuation assembly and clutch of the lock actuator assembly in an engaged position of the lock actuator assembly with the control pin of the operator actuation assembly positioned in the active position of FIG. 31 and moving a bell crank of the lock actuator assembly to a control position compared to a use position of FIG. 26;



FIG. 33 illustrates the front, perspective view of the electro-mechanical lock core and lock cylinder of FIG. 3 and a knob cover removal tool spaced apart from the electro-mechanical lock core and lock cylinder;



FIG. 34 illustrates the rear, perspective view of the electro-mechanical lock core and lock cylinder of FIG. 4 and the knob cover removal tool spaced apart from the electro-mechanical lock core and lock cylinder;



FIG. 35 illustrates the engagement members of the operator actuation assembly and the knob cover removal tool;



FIG. 36 illustrates the knob cover removal tool having a first set of engagement members illustrated in FIG. 35 coupled to a first set of engagement members of the operator actuation assembly illustrated in FIG. 35;



FIG. 37 illustrates the knob cover removal tool having the first set of engagement members and a second set of engagement members both illustrated in FIG. 35 coupled to the first set of engagement members and a second set of engagement members of the operator actuation assembly both illustrated in FIG. 35;



FIG. 38 illustrates a rotation of a knob cover of the operator actuation assembly relative to the knob cover removal tool about a rotational axis of the knob cover;



FIG. 39 illustrates a front, exploded, perspective view of the knob cover, a knob base, and an intermediate battery holder of the operator actuation assembly of the electro-mechanical locking core;



FIG. 40 illustrates a rear, exploded, perspective view of the knob cover, a knob base, and an intermediate battery holder of the operator actuation assembly of the electro-mechanical locking core;



FIG. 41 illustrates the disengagement of the second set of engagement members between the knob cover removal tool and the knob cover of the operator actuation assembly with the knob cover of the operator actuation assembly spaced apart from the remainder of the electro-mechanical lock core and a battery removed from the battery holder of the operator actuation assembly;



FIG. 42 illustrates the electro-mechanical lock core with the knob cover and the battery removed and the core keeper in a use or locked position wherein the core keeper is positioned to cooperate with a corresponding feature of the locking cylinder to hold the electro-mechanical lock core relative to the locking cylinder;



FIG. 43 is a front view of the assembly of FIG. 42;



FIG. 44 illustrates the electro-mechanical lock core with the knob cover and the battery removed and the core keeper in a control position wherein the core keeper is positioned relative to the corresponding feature of the locking cylinder to permit a removal of the electro-mechanical lock core relative to the locking cylinder;



FIG. 45 is a representative view of an exemplary electro-mechanical locking core and an operator device;



FIG. 46 is a representative view of a control sequence of the electro-mechanical locking core;



FIG. 47 is a first exemplary control system for the electro-mechanical locking core;



FIG. 48 is a second exemplary control system for the electro-mechanical locking core;



FIG. 49 illustrates a front, perspective view of a second exemplary electro-mechanical lock core assembly;



FIG. 50A illustrates an exploded, front, perspective view of the electro-mechanical lock core assembly of FIG. 49;



FIG. 50B illustrates an exploded, rear, bottom, perspective view of the electro-mechanical lock core assembly of FIG. 49;



FIG. 51 illustrates an exploded, front, perspective view of a core plug assembly of the electro-mechanical lock core assembly of FIG. 50;



FIG. 52 illustrates a sectional view of the electro-mechanical lock core assembly of FIG. 49 along lines 52-52 of FIG. 49;



FIG. 53 illustrates a sectional view of the electro-mechanical lock core assembly along lines 53-53 of FIG. 49 with a core keeper in a first position outside of an envelope of a core body of the core assembly of FIG. 49 and abutting a biasing arm of the biasing member of a cradle of a control assembly of the electro-mechanical lock core assembly of FIG. 49;



FIG. 54 illustrates a sectional view of the electro-mechanical lock core assembly along lines 53-53 of FIG. 49 with the core keeper in a second position at the envelope of the core body of the core assembly of FIG. 49 and upwardly deflecting the biasing arm of the biasing member of the cradle of the control assembly of the electro-mechanical lock core assembly of FIG. 49; and



FIG. 55 illustrates a sectional view of the electro-mechanical lock core assembly along lines 53-53 of FIG. 49 with the core keeper in a third position within the envelope of the core body of the core assembly of FIG. 49 and no longer upwardly deflecting the biasing arm of the biasing member of the cradle of the control assembly of the electro-mechanical lock core assembly of FIG. 49.





Corresponding reference characters indicate corresponding parts throughout the several views. The exemplification set out herein illustrates an exemplary embodiment of the invention and such exemplification is not to be construed as limiting the scope of the invention in any manner.


DETAILED DESCRIPTION OF THE DRAWINGS

For the purposes of promoting an understanding of the principles of the present disclosure, reference is now made to the embodiments illustrated in the drawings, which are described below. The embodiments disclosed herein are not intended to be exhaustive or limit the present disclosure to the precise form disclosed in the following detailed description. Rather, the embodiments are chosen and described so that others skilled in the art may utilize their teachings. Therefore, no limitation of the scope of the present disclosure is thereby intended. Corresponding reference characters indicate corresponding parts throughout the several views.


The terms “couples”, “coupled”, “coupler” and variations thereof are used to include both arrangements wherein the two or more components are in direct physical contact and arrangements wherein the two or more components are not in direct contact with each other (e.g., the components are “coupled” via at least a third component), but yet still cooperate or interact with each other.


In some instances throughout this disclosure and in the claims, numeric terminology, such as first, second, third, and fourth, is used in reference to various components or features. Such use is not intended to denote an ordering of the components or features. Rather, numeric terminology is used to assist the reader in identifying the component or features being referenced and should not be narrowly interpreted as providing a specific order of components or features.


Referring to FIGS. 1-4, an electro-mechanical lock core 100 includes a core assembly 102 and an operator actuation assembly 104. As explained herein in more detail, in certain configurations operator actuation assembly 104 may be actuated to rotate a core plug assembly 106 (see FIG. 2) of core assembly 102 about its longitudinal axis 108 and in certain configurations operator actuation assembly 104 may be actuated to move a core keeper 110 of core assembly 102 relative to a core body 112 of core assembly 102. Core plug assembly 106 includes a lock interface in the form of a plurality of recesses 114, illustratively two, which receive lock pins 120 of a lock cylinder 122 when core assembly 102 is received in recess 124 of lock cylinder 122, as shown in FIG. 3. Lock pins 120 are in turn coupled to a cam member 126 of lock cylinder 122 which is rotatable. As is known in the art, cam member 126 may be in turn coupled to a lock system, such as a latch bolt of a door lock, a shank of a padlock or other suitable lock systems.


When core assembly 102 is received in recess 124 of lock cylinder 122, core keeper 110 is in a first position wherein it is received in a recess of lock cylinder 122 to hold or otherwise prevent the removal of core assembly 102 from lock cylinder 122 without the movement of core keeper 110 to a second position wherein the core keeper 110 is not received in the recess of lock cylinder 122. In the illustrated embodiment, core body 112 defines a figure eight profile (See FIGS. 5 and 6) which is received in a corresponding figure eight profile of lock cylinder 122 (See FIGS. 3 and 4). The figure eight profile is known as a small format interchangeable core (“SFIC”). Core body 112 may also be sized and shaped to be compatible with large format interchangeable cores (“LFIC”) and other known cores.


Core body 112 may be translated relative to lock cylinder 122 along longitudinal axis 108 to remove core body 112 from lock cylinder 122 when core keeper 110 is received within the envelope of core body 112 such that core body 112 has a figure eight profile and may not be translated relative to lock cylinder 122 along longitudinal axis 108 to remove core body 112 from lock cylinder 122 when core keeper 110 is positioned at least partially outside of the envelope of core body 112.


Although electro-mechanical lock core 100 is illustrated in use with lock cylinder 122, electro-mechanical lock core 100 may be used with a plurality of lock systems to provide a locking device which restricts the operation of the coupled lock system. Exemplary lock systems include door handles, padlocks, and other suitable lock systems. Further, although operator actuation assembly 104 is illustrated as including a generally cylindrical knob, other user actuatable input devices may be used including handles, levers, and other suitable devices for interaction with an operator.


Turning to FIGS. 7-13 the components of core assembly 102 are described in more detail. Referring to FIGS. 7 and 8, core body 112 of core assembly 102 includes an upper cavity 140 and a lower cavity 142. Lower cavity 142 includes a lock actuator assembly 144 (See FIGS. 7 and 8) and upper cavity 140 receives a control assembly 146 (See FIGS. 7 and 8). As explained in more detail herein, control assembly 146 restricts various movements of lock actuator assembly 144 to restrict the unauthorized actuation of cam member 126 and/or to restrict movement of core keeper 110.


Referring to FIGS. 9-12, lock actuator assembly 144 is illustrated in more detail. Lock actuator assembly 144 includes core plug assembly 106, a biasing member 150, and a clutch 152. As illustrated in FIG. 28, biasing member 150 biases clutch 152 in a spaced apart relationship relative to core plug assembly 106 and may be compressed, as illustrated in FIG. 29 to permit engagement features 154 of core plug assembly 106 to interact with engagement features 156 of clutch 152. In one example, biasing member 150 is a wave spring.


In the illustrated embodiment, engagement features 154 and engagement features 156 are a plurality of interlocking protrusions and recesses carries by each of core plug assembly 106 and clutch 152, respectively. In other embodiments, engagement features 154 may be one or more protrusions received by one or more recess of engagement features 156 or vice versa. Additionally, engagement features 154 and engagement features 156 may be generally planer frictional surfaces which when held in contact couple clutch 152 and core plug assembly 106 to rotate together. By including a plurality of interlocking protrusions and recesses, as shown in the illustrated embodiment, clutch 152 may have multiple rotational positions relative to core plug assembly 106 about longitudinal axis 108 wherein engagement features 156 of clutch 152 may engage engagement features 154 of core plug assembly 106.


Turning to FIGS. 49-55, an exemplary core body 1112 of a second exemplary core assembly 1102 is illustrated. Core assembly 1102 is similar in form and function to core assembly 102. Accordingly, parts of core assembly 1102 will have reference characters corresponding to similar parts of core assembly 102. For example, core assembly 1102 includes a core keeper 1110 and a core body 1112, as illustrated in FIG. 49.


Referring to FIGS. 50A and 50B, core body 1112 of core assembly 1102 includes an upper cavity 1140 and a lower cavity 1142 configured to receive a lock actuator assembly 1144. Lock actuator assembly 1144 includes core plug assembly 1106, a retaining member 1155, a biasing member 1150, and a clutch 1152. As illustrated in FIG. 52, biasing member 1150 biases clutch 1152 in a spaced apart relationship relative to core plug assembly 1106 and may be compressed to permit engagement features 1154 of core plug assembly 1106 to interact with engagement features 1156 of clutch 1152. In one example, biasing member 1150 is a wave spring.


Retaining member 1155, illustratively a snap ring or circlip, axially retains core plug assembly 1106 within lower cavity 1142 of core body 1112 while permitting core plug assembly 1106 to rotate about longitudinal axis 1108. Retaining member 1155 includes an outwardly extending protrusion 1157 and core body 112 includes a recess 1159 configured to receive protrusion 1157. As shown in FIG. 52, retaining member 1155 is secured around engagement members 1154 of core plug assembly 1106 and protrusion 1157 is received in recess 1159. In this way, retaining member 1155 restrict axial movement of core plug assembly 1106 along longitudinal axis 1108 in either direction 1702 or direction 1704.


Referring back to FIGS. 11 and 12, core plug assembly 106 of lock actuator assembly 144 includes a core plug body 160, a core plug cover 162, a control sleeve 164, and a control keeper coupling assembly 166. Control sleeve 164 includes an interior 170 which receives core plug body 160. Core plug body 160 includes a flange 172 (see FIG. 12) that limits the ingress of core plug body 160 into interior 170 of control sleeve 164 along longitudinal axis 108.


Control sleeve 164 further supports core keeper 110. In the illustrated embodiment, core keeper 110 is integrally formed as part of control sleeve 164. In other embodiments, core keeper 110 may be a separate component which is coupled to control sleeve 164. Core keeper 110 is illustratively shown as being co-extensive with a front face 174 of control sleeve 164 (see FIG. 11), but may be spaced apart from front face 174 of control sleeve 164 along longitudinal axis 108.


A stem portion 176 of core plug cover 162 is also received within interior 170 of control sleeve 164 along longitudinal axis 108. Stem portion 176 is further received within a recess 178 of core plug body 160. Core plug cover 162 includes locators 180 which cooperate with locators 182 of core plug body 160 to orient core plug cover 162 relative to core plug body 160 such that openings 184 in core plug cover 162 align with recesses 186 of core plug body 160. Openings 184 and 186 receive lock pins 120 of lock cylinder 122 (see FIG. 1). The illustrated locators 180 and locators 182 are recesses in core plug cover 162 and protrusions on core plug body 160, respectively. In one embodiment, other arrangements and constructs of locators or fasteners may be used.


Control keeper coupling assembly 166 is coupled to core plug body 160. Control keeper coupling assembly 166 includes a bell crank 190, an axle 192, a biasing member 194, and a cover 196. Axle 192 is received in an opening 198 of bell crank 190. Axle 192 is further received in a recess 200 of core plug body 160. Axle 192 supports bell crank 190 which extends into a second recess 202 of core plug body 160. In one example, axle 192 is integrally formed with bell crank 190.


Biasing member 194 is compressed between stem 176 of core plug cover 162 and bell crank 190 of control keeper coupling assembly 166. Referring to FIG. 13, a first end 204 of biasing member 194 is received over a protrusion 206 of a first leg 208 of bell crank 190. A second end 210 of biasing member 194 is received over a protrusion 212 of stem 176 of core plug cover 162. A flange 214 of stem 176 (see FIG. 11) of core plug cover 162 provides a stop surface for second end 210 of biasing member 194.


Cover 196 of control keeper coupling assembly 166 is received in a recess 220 of core plug body 160. Recess 200 and recess 202 intersect with and extend into core plug body 160 from recess 220. An exterior surface 222 of cover 196 has a surface profile, in the illustrated embodiment, which matches a surface profile of an exterior surface 224 of core plug body 160. As such, cover 196 and core plug body 160 cooperate to form a cylindrical body. Cover 196 includes locators 226 which cooperate with locators 228 of core plug body 160 to orient cover 196 relative to core plug body 160 such that an opening 230 in cover 196 align with recess 202 of core plug body 160.


As bell crank 190 pivots about an axis 242 of axle 192, a second leg 240 of bell crank 190 may extend through opening 230 of cover 196 and extend above exterior surface 222 of cover 196. Opening 230 of cover 196 and recess 202 of core plug body 160 are sized to also permit second leg 240 of bell crank 190 to be positioned within the cylindrical body formed by core plug body 160 and cover 196 (see FIGS. 9, 10, and 13). When cover 196 is coupled to core plug body 160 to hold bell crank 190 within core plug body 160 and cover 196, the cylindrical body formed by core plug body 160 and cover 196 is received within interior 170 of control sleeve 164 and oriented such that an opening 238 of control sleeve 164 is aligned with opening 230 of cover 196. In this arrangement second leg 240 of bell crank 190 may extend through opening 238 of control sleeve 164 and above an exterior surface 244 of control sleeve 164. By extending second leg 240 of bell crank 190 into opening 238 of control sleeve 164, second leg 240 of bell crank 190 rotationally couples control sleeve 164 to core plug body 160 such that a rotation of core plug body 160 about longitudinal axis 108 results in a rotation of control sleeve 164 about longitudinal axis 108 in the same direction as core plug body 160. By retracting second leg 240 of bell crank 190 from opening 238 of control sleeve 164 to a position below exterior surface 222 of cover 196, control sleeve 164 is not rotationally coupled to core plug body 160 and a rotation of core plug body 160 about longitudinal axis 108 does not result in a rotation of control sleeve 164 about longitudinal axis 108.



FIG. 13 illustrates bell crank 190 with second leg 240 retracted within recess 202 of core plug body 160. Biasing member 194 biases bell crank 190 to the position shown in FIG. 13. Core plug body 160 includes a channel 246 which intersects with a front face 248 of core plug body 160 and with recess 202 of core plug body 160. As explained herein, channel 240 permits an actuator, control pin 700 (see FIG. 32), to be inserted into core plug body 160 to move bell crank 190 to a position wherein second leg 240 of bell crank 190 extends into opening 238 of control sleeve 164 to couple control sleeve 164 to core plug body 160. As further illustrated in FIG. 13, clutch 152 includes a channel 250 which extends from a front face 254 of clutch 152 to a rear face 252 of clutch 152. Channel 250 of clutch 152 is aligned with channel 246 of core plug body 160. Thus, an actuator, control pin 700 (see FIG. 32), received in channel 250 may extend beyond rear face 252 of clutch 152 and enter channel 246 of core plug body 160.


Referring again to FIG. 51, a control keeper coupling assembly 1166 is coupled to core plug body 1160. Control keeper coupling assembly 1166 includes bell crank 1190, a biasing member 1194, and a cover 1196. Bell crank 1190 illustratively includes a first leg 1208 and a second leg 1240 coupled at an axle 1193. Axle 1193 is received in a recess 1200 of core plug body 1160 and rotationally supports bell crank 1190 which extends into a second recess 1202 of core plug body 1160. In the exemplary embodiment shown in FIG. 51, first leg 1208, second leg 1240, and axle 1193 are integrally formed. It is contemplated, however, that first leg 1208, second leg 1240, and axle 1193 could comprise one or more independent components supported by core plug body 1160. In another exemplary embodiment, axle 1193 comprises one or more components supported for rotation within a recess of bell crank 1190.


First leg 1208 of bell crank 1190 extends in a first direction while second leg 1240 of bell crank 1190 extends in a second direction angularly offset from the first direction. In the exemplary embodiment shown in FIG. 51, the second direction is generally orthogonal relative to the first direction. In another exemplary embodiment, the second direction is generally acute relative to the first direction. In yet another exemplary embodiment, the second direction is generally relative obtuse to first direction. Second leg 1240 couples to axle 1193 at a first end 1241 of second leg 1240. Opposite first end 1241 is a second end 1243 of second leg 1240. Second end 1243 includes an upper portion 1247 and a lower portion 1245. In the exemplary embodiment shown in FIG. 51, upper portion 1247 extends generally upwardly and lower portion 1245 extends generally downwardly such that a longitudinal profile of second leg 1240 of bell crank 1190 is generally T-shaped. Second leg 1240 cantilevers from axle 1193 such that second end 1243 may deflect relative to first end 1241 and axle 1193 if a sufficient force is applied to upper portion 1147, lower portion 1145, or a point proximate second end 1243.


Biasing member 1194 is compressed between a stem 1176 of core plug cover 1162 and bell crank 1190 of control keeper coupling assembly 1166. Referring to FIGS. 51 and 52, a first end 1204 of biasing member 1194 is received over a protrusion 1206 of first leg 1208 of bell crank 1190. A second end 1210 of biasing member 1194 is received over a protrusion 1212 of stem 1176 of core plug cover 1162. A flange 1214 of stem 1176 of core plug cover 1162 provides a stop surface for second end 1210 of biasing member 1194.


As bell crank 1190 pivots about an axis 1242 of axle 1193, second leg 1240 of bell crank 1190 may extend through an opening 1230 of cover 1196 and upper portion 1247 of second leg 1240 may extend above an exterior surface 1222 of cover 1196. Opening 1230 of cover 1196 and recess 1202 of core plug body 1160 are sized to also permit second leg 1240 of bell crank 1190 to be positioned within the cylindrical body formed by core plug body 1160 and cover 1196 (see FIGS. 51 and 52). When cover 1196 is coupled to core plug body 1160 to hold bell crank 1190 within core plug body 1160 and cover 1196, the cylindrical body formed by core plug body 1160 and cover 1196 is received within an interior 1170 of control sleeve 1164 and oriented such that an opening 1238 of control sleeve 1164 is aligned with opening 1230 of cover 1196. In this arrangement, upper portion 1247 of second leg 1240 of bell crank 1190 may extend through opening 1238 of control sleeve 1164 and above an exterior surface 1244 of control sleeve 1164. By extending upper portion 1247 of second leg 1240 into opening 1238 of control sleeve 1164, upper portion 1247 of second leg 1240 of bell crank 1190 rotationally couples control sleeve 1164 to core plug body 1160 such that a rotation of core plug body 1160 about longitudinal axis 1108 results in a rotation of control sleeve 1164 about longitudinal axis 1108 in the same direction as core plug body 1160. By retracting upper portion 1247 of second leg 1240 from opening 1238 of control sleeve 1164 to a position below exterior surface 1222 of cover 1196, control sleeve 1164 is not rotationally coupled to core plug body 1160 and a rotation of core plug body 1160 about longitudinal axis 1108 does not result in a rotation of control sleeve 1164 about longitudinal axis 1108.



FIGS. 50A and 52 illustrate bell crank 1190 with upper portion 1247 of second leg 1240 retracted within recess 1202 of core plug body 1160. Biasing member 1194 biases bell crank 1190 to the position shown in FIGS. 50A and 52. Core plug body 1160 includes a channel 1246 which intersects with a front face 1248 of core plug body 1160 and with recess 1202 of core plug body 1160. Channel 1246 permits an actuator, control pin 1700 (see FIG. 52), to be inserted into core plug body 1160 in direction 1702 to move bell crank 1190 to a position wherein upper portion 1247 of second leg 1240 extends into opening 1238 of control sleeve 1164 to couple control sleeve 1164 to core plug body 1160. As further illustrated in FIGS. 50A and 50B, clutch 1152 includes a channel 1250 which extends from a front face 1254 of clutch 1152 to a rear face 1252 of clutch 1152. Channel 1250 of clutch 1152 is aligned with channel 1246 of core plug body 1160. Thus, an actuator, control pin 1700 (see FIG. 52), received in channel 1250 in direction 1702 may extend beyond rear face 1252 of clutch 1152 and enter channel 1246 of core plug body 160.


In certain installations, core plug body 1160 may be rotationally offset relative to control sleeve 1164 about longitudinal axis 1108 such that opening 1238 of control sleeve 1164 is not aligned with opening 1230 of cover 1196. Accordingly, upper portion 1247 of second end 1243 of second leg 1240 of bell crank 1190 may not extend into opening 1238 of control sleeve 1164 when an actuator, control pin 1700 (see FIG. 52), is inserted into channel 1246 of core plug body 1160 in direction 1702 to move bell crank 1190. Instead, upper portion 1247 of second leg 1240 may impinge on an inner surface of control sleeve 1164 and second end 1243 may flex relative to first end 1241 of second leg 1240 and axle 1193. Rotation of core plug body 1160 about longitudinal axis 1108 with an actuator, control pin 1700 (see FIG. 52), continuously inserted into channel 1246 in direction 1702 will eventually result in opening 1230 of cover 1196 aligning with opening 1238 of control sleeve 1162. Once opening 1230 aligns with opening 1238, second end 1243 of second leg 1240 of bell crank 1190 will quickly reform to its original shape and upper portion 1247 of second leg 1240 will extend into opening 1238 of control sleeve 1164 to rotationally couple control sleeve 1164 to core plug body 1160. Because upper portion 1247 of second leg 1240 snaps into opening 1238 of control sleeve 1162 once opening 1230 is aligned with opening 1238, a user is provided with near instantaneous feedback that control sleeve 1164 is rotationally coupled to core plug body 1160.


Referring back to FIGS. 7 and 8, lock actuator assembly 144 which includes biasing member 150, clutch 152, core plug body 160 and control sleeve 164 are received in lower cavity 142 of core body 112 through a rear face 260 of core body 112. Core body 112 includes a recess 262 to receive core keeper 110 of control sleeve 164 (see FIG. 1). As shown in FIG. 7, core body 112 includes a stop 264 which limits the axial movement of clutch 152 towards the front of core body 112 (see FIG. 26).


Control assembly 146 is received in upper cavity 140 of core body 112. The components of control assembly 146 are described in more detail herein in relation to FIGS. 14-21. One of the components of control assembly 146, a light guide 266, is positioned forward of an upper wall 268 of core body 112 in a recess 270 of upper wall 268 (see FIG. 7). Light guide 266 is supported by a cradle 272 of control assembly 146. A front wall 274 of cradle 272 is positioned against a front wall 276 of core body 112.


Control assembly 146 is held in place relative to core body 112 with a top cover 280 and a rear cover 282. Top cover 280 includes a plurality of tabs 284 which are positioned under upper wall 268 of core body 112 to hold a front portion of top cover 280 relative to core body 112. Rear cover 282 includes a plurality of locators 286, illustratively protrusions, and locators 288, illustratively protrusions. Outer locators 286 are received in external recesses 290 of top cover 280, respectively, while inner locators 286 are received in voids 292; thereby each pair of outer and inner locators 286 captures a wall 294 of top cover 280. Locators 288 are received in respective recesses 296 of core body 112. Thus, locators 286 are coupled to top cover 280 and locators 288 are coupled to core body 112 to hold the rear end of top cover 280 relative to core body 112. Rear cover 282 is held relative to core body 112 with a fastener 302. Fastener 302 is received in an opening 300 in rear cover 282 and is secured to core body 112 through a threaded aperture 304.


In addition to holding control assembly 146 relative to core body 112, rear cover 282 also holds lock actuator assembly 144 relative to core body 112. Rear cover 282 includes an opening 310 sized to receive a head 312 of core plug cover 162. A stop 314 is provided on core plug cover 162. Stop 314 is positioned to rest against surface 316 of rear cover 282 to prevent the rearward axial movement of core plug cover 162. As shown in FIG. 2, head 312 of core plug cover 162 extends outward from rear cover 282. Although head 312 with openings 184 are illustrated for interfacing with lock pins 120 of lock cylinder 122, different configurations of head 312 are contemplated including recesses and/or protrusions to couple tailpieces or other cam members to lock actuator assembly 144. Electro-mechanical lock core 100 may be configured for use with other types of lock cylinder 122, padlocks, rim cylinders, key in knob/lever cylinders, and other locking devices.


Referring to FIGS. 14-22, control assembly 146 is illustrated in more detail. Control assembly 146 includes cradle 272, an electrical assembly 350, a motor 352 controlled by the electrical assembly 350, light guide 266, a blocker 354, and top cover 280. Cradle 272 includes various features, walls, recesses, and other geometries to position and hold electrical assembly 350, motor 352, light guide 266, and blocker 354 (see FIG. 8 for an assembled view). Cradle 272 on an upper side includes a holder 360 to hold motor 352 and an elongated channel 362 and cradle 364 to hold portions of electrical assembly 350. Holder 360 includes a central aperture 366 through which an output shaft 452 of motor 352 extends (see FIG. 27). In one example, motor 352 is a stepper motor. Referring to FIG. 17, cradle 272 on a bottom side includes a recess 370 into which blocker 354 may be positioned. Recess 370 intersects with central aperture 366. Cradle 272, on a bottom side, further includes a recess 372 to accommodate core keeper 110 when core keeper 110 is positioned within core body 112, as explained in more detail herein.


Referring to FIGS. 45 and 46, an exemplary representation of electrical assembly 350 and an operator device 500 is shown. Electrical assembly 350 includes an electronic controller 380, a wireless communication system 382, one or more input devices 384, one or more output devices 386, and a memory 388 all electrically interconnected through circuitry 390. In the illustrated embodiment, electronic controller 380 is microprocessor-based and memory 388 is a non-transitory computer readable medium which includes processing instructions stored therein that are executable by the microprocessor of electronic controller 380 to control operation of electro-mechanical lock core 100 including positioning blocker 354 in one of a blocking position (see FIG. 20) and a release position (see FIG. 21). Exemplary non-transitory computer-readable mediums include random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (e.g., EPROM, EEPROM, or Flash memory), or any other tangible medium capable of storing information.


Motor 352 is operatively coupled to electronic controller 380 and circuitry 390. Circuitry 390 includes circuitry on one or more circuit boards 392 (see FIG. 14) and a power bus 394 (see FIG. 14). As shown in FIG. 18, power bus 394 is operatively coupled to a first electrical contact, illustratively as pogo pin 398 received in a holder 400. Pogo pin 398 is operatively coupled to a contact 422 of a power assembly 420 (see FIGS. 23 and 27) to receive electrical power from a power source 402 (see FIG. 45). In one example, electrical contact 422 is made of brass. Power bus 394 is further electrically coupled to additional components of electrical assembly 350 to provide power to electrical assembly 350. Electrical assembly 350 is grounded through core body 112.


In the example illustrated in FIG. 45, power source 402 is positioned within operator actuation assembly 104 of electro-mechanical lock core 100. In other embodiments, power source 402 may be positioned in core assembly 102 of electro-mechanical lock core 100. Advantages, among others, for incorporating power source 402 in operator actuation assembly 104 is the ease of replacement of power source 402 and the ability to incorporate a battery as the power source with an increased capacity compared to the space constraints of core assembly 102 of electro-mechanical lock core 100. Referring to FIG. 24, power source 402 is illustrated as a battery 404 incorporated as part of operator actuation assembly 104. Additional details regarding operator actuation assembly 104 are provided herein.


Returning to FIG. 45, wireless communication system 382 includes a transceiver and other circuitry needed to receive and send communication signals to other wireless devices, such as an operator device 500. In one embodiment, wireless communication system 382 includes a radio frequency antenna and communicates with other wireless devices over a wireless radio frequency network, such as a BLUETOOTH network or a WIFI network.


In one embodiment, electro-mechanical lock core 100 communicates with operator device 500 without the need to communicate with other electro-mechanical lock core 100. Thus, electro-mechanical lock core 100 does not need to maintain an existing connection with other electro-mechanical locking cores 100 to operate. One advantage, among others, is that electro-mechanical lock core 100 does not need to maintain network communications with other electro-mechanical lock core 100 thereby increasing the battery life of battery 404. In one embodiment, electro-mechanical lock core 100 does maintain communication with other electro-mechanical locking cores 100 and is part of a network of electro-mechanical locking cores 100. Exemplary networks include a local area network and a mesh network.


Exemplary input devices 384 include buttons, switches, levers, a touch display, keys, and other operator actuatable devices which may be actuated by an operator to provide an input to electronic controller 380. Once communication has been established with operator device 500, various input devices 506 of operator device 500 may be actuated by an operator to provide an input to electronic controller 380. In one embodiment, electro-mechanical lock core 100 requires an actuation of an input device 384 of electro-mechanical lock core 100 prior to taking action based on communications from operator device 500. An advantage, among others, for requiring an actuation of an input device 384 of electro-mechanical lock core 100 prior to taking action based on communications from operator device 500 is that electro-mechanical lock core 100 does not need to evaluate every wireless device that comes into proximity with electro-mechanical lock core 100. Rather, electro-mechanical lock core 100 may use the actuation of input devices 384 to start listening to communications from operator device 500. As explained in more detail herein, in one embodiment, operator actuation assembly 104 functions as an input device 384. Operator actuation assembly 104 capacitively senses an operator tap on operator actuation assembly 104 or in close proximity to operator actuation assembly 104.


Exemplary output devices 386 include visual output devices, audio output device, and/or tactile output devices. Exemplary visual output devices include lights, segmented displays, touch displays, and other suitable devices for providing a visual cue or message to an operator of operator device 500. Exemplary audio output devices include speakers, buzzers, bells and other suitable devices for providing an audio cue or message to an operator of operator device 500. Exemplary tactile output devices include vibration devices and other suitable devices for providing a tactile cue to an operator of operator device 500. In one embodiment, electro-mechanical lock core 100 sends one or more output signals from wireless communication system 382 to operator device 500 for display on operator device 500.


Operator device 500 is carried by an operator, Exemplary operator device 500 include cellular phones, tablets, personal computing devices, watches, badges, and other suitable devices associated with an operator that are capable of communicating with electro-mechanical lock core 100 over a wireless network. Exemplary cellular phones, include the IPHONE brand cellular phone sold by Apple Inc., located at 1 Infinite Loop, Cupertino, CA 95014 and the GALAXY brand cellular phone sold by Samsung Electronics Co., Ltd.


Operator device 500 includes an electronic controller 502, a wireless communication system 504, one or more input devices 506, one or more output devices 508, a memory 510, and a power source 512 all electrically interconnected through circuitry 514. In one embodiment, electronic controller 502 is microprocessor-based and memory 510 is a non-transitory computer readable medium which includes processing instructions stored therein that are executable by the microprocessor of operator device 500 to control operation of operator device 500 including communicating with electro-mechanical lock core 100. Exemplary non-transitory computer-readable mediums include random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (e.g., EPROM, EEPROM, or Flash memory), or any other tangible medium capable of storing information.


Referring to FIG. 46, electronic controller 380 executes an access granted logic 430 which controls the position of blocker 354 in either a blocking position (see FIG. 20) and a release position (see FIG. 21). The term “logic” as used herein includes software and/or firmware executing on one or more programmable processors, application-specific integrated circuits, field-programmable gate arrays, digital signal processors, hardwired logic, or combinations thereof. Therefore, in accordance with the embodiments, various logic may be implemented in any appropriate fashion and would remain in accordance with the embodiments herein disclosed. A non-transitory machine-readable medium 388 comprising logic can additionally be considered to be embodied within any tangible form of a computer-readable carrier, such as solid-state memory, magnetic disk, and optical disk containing an appropriate set of computer instructions and data structures that would cause a processor to carry out the techniques described herein. This disclosure contemplates other embodiments in which electronic controller 380 is not microprocessor-based, but rather is configured to control operation of blocker 354 and/or other components of electro-mechanical lock core 100 based on one or more sets of hardwired instructions. Further, electronic controller 380 may be contained within a single device or be a plurality of devices networked together or otherwise electrically connected to provide the functionality described herein.


Electronic controller 380 receives an operator interface authentication request, as represented by block 432. In one embodiment, operator interface authentication request 432 is a message received over the wireless network from operator device 500. In one embodiment, operator interface authentication request 432 is an actuation of one or more of input devices 384. As explained in more detail herein, in one embodiment, operator actuation assembly 104 functions as an input device 384. Operator actuation assembly 104 capacitively senses an operator tap on operator actuation assembly 104 or in close proximity to operator actuation assembly 104.


Electronic controller 380 further receives authentication criteria 434 which relate to the identity and/or access level of the operator of operator device 500. In one embodiment, the authentication criteria is received from operator device 500 or communicated between electronic controller 380 and operator device 500.


Access granted logic 430 based on operator interface authentication request 432 and authentication criteria 434 determines whether the operator of operator device 500 is granted access to actuate core plug assembly 106 which in turn actuates cam member 126 in the illustrated embodiment or is denied access to actuate core plug assembly 106. If the operator of operator device 500 is granted access to actuate core plug assembly 106, access granted logic 430 powers motor 352 to move blocker 354 to the release position, as represented by block 436. If the operator of operator device 500 is denied access to actuate core plug assembly 106, access granted logic 430 maintains blocker 354 in the blocking position, as represented by block 438.


A first exemplary embodiment 530 of electrical assembly 350 is illustrated in FIG. 47.


A second exemplary embodiment 570 of electrical assembly 350 is illustrated in FIG. 48.


Light guide 266 communicates the output of diodes (see FIGS. 47 and 48), an exemplary output device, to an operator external to electro-mechanical lock core 100. Returning to FIG. 15, light guide 266 is positioned at the front of cradle 272. Cradle 272 includes a recess 450 in front wall 274 which receives a central portion of light guide 266. As shown in FIG. 1, the central portion of light guide 266 is visible above operator actuation assembly 104 when electro-mechanical lock core 100 is assembled.


Referring to FIG. 17, motor 352 includes a threaded output shaft 452 which is rotational about axis 454 and is received in a threaded aperture 456 of blocker 354. The orientation of blocker 354 is maintained by the shape and size of recess 370 in cradle 272. As such, due to a rotation of threaded output shaft 452 in a first direction 458, blocker 354 is moved downwardly in direction 462 and due to a rotation of threaded output shaft 452 in a second direction 460, blocker 354 is moved upwardly in direction 464.


Blocker 354 cooperates with clutch 152 to deny or grant access to core plug assembly 106. Referring to FIGS. 9 and 10, clutch 152 includes a circumferential groove 466 having a cylindrical lower surface 468. Blocker 354 includes a cylindrical lower profile 470 which generally matches cylindrical lower surface 468 of clutch 152. When a lower portion 472 of blocker 354 is received in circumferential groove 466 of clutch 152 (see FIG. 20), clutch 152 is restricted in axial movement along longitudinal axis 108 relative to blocker 354. The relationship shown in FIG. 20 is referred to as a blocked position of blocker 354 due to the restricted axial movement of clutch 152 relative to blocker 354 along longitudinal axis 108. When lower portion 472 of blocker 354 is removed from circumferential groove 466, clutch 152 may move to a greater degree axially along longitudinal axis 108 relative to blocker 354. The relationship shown in FIG. 21 is referred to as a release position of blocker 354 due to the less restricted axial movement of clutch 152 relative to blocker 354 along longitudinal axis 108. In other embodiments a protrusion of clutch 152 is received in a groove of blocker 354 or is otherwise blocked in axial movement towards core plug assembly 106 when blocker 354 is in the blocked position.


One advantage, among others for having blocker 354 received in circumferential groove 466 is that clutch 152 is able to freely rotate about longitudinal axis 108 while blocker 354 is in the blocked position (FIG. 20) and while blocker 354 is in the released position (FIG. 21). The interaction of blocker 354 and clutch 152 is explained in more detail herein.


Referring to FIG. 18, electro-mechanical lock core 100 includes a position sensor 600 supported by circuit board 392. Position sensor 600 determines a position of blocker 354 to provide a feedback to electronic controller 380 when blocker 354 is in the blocked position. Position sensor 600 includes a first leg 602 having a first aperture 604 (see FIG. 20) and a second leg 606 having a second aperture 608 (see FIG. 18). One of first leg 602 and second leg 606 includes a light source 610 (see FIG. 18A), such as a light emitting diode, and the other of first leg 602 and second leg 606 includes a detector 612 which detects the light emitted by light source 610. As shown in FIG. 18A, light source 610 is powered to emit light when motor 352 is operating.


Returning to FIG. 18, a vertical channel 616 is formed between first leg 602 and second leg 606. The vertical channel 616 is sized to receive blocker 354. When blocker 354 is in the release position (see FIG. 21), blocker 354 is positioned in channel 616 at a height blocking the light from light source 610 reaching detector 612 and a voltage on a position sense line 618 monitored by electronic controller 380 is high. When blocker 354 is in the blocking position (see FIG. 20), blocker 354 is in channel 616 at a height permitting the light from light source 610 to reach detector 612, thereby activating a switch of detector 612 so that the voltage on the position sense line 618 monitored by electronic controller 380 is low.


Referring to FIG. 22, an alternative blocker 354′ is shown. Blocker 354′ includes a window 620. With blocker 354′ and position sensor 600 positioned lower, the light from light source 610 is detected by detector 612 when blocker 354′ is in the release position and the light from light source 610 is blocked from detector 612 when blocker 354′ is in the blocked position. Although a line-of-sight optical position sensor 600 is shown, other position sensors may be used to sense a position of blocker 354 relative to clutch 152. Exemplary alternative position sensors include hall effect sensors, current monitoring sensors, switched activated sensors, and other suitable sensing devices for sensing a position of a mechanical device.


Referring to FIGS. 8 and 23, a power assembly 420 is illustrated. Power assembly 420 is received in lower cavity 142 of core body 112 as illustrated in FIG. 26. Power assembly 420 includes a first insulator housing 424 and a second insulator housing 426 which capture contact 422 and a conductor 428. In one embodiment, conductor 428 is a beryllium copper canted coil spring or other suitable conductive devices. Conductor 428 is in electrical contact with operator actuation assembly 104 to receive power from battery 404 while permitting a free rotation of operator actuation assembly 104 about axis 108. Contact 422 is in electrical contact with conductor 428 to receive electrical power from conductor 428 and pass the electrical power on to pogo pin 398. Power assembly 420 includes a central opening 628 to receive operator actuation assembly 104.


Power assembly 420 is held in place in core body 112 by a stop 264 of core body 112 and a cover 630 threaded into a front portion 632 of core body 112. Cover 630 includes a recess 634 which carries a conductor 636. Cover 630 is electrically coupled to core body 112 through the threaded engagement and conductor 636 is electrically coupled to cover 630. As mentioned herein, core body 112 is grounded and conductor 636 is in electrical contact with operator actuation assembly 104 to ground operator actuation assembly 104. In one embodiment, conductor 636 is a beryllium canted coil spring. Cover 630 includes a central opening 640 to receive operator actuation assembly 104.


Referring to FIGS. 24 and 25, operator actuation assembly 104 is illustrated. All of the components of operator actuation assembly 104 rotate about longitudinal axis 108 as a unit. Operator actuation assembly 104 includes a power transfer ring 654 captured between a first insulator ring 650 and a second insulator ring 652. Referring to FIG. 27, conductor ring 654 is in electrical contact with conductor 428 of power assembly 420 to transfer power to conductor 428 throughout a movement of operator actuation assembly 104 along axis 108 in direction 702 and direction 704. In one embodiment, conductor ring 654 is a brass power transfer ring. Second insulator ring 652 includes a recess to receive a first leg 658 of a power transfer conductor 660. A first end 664 of first leg 658 of conductor 660 is in electrical contact with conductor ring 654. As shown in FIG. 27, first end 664 has a bent profile which biases first leg 658 of power transfer conductor 660 into contact with conductor ring 654.


At least a portion of first leg 658 of power transfer conductor 660 is covered by an insulator sleeve 662. A second end 672 of second leg 670 of power transfer conductor 660 is held in electrical contact with a conductor clip 674 which is in turn in electrical contact with a terminal portion of battery 404.


First leg 658 of conductor 660 and insulator sleeve 662 also pass through a channel 676 of a knob base shaft 680. As shown in FIG. 27, a stem 682 of knob base shaft 680 has an end portion 684 with a first diameter sized to be received within and generally match the diameter of channel 250 of clutch 152 and a central opening 628 of power assembly 420. Stem 682 of knob base shaft 680 has an intermediate portion 686 with a second diameter, larger than the first diameter of end portion 684, sized to be received within and generally match the diameter of central opening 640 of cover 630.


Knob base shaft 680 further includes a central opening 690 having a front portion 692 and a rear portion 694. Front portion 692 has a larger diameter than rear portion 694. Rear portion 694 of central opening 690 includes a threaded portion 696 which is threadably engaged by a threaded head 698 of a control pin 700. As shown in FIG. 27, control pin 700 is threaded into knob base shaft 680 from the rear. As explained herein, an operator may engage control pin 700 with a tool (not shown) which is configured to engage tool engagement end 706 of control pin 700. Illustratively, tool engagement end 706 of control pin 700 is a socket configured to receive a hex head tool. The operator may advance control pin 700 in direction 702 (see FIG. 27) along longitudinal axis 108 and then subsequently retract control pin 700 in direction 704 along axis 108. As explained in more detail herein, an end 710 of control pin 700 may be used to actuate bell crank 190.


Returning to FIGS. 24 and 25, operator actuation assembly 104 further includes a knob base 720 and a battery support 722. Battery support 722 is coupled to knob base 720 with a plurality of fasteners 724 threaded into apertures 726 of knob base 720. Knob base 720 includes a central sleeve 730 and a base 732. A central opening 734 passes through both central sleeve 730 and base 732.


Sleeve 730 includes a first plurality of recesses 736 spaced around central opening 734 and a second plurality of recesses 738 spaced around central opening 734. First plurality of recesses 736 receives protrusions 740 (see FIG. 25) of battery support 722. Second plurality of recesses 738 receives protrusions 742 of knob base shaft 680. A longitudinal length of second plurality of recesses 738 along longitudinal axis 108 is greater than a longitudinal length of protrusions 742 of knob base shaft 680. As such, knob base 720 and battery support 722 function to capture knob base shaft 680, but permit relative movement between knob base shaft 680 and the assembly of knob base 720 and battery support 722 along axis 108 in direction 702 and direction 704. As shown in FIG. 27, a biasing member 750 is placed between a stop surface 752 in central opening 690 of knob base shaft 680 and a stop surface 754 of battery support 722. Biasing member 750 biases the assembly of knob base 720 and battery support 722 in direction 704 relative to knob base shaft 680 which as explained in more detail herein is fixably coupled to clutch 152.


Referring to FIG. 27A, knob base shaft 680 is secured to clutch 152 with a fastener, illustratively a set screw 712 which is threaded into a threaded bore 714 in clutch 152. Set screw 712 presses against a flat 688 of knob base shaft 680 to prevent a rotation of knob base shaft 680 relative to clutch 152. As shown in FIG. 27A, knob base shaft 680 is threaded into clutch 152 prior to set screw 712 being advanced in bore 714 into engagement with the flat 688 of knob base shaft 680.


Returning to FIG. 27, knob base 720 has a recess 760 into which a ring 762 is placed. Ring 762 extends into a recess 764 in knob base shaft 680 to couple knob base shaft 680 to knob base 720 such that under a first level of force in direction 702, knob base shaft 680 and knob base 720 move together. Under a second level of force in direction 702, greater than the first level of force, ring 762 is displaced from recess 764 of knob base shaft 680 and knob base 720 may move in direction 702 relative to knob base shaft 680 as shown in FIG. 30.


An advantage, among others, for the release of ring 762 from recess 764 is that the operator actuation assembly 104 as opposed to clutch 152 and blocker 354 will absorb the excess force (which is passed on to core body 112 when operator actuation assembly 104 contacts the core body 112) thereby increasing the durability of lock core 100 from being damaged. In one embodiment, ring 762 is a steel canted coil spring. Spring 750 also absorbs an initial large spike of the external force and assists in returning operator actuation assembly 104 to the position shown in FIG. 26.


Referring to FIGS. 24 and 25, operator actuation assembly 104 further includes a battery holder board 780 which is received in recess 782 of battery support 722. Battery holder board 780 includes the contacts which align with the terminals of battery 404 and a clip 786 which holds battery 404 against battery holder board 780. Battery holder board 780 further includes a capacitive sensing circuit 784 and a power interrupt circuit 788.


Capacitive sensing circuit 784 detects when an operator is in proximity of a knob cover 790 of operator actuation assembly 104 or touches knob cover 790 of operator actuation assembly 104. Power interrupt circuit 788 interrupts the power provided by battery 404 to electrical assembly 350 for a short period of time when capacitive sensing circuit 784 detects an operator is in proximity of a knob cover 790 of operator actuation assembly 104 or touches knob cover 790 of operator actuation assembly 104. This interruption of power signals electronic controller 380 that a potential operator is in close proximity to electro-mechanical lock core 100. An advantage, among others, of including capacitive sensing circuit 784 and power interrupt circuit 788 in operator actuation assembly 104 is that the components of electrical assembly 350 may be in a low power mode until the interruption of power is sensed and thus extend the life of battery 404. In one embodiment, power interrupt circuit 788 is replaced with a signal transmission unit that in response to a detection by capacitive sensing circuit 784 will send a wake-up signal to electrical assembly 350.


Knob cover 790 is removably coupled to knob base 720. Referring to FIG. 25, knob cover 790 includes three spaced apart groupings (one grouping shown) of a front rib 792 and a rear rib 794 which define a channel 796. The channels 796 receive a rib 798 (two instances shown) of knob base 720 to hold knob cover 790 against axial movement in direction 702 or direction 704 relative to knob base 720. As explained herein, an assembly including knob base 720 and knob cover 790 is capable of moving in direction 702 and direction 704. Knob cover 790 is held against rotational movement in direction 802 (see FIG. 24) relative to knob base 720 due to arm 804 of battery support 722 which is received in one of recesses 806 of knob base 720 and against rotational movement in direction 800 relative to knob base 720 due to a wall of knob base 720.


At various times, an operator will need to replace battery 404. In order to replace battery 404, knob cover 790 needs to be removed from the remainder of operator actuation assembly 104. Referring to FIG. 33, a knob cover removal tool 850 for removing knob cover 790 is shown. Tool 850 includes a back housing 852 and a front housing 854 secured together with fasteners 856.


A movable coupler 860 is captured between back housing 852 and front housing 854. A first operator actuatable portion 868 of movable coupler 860 extends through a window 866 of front housing 854. A second operator actuatable portion 870 of movable coupler 860 extends from a lower portion of front housing 854. Movable coupler 860 is moveable in direction 888, direction 890, direction 892, and direction 894 relative to front housing 854.


Referring to FIG. 35, back housing 852 includes a lower portion having a scalloped profile 862. The lower portion of back housing 852 includes a plurality of locators 864 which are spaced to be received in corresponding locators 880 of knob base 720. Movable coupler 860 includes a locator 872 which is received in a corresponding locator 882 of knob cover 790. As such, tool 850 is coupled to operator actuation assembly 104 through a mating of locators 864 and 880 along a first direction generally parallel with axis 108 and through a mating of locators 872 and 882 along a second direction generally perpendicular to the first direction of locators 864 and 880.


Referring to FIGS. 36-38, a process for removing knob cover 790 from knob base 720 is illustrated. Referring to FIG. 36, tool 850 is positioned so that back housing 852 is between knob base 720 and lock cylinder 122 and the assembly knob base 720 and knob cover 790 is rotated in directions 892, 894 to align locators 880 of knob base 720 with locators 864 of tool 850. Tool 850 is then moved in direction 704 to position locators 864 of tool 850 in locators 880 of knob base 720.


Movable coupler 860 is then moved downward in direction 890 to position locator 872 of tool 850 in locator 882 of knob cover 790 as shown in FIG. 37. Referring to FIGS. 39 and 40, locator 872 of tool 850 presses against arm 804 of battery support 722. Arm 804 of battery support 722 moves in direction 890 within recesses 806 of knob base 720. This movement of arm 804 downward permits front rib 792 and rear rib 794 of knob cover 790 to rotate in direction 892 such that rib 798 of knob base 720 is no longer positioned in channel 796 of knob cover 790. Referring to FIG. 38, this movement may be accomplished by moving movable coupler 860 and knob cover 790 in direction 892 relative to front housing 854 and back housing 852 which is held firm or by holding movable coupler 860 and knob cover 790 firm and moving front housing 854 and back housing 852 in direction 894. Once rib 798 of knob base 720 is no longer positioned in channel 796 of knob cover 790, movable coupler 860 may be moved up in direction 888 and knob cover 790 may be removed from knob base 720 in direction 704, as illustrated in FIG. 41. Then, battery 404 may be removed from battery holder board 780.


Referring to FIG. 43, with battery 404 removed an operator may access tool engagement end 706 of control pin 700 to move control pin 700 in one or directions 702 and 704. As explained in more detail herein, the position of control pin 700 is important to a movement of core keeper 110 from outside of core body 112 (see FIG. 42) to inside of core body 112 (see FIG. 44).


Various operations of electro-mechanical lock core 100 are explained with reference to FIGS. 26-32. FIG. 26 illustrates a sectional view of electro-mechanical lock core 100 with blocker 354 in the first blocking position of FIG. 20 wherein a lower portion of blocker 354 is received in circumferential groove 466 of clutch 152. FIG. 26 is the rest position of electro-mechanical lock core 100. In the rest position, operator actuation assembly 104 and clutch 152 are freely rotatable about longitudinal axis 108 and blocker 354 prevents the axial movement of clutch 152 in direction 702. Thus, clutch 152 remains spaced apart from core plug body 160 and core plug body 160 cannot be rotated about longitudinal axis 108 to rotate core plug cover 162 and the locking device coupled to core plug cover 162.


Referring to FIG. 28, blocker 354 has been moved in direction 464 by motor 352 to the second release position of FIG. 21 wherein a lower portion of blocker 354 is positioned outside of circumferential groove 466. This is an access position for electro-mechanical lock core 100. With blocker 354 removed from circumferential groove 466 of clutch 152, an operator may move operator actuation assembly 104 and clutch 152 in direction 702 to bring engagement features 156 of clutch 152 into engagement with engagement features 154 of core plug body 160, as illustrated in FIG. 29. With engagement features 156 of clutch 152 engaged with engagement features 154 of core plug body 160, an operator may rotate operator actuation assembly 104 to effect a rotation of core plug cover 162 and an actuation of the locking device coupled to core plug cover 162.


As shown in FIG. 29, even though engagement features 156 of clutch 152 are engaged with engagement features 154 of core plug body 160, control pin 700 remains spaced apart from bell crank 190. As such, second leg 240 of bell crank 190 remains below opening 238 of control sleeve 164 (see FIG. 13) and control sleeve 164 does not rotate with core plug body 160. Therefore, core keeper 110 remains positioned external to core body 112 as shown in FIG. 42. To assist in maintaining core keeper 110 external to core body 112 when control sleeve 164 is not locked to core plug body 160 through bell crank 190, a biasing member 900, illustratively a torsion spring, is coupled to a protrusion 910 of core body 112 with a first leg 902 that presses against core keeper 110 and a second leg that presses against core body 112. Torsion spring 900 biases core keeper 110 to be positioned external to core body 112.


An exemplary biasing member 1900 of second exemplary core assembly 1102 is illustrated in FIGS. 50A, 50B, and 53-55. Turning to FIGS. 50A and 50B, upper cavity 1140 of core body 1112 receives a control assembly 1146. Similar to control assembly 146 of core assembly 102, control assembly 1146 restricts various movements of lock actuator assembly 1144 to restrict unauthorized actuation of a cam member 1126 and/or to restrict movement of core keeper 1110.


Control assembly 1146 is held in place relative to core body 1112 with a top cover 1280 and a rear cover 1282 and includes a cradle 1272, a light guide 1266, and a blocker 1354 (see FIG. 52). In the exemplary embodiment of FIGS. 50A, 50B, and 53-55, a bottom side of cradle 1272 is defined by a generally arcuate surface. Turning to FIG. 50B, cradle 1272 on a bottom side includes biasing member 1900 integrally formed with cradle 1272. In another exemplary embodiment, biasing member 1900 comprises one or more independent components and is supported by cradle 1272. A bottom side of cradle 1272 further includes a recess 1372 to accommodate core keeper 1110 when core keeper 1110 is positioned within an envelope of core body 1112.


In the exemplary embodiment shown in FIG. 53, biasing member 1900 includes a base 1901 integrally formed with cradle 1272. A biasing arm 1903 is integrally formed with base 1901 and extends generally outwardly therefrom. In this way, biasing arm 1903 cantilevers from base 1901. In the exemplary embodiment shown in FIGS. 50B and 53-55, biasing arm 1903 mirrors the generally arcuate shape of a bottom side of cradle 1272. A distal end of biasing arm 1903 includes a raised portion configured to abut core keeper 1110 when core keeper 1110 is either positioned outside of the envelope of core body 1112 (see FIG. 53) or when core keeper 1110 is received at or immediately within the envelope of core body 1112 (see FIGS. 54 and 55).


As illustrated in FIG. 53, biasing member 1900 biases core keeper 1110 to be positioned external to core body 1112. Accordingly, core keeper 1110 remains outside the envelope of core body 1112 unless and until a torque in a direction 1894 is applied to control sleeve 1164 sufficient to overcome a biasing torque exerted by biasing member 1900 in direction 1892. When such a sufficient torque is applied to control sleeve 1164 in direction 1894, biasing arm 1903 deflects upwardly relative to base 1901. As torque is continually applied to control sleeve 1164 in direction 1894, core keeper 1110 rotates inwardly past the raised portion of the distal end of biasing arm 1903 and is retracted within the envelope of core body 1112. Once core keeper 1110 has rotated past the raised portion of the distal end of biasing arm 1903, biasing arm 1903 returns to its original shape and core keeper 1110 is now retained within the envelope of core body 1112. Core keeper 1110 remains within the envelope of core body 1112 unless and until a torque in direction 1892 is applied to control sleeve 1164 sufficient to upwardly deflect biasing arm 1903 relative to base portion 1901 such that core keeper 1110 is positioned outside of core body 1112.


Referring back to FIGS. 31 and 32, control pin 700 has been moved in direction 702 relative to knob base shaft 680. The ability to move control pin 700 in direction 702 relative to clutch 152 is limited because the head of control pin 700 bottoms out against the clutch 152. An advantage, among others, is that an unauthorized operator is unable to visually inspect the region between clutch 152 and core plug 160 and to prevent the ability to inject an adhesive in the space between clutch 152 and core plug 160.



FIG. 31 corresponds to FIG. 26 and FIG. 32 corresponds to FIG. 29. In FIG. 32, electro-mechanical lock core 100 is in a control position wherein control pin 700 actuates bell crank 190 to raise second leg 240 of bell crank 190 into opening 238 of control sleeve 164. With second leg 240 of bell crank 190 in opening 238 of control sleeve 164 and engagement features 156 of clutch 152 are engaged with engagement features 154 of core plug body 160, when an operator rotates operator actuation assembly 104 about longitudinal axis 108 control sleeve 164 rotates with core plug body 160 and core keeper 110 is retracted to within core body 112. With core keeper 110 retracted into core body 112, electro-mechanical lock core 100 may be removed from lock cylinder 122.


While this invention has been described as having exemplary designs, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains.

Claims
  • 1. An interchangeable lock core for use with a lock device having a locked state and an unlocked state, the interchangeable lock core removable from an opening of the lock device with the aid of a tool, the interchangeable lock core comprising: a lock core body having an exterior lock core body envelope, the lock core body including an upper lock core body section having a first cylindrical portion with a first maximum lateral extent, a lower lock core body section having a second cylindrical portion with a second maximum lateral extent, and a waist having a third maximum lateral extent, the third maximum lateral extent being less than the first maximum lateral extent and being less than the second maximum lateral extent;a moveable plug positioned within the lower core body section, the moveable plug having a first position relative to the lock core body which corresponds to the lock device being in the locked state, and a second position relative to the lock core body, which corresponds to the lock device being in the unlocked state, the moveable plug being rotatable between the first position and the second position about a moveable plug axis;an operator actuation assembly operable to selectively actuate the moveable plug, the operator actuation assembly moveably supported by the lock core body;a core keeper moveably coupled to the lock core body, the core keeper positionable in a retain position, in which the core keeper extends beyond the exterior lock core body envelope to hold the lock core body in the opening of the lock device, and a remove position, in which the core keeper is retracted relative to the exterior lock core body envelope to permit removal of the lock core body from the opening of the lock device; andan actuator adjustably supported relative to the lock core body, a position of the actuator relative to the lock core body being adjustable, the actuator having an allow position, allowing the core keeper to be actuated by the moveable plug from the retain position to the remove position and, a disallow position, in which the actuator does not allow the core keeper to be actuated by the moveable plug between the retain position and the remove position, the actuator having a tool receiver adapted to be engaged with the tool such that the tool adjusts the actuator between the allow position and the disallow position, the tool receiver positioned within an exterior operator actuation assembly envelope when viewed from a direction along the moveable plug axis;wherein the operator actuation assembly includes a cover removeable from a remainder of the operator actuation assembly to provide access to the tool receiver of the actuator.
  • 2. The interchangeable lock core of claim 1, wherein the moveable plug axis intersects the operator actuation assembly, the exterior operator actuation assembly envelope defined about the moveable plug axis.
  • 3. The interchangeable lock core of claim 1, further comprising: a moveable member; anda control sleeve carrying the core keeper, the actuator operable in the allow position to position the moveable member to rotationally lock the control sleeve to the moveable plug, whereby rotational movement of the moveable plug when the control sleeve is rotationally locked to the moveable plug rotates the control sleeve to move the core keeper from the retain position to the remove position;in the allow position, the actuator is operatively coupled to the core keeper through the moveable member and the control sleeve.
  • 4. The interchangeable lock core of claim 1, wherein the actuator undergoes a rotation to move between the allow position and the disallow position.
  • 5. The interchangeable lock core of claim 4, wherein the actuator undergoes both the rotation and a translation to move between the allow position and the disallow position.
  • 6. The interchangeable lock core of claim 1, wherein the operator actuation assembly comprises a knob including a removeable knob cover selectively covering a power source located in the knob.
  • 7. The interchangeable lock core of claim 1, further comprising: a motor actuatable between a motor disallow position, in which the operator actuation assembly is disallowed from actuating the moveable plug, and a motor allow position, in which the operator actuation assembly is allowed to actuate the moveable plug.
  • 8. An interchangeable lock core for use with a lock device having a locked state and an unlocked state, the interchangeable lock core being removable from an opening of the lock device, the interchangeable lock core comprising: a lock core body having an exterior lock core body envelope;a moveable plug positioned in the lock core body, the moveable plug having a first position relative to the lock core body, which corresponds to the lock device being in the locked state, and a second position relative to the lock core body, which corresponds to the lock device being in the unlocked state;a core keeper moveably coupled to the lock core body, the core keeper positionable in a retain position, in which the core keeper extends beyond the exterior lock core body envelope to hold the lock core body in the opening of the lock device, and a remove position, in which the core keeper is retracted relative to the exterior lock core body envelope to permit removal of the lock core body from the opening of the lock device;an actuator moveable relative to the core keeper, the actuator supported by the lock core body and moveable relative to the lock core body in two degrees of freedom, the actuator having a first position corresponding to the remove position of the core keeper and a second position corresponding to the retain position of the core keeper, the actuator requiring a movement in each of the two degrees of freedom to move from the second position to the first position, wherein the actuator comprises a tool receiving socket.
  • 9. The interchangeable lock core of claim 8, wherein the movement in each of the two degrees of freedom comprises a translation and a rotation.
  • 10. The interchangeable lock core of claim 9, whereby, after the translation, the actuator is operatively coupled to the core keeper, whereby, after the translation, the rotation of the actuator allows a rotation of the core keeper.
  • 11. The interchangeable lock core of claim 8, wherein the actuator comprises a control pin threadedly received in at least a portion of the interchangeable lock core.
  • 12. The interchangeable lock core of claim 8, further comprising: a motor actuatable between a motor disallow position, in which an operator actuation assembly is disallowed from actuating the moveable plug, and a motor allow position, in which the operator actuation assembly is allowed to actuate the moveable plug.
  • 13. An interchangeable lock core for use with a lock device having a locked state and an unlocked state, the interchangeable lock core being removable from an opening of the lock device with the aid of a tool, the interchangeable lock core comprising: a lock core body having an exterior lock core body envelope;a moveable plug positioned in the lock core body, the moveable plug having a first position relative to the lock core body, which corresponds to the lock device being in the locked state, and a second position relative to the lock core body, which corresponds to the lock device being in the unlocked state;a core keeper moveably coupled to the lock core body, the core keeper positionable in a retain position, in which the core keeper extends beyond the exterior lock core body envelope to hold the lock core body in the opening of the lock device, and a remove position, in which the core keeper is retracted relative to the exterior lock core body envelope to permit removal of the lock core body from the opening of the lock device; andan actuator moveably supported relative to the lock core body, the actuator having an allow position allowing the core keeper to be actuated by the moveable plug from the retain position of the core keeper to the remove position of the core keeper, and a disallow position, in which the actuator does not allow the core keeper to be actuated by the moveable plug between the retain position and the remove position, the actuator having a tool receiver adapted to be engaged with the tool such that a rotation of the tool relative to the moveable plug will move the actuator between the allow position and the disallow position when the tool is engaged with the tool receiver.
  • 14. The interchangeable lock core of claim 13, wherein the rotation of the tool relative to the plug to move the actuator between the allow position and the disallow position causes a linear displacement of the actuator.
  • 15. The interchangeable lock core of claim 13, further comprising: a moveable member; anda control sleeve carrying the core keeper, the actuator operable in the allow position to position the moveable member to rotationally lock the control sleeve to the moveable plug, whereby rotational movement of the moveable plug when the control sleeve is rotationally locked to the moveable plug rotates the control sleeve to move the core keeper from the retain position to the remove position;in the allow position, the actuator operatively coupled to the core keeper through the moveable member and the control sleeve.
  • 16. The interchangeable lock core of claim 13, wherein the actuator undergoes a rotation to move between the allow position and the disallow position.
  • 17. The interchangeable lock core of claim 13, wherein the actuator undergoes both a rotation and a translation to move between the allow position and the disallow position.
  • 18. The interchangeable lock core of claim 13, further comprising: a motor actuatable between a motor disallow position, in which an operator actuation assembly is disallowed from actuating the moveable plug, and a motor allow position, in which the operator actuation assembly is allowed to actuate the moveable plug.
  • 19. An interchangeable lock core for use with a lock device having a locked state and an unlocked state, the lock device including an opening sized to receive the interchangeable lock core, the interchangeable lock core comprising: a lock core body having an interior, the lock core body including an upper portion having a first maximum lateral extent, a lower portion having a second maximum lateral extent, and a waist portion having a third maximum lateral extent, the third maximum lateral extent being less than the first maximum lateral extent and being less than the second maximum lateral extent, the lower portion, the upper portion, and the waist portion forming an envelope of the lock core body;a moveable plug positioned within a first portion of the interior of the lock core body proximate a first end of the lock core body, the moveable plug having a first position relative to the lock core body which corresponds to the lock device being in a locked state and a second position relative to the lock core body which corresponds to the lock device being in the unlocked state, the moveable plug being rotatable between the first position and the second position about a moveable plug axis;a core keeper moveably coupled to the lock core body, the core keeper being positionable in a retain position, in which the core keeper extends beyond the envelope of the lock core body to hold the lock core body in the opening of the lock device and a remove position, in which the core keeper is within the envelope of the lock core body to permit removal of the lock core body from the opening of the lock device;an operator actuatable assembly including an operator actuatable input device extending beyond a second end of the lock core body, the second end being opposite the first end;a clutch moveable between an engaged position, in which the operator actuatable assembly is operatively coupled to the moveable plug, and a disengaged position, in which the operator actuatable assembly is free-spinning relative to the moveable plug; andan actuator positionable by the clutch, the actuator having a first position relative to the clutch, in which the actuator operatively couples the clutch to the core keeper and a second position relative to the clutch, in which the actuator is incapable of operatively coupling the clutch to the core keeper.
RELATED APPLICATIONS

This application is a national stage filing of PCT/US2018/050117, filed Sep. 7, 2018 which claims the benefit of U.S. Provisional Application No. 62/556,195, filed Sep. 8, 2018, titled ELECTRO-MECHANICAL LOCK CORE, the entire disclosures of which are expressly incorporated by reference herein.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2018/050117 9/7/2018 WO
Publishing Document Publishing Date Country Kind
WO2019/051337 3/14/2019 WO A
US Referenced Citations (768)
Number Name Date Kind
3298211 Russell Jan 1967 A
3347072 Rose Oct 1967 A
3824817 Orr Jul 1974 A
3905213 Roberts Sep 1975 A
3990283 Nelson Nov 1976 A
4386510 Best et al. Jun 1983 A
4484462 Berkowitz Nov 1984 A
RE31910 Oliver Jun 1985 E
4526256 Urdal Jul 1985 A
4745785 Othmar May 1988 A
4747281 Monahan May 1988 A
4789859 Clarkson et al. Dec 1988 A
4850210 Adler Jul 1989 A
4876783 Campion et al. Oct 1989 A
4972694 Aulbers et al. Nov 1990 A
4995249 Preissler et al. Feb 1991 A
4998422 Borgmann et al. Mar 1991 A
4998423 Hsu Mar 1991 A
5010753 Boris, Jr. Apr 1991 A
5044180 Horst Sep 1991 A
5121618 Scott Jun 1992 A
5209087 Cox May 1993 A
5235832 Lux et al. Aug 1993 A
5367295 Gokcebay et al. Nov 1994 A
5507162 Chhatwal Apr 1996 A
5552777 Gokcebay et al. Sep 1996 A
5654696 Barrett et al. Aug 1997 A
5682779 Dolev Nov 1997 A
5701773 Markisello Dec 1997 A
5749253 Glick et al. May 1998 A
5752399 Shen May 1998 A
5752400 Kim May 1998 A
5813260 Widen Sep 1998 A
5816085 Winardi et al. Oct 1998 A
5839305 Aston Nov 1998 A
5839307 Field et al. Nov 1998 A
5921123 Schwarzkopf et al. Jul 1999 A
5931030 Chen Aug 1999 A
5933086 Tischendorf et al. Aug 1999 A
5974912 Cheng et al. Nov 1999 A
6000609 Gokcebay et al. Dec 1999 A
6014877 Shen Jan 2000 A
6035673 Harrison Mar 2000 A
6125673 Luker Oct 2000 A
6158259 Schmitz et al. Dec 2000 A
6227020 Lerchner May 2001 B1
6264256 Hankel et al. Jul 2001 B1
6292893 Micali Sep 2001 B1
6317313 Mosgrove et al. Nov 2001 B1
6334347 Iscla Jan 2002 B1
6337618 Craig et al. Jan 2002 B1
6338261 Liu Jan 2002 B1
6363762 Kueng Apr 2002 B1
6370928 Chies et al. Apr 2002 B1
6374653 Gokcebay et al. Apr 2002 B1
6382006 Field et al. May 2002 B1
6384711 Cregger et al. May 2002 B1
6412321 Aramburu et al. Jul 2002 B1
6442986 Russell et al. Sep 2002 B1
6463773 Dimig Oct 2002 B1
6474122 Davis Nov 2002 B2
6523377 Vonlanthen Feb 2003 B1
6552650 Gokcebay et al. Apr 2003 B1
6554326 Goldman Apr 2003 B1
6564601 Hyatt, Jr. May 2003 B2
6581426 Bates et al. Jun 2003 B2
6604394 Davis Aug 2003 B2
6615625 Davis Sep 2003 B2
6668606 Russell et al. Dec 2003 B1
6705140 Dimig et al. Mar 2004 B1
6708539 Widen Mar 2004 B1
6718806 Davis Apr 2004 B2
6764013 Ben-Aissa Jul 2004 B2
6766673 Gast et al. Jul 2004 B2
6786070 Dimig et al. Sep 2004 B1
6807834 Tsai Oct 2004 B2
6822552 Liden et al. Nov 2004 B2
6826935 Gokcebay et al. Dec 2004 B2
6840072 Russell et al. Jan 2005 B2
6848286 Dimig Feb 2005 B2
6865916 Goldman Mar 2005 B2
6880376 Ko Apr 2005 B1
6927670 Gokcebay et al. Aug 2005 B1
6967562 Menard et al. Nov 2005 B2
6973576 Giobbi Dec 2005 B2
6975202 Rodriguez et al. Dec 2005 B1
7012503 Nielsen Mar 2006 B2
7021092 Loughlin et al. Apr 2006 B2
7036344 Gast et al. May 2006 B2
7042334 Mosgrove et al. May 2006 B2
7061367 Mosgrove et al. Jun 2006 B2
7099474 Liden et al. Aug 2006 B1
7111165 Liden et al. Sep 2006 B2
7114357 Armstrong et al. Oct 2006 B2
7123127 Mosgrove et al. Oct 2006 B2
7205882 Libin Apr 2007 B2
7222508 Dickhans et al. May 2007 B2
7229013 Ben-Aissa Jun 2007 B2
7251474 Engstrom et al. Jul 2007 B2
7278025 Saito et al. Oct 2007 B2
7296447 Priest et al. Nov 2007 B2
7305560 Giobbi Dec 2007 B2
7334443 Meekma et al. Feb 2008 B2
7337315 Micali Feb 2008 B2
7353396 Micali et al. Apr 2008 B2
7363788 Dimig et al. Apr 2008 B2
7380279 Prokupets et al. May 2008 B2
7424812 Loughlin et al. Sep 2008 B2
7434426 Loughlin et al. Oct 2008 B2
7437755 Farino et al. Oct 2008 B2
7446644 Schaffzin et al. Nov 2008 B2
7471199 Zimmerman et al. Dec 2008 B2
7472280 Giobbi Dec 2008 B2
7591160 Keller Sep 2009 B2
7600129 Libin et al. Oct 2009 B2
7624280 Oskari Nov 2009 B2
7624606 Huang et al. Dec 2009 B1
7628048 Huang et al. Dec 2009 B2
7640773 Bellamy et al. Jan 2010 B2
7660994 Libin et al. Feb 2010 B2
7673481 Amir Mar 2010 B2
7690231 Field et al. Apr 2010 B1
7694542 Loughlin et al. Apr 2010 B2
7706778 Lowe Apr 2010 B2
7712342 Loughlin et al. May 2010 B2
7716486 Libin et al. May 2010 B2
7802293 Boyer et al. Sep 2010 B2
7822989 Libin et al. Oct 2010 B2
7845201 Meyerle et al. Dec 2010 B2
7845202 Padilla et al. Dec 2010 B2
7870769 Andersson Jan 2011 B2
7870770 Blanch Jan 2011 B2
7874190 Krisch et al. Jan 2011 B2
7905125 Herdman Mar 2011 B2
7934406 Loughlin et al. May 2011 B2
7958759 Herdman Jun 2011 B2
7966854 Imedio Ocana Jun 2011 B2
7980106 Huang et al. Jul 2011 B2
7992346 Finke Aug 2011 B2
8011217 Marschalek et al. Sep 2011 B2
8015597 Libin et al. Sep 2011 B2
8028553 Lange Oct 2011 B2
8035478 Lee Oct 2011 B2
8047027 Loughlin et al. Nov 2011 B2
8070061 Habraken Dec 2011 B2
8074271 Davis et al. Dec 2011 B2
8074479 Harley Dec 2011 B2
8079240 Brown et al. Dec 2011 B2
8122746 Hyatt, Jr. Feb 2012 B2
8144941 Adams et al. Mar 2012 B2
8151611 Herdman Apr 2012 B2
8161783 Huang et al. Apr 2012 B2
8166532 Chowdhury et al. Apr 2012 B2
8222993 Bliding et al. Jul 2012 B2
8256254 Bellamy Sep 2012 B2
8261319 Libin et al. Sep 2012 B2
8272241 Brown et al. Sep 2012 B2
8276414 Luo Oct 2012 B2
8325039 Picard et al. Dec 2012 B2
8331544 Kraus et al. Dec 2012 B2
8336349 Thimmappa et al. Dec 2012 B2
8352730 Giobbi Jan 2013 B2
8368507 Conreux et al. Feb 2013 B2
8370911 Mallard Feb 2013 B1
8375753 Goldman Feb 2013 B2
8419083 Burmesch Apr 2013 B2
8447969 Robinton et al. May 2013 B2
8448484 Huang et al. May 2013 B2
8453481 Meekma Jun 2013 B2
8456277 Gillert et al. Jun 2013 B2
8459071 Andersson Jun 2013 B2
8466773 Willgert Jun 2013 B2
8468861 Pukari et al. Jun 2013 B2
8482378 Sadighi et al. Jul 2013 B2
8482379 Conreux et al. Jul 2013 B2
8490443 Gokcebay Jul 2013 B2
8490444 Saari Jul 2013 B2
8495898 Gokcebay Jul 2013 B2
8511552 Habraken Aug 2013 B2
8516865 Ferreira Sanchez Aug 2013 B2
8525686 Burdenko Sep 2013 B2
8528373 Hyatt et al. Sep 2013 B2
8539802 Meyerle Sep 2013 B2
8543684 Hulusi et al. Sep 2013 B2
8544303 Andersson Oct 2013 B2
8552875 Burdenko Oct 2013 B2
8581690 Lappalainen et al. Nov 2013 B2
8593249 Bliding et al. Nov 2013 B2
8604903 Bowen et al. Dec 2013 B2
8616031 Ullrich et al. Dec 2013 B2
8620268 Metivier Dec 2013 B2
8628019 Audebert et al. Jan 2014 B2
8635462 Ullmann Jan 2014 B2
8640513 Goren et al. Feb 2014 B2
8640514 Goren et al. Feb 2014 B2
8643469 Haeberli Feb 2014 B2
8683833 Marschalek et al. Apr 2014 B2
8689013 Habraken Apr 2014 B2
8712365 Metivier Apr 2014 B2
8720238 Davis May 2014 B1
8730004 Elfstrom et al. May 2014 B2
8736418 Bozionek et al. May 2014 B2
8776557 Wang Jul 2014 B2
8776561 Jones Jul 2014 B1
8780201 Scalisi et al. Jul 2014 B1
8787902 Kim Jul 2014 B2
8793784 Metivier et al. Jul 2014 B2
8794042 Herdman Aug 2014 B2
8800402 Weum Aug 2014 B2
8805434 Vasudevan Aug 2014 B2
8823795 Scalisi et al. Sep 2014 B1
8836470 Pineau et al. Sep 2014 B2
8840020 Litz et al. Sep 2014 B2
8842180 Kasmir et al. Sep 2014 B1
8854177 Pineau et al. Oct 2014 B2
8872915 Scalisi et al. Oct 2014 B1
8881252 Van et al. Nov 2014 B2
8893420 Milde et al. Nov 2014 B2
8907763 Pineau et al. Dec 2014 B2
8912879 Fyke et al. Dec 2014 B2
8919024 Milde, Jr. Dec 2014 B2
8922333 Kirkjan Dec 2014 B1
8928457 Jin et al. Jan 2015 B2
8931195 Milde, Jr. Jan 2015 B2
8933778 Birkel et al. Jan 2015 B2
8937659 Scalisi et al. Jan 2015 B1
8941465 Pineau et al. Jan 2015 B2
8941736 Scalisi Jan 2015 B1
8947530 Scalisi Feb 2015 B1
8953040 Scalisi et al. Feb 2015 B1
8970344 Payson et al. Mar 2015 B2
8973417 Bench et al. Mar 2015 B2
8990889 Van et al. Mar 2015 B2
D727769 Scalisi Apr 2015 S
9002536 Hatton Apr 2015 B2
9010163 Romero Apr 2015 B2
9010650 Audebert et al. Apr 2015 B2
9013575 Scalisi Apr 2015 B2
9019067 Bryla et al. Apr 2015 B2
9020854 Giobbi Apr 2015 B2
D729678 Scalisi May 2015 S
9024759 Uyeda et al. May 2015 B2
9027372 Hickman May 2015 B2
9049352 Scalisi et al. Jun 2015 B2
9051759 Herdman Jun 2015 B2
9053622 Scalisi Jun 2015 B2
9055202 Scalisi et al. Jun 2015 B1
9057210 Dumas et al. Jun 2015 B2
9058738 Scalisi Jun 2015 B1
9060103 Scalisi Jun 2015 B2
9060104 Scalisi Jun 2015 B2
9065987 Kasmir et al. Jun 2015 B2
9077716 Myers et al. Jul 2015 B2
9085917 Kriete et al. Jul 2015 B2
9087246 Chin et al. Jul 2015 B1
9094584 Scalisi et al. Jul 2015 B2
9098825 Bashkin Aug 2015 B2
9098953 Kincaid et al. Aug 2015 B2
9113051 Scalisi Aug 2015 B1
9113052 Scalisi et al. Aug 2015 B1
9118819 Scalisi et al. Aug 2015 B1
9122856 Litz et al. Sep 2015 B2
9129457 Sumcad et al. Sep 2015 B2
9133647 Oh et al. Sep 2015 B2
9140509 Sullivan et al. Sep 2015 B2
9141090 Kalous et al. Sep 2015 B2
9148416 Tse Sep 2015 B2
9148417 Fieweger Sep 2015 B2
9158288 Libin et al. Oct 2015 B2
9160987 Kasmir et al. Oct 2015 B1
9165444 Scalisi Oct 2015 B2
9172920 Kasmir et al. Oct 2015 B1
9172921 Scalisi et al. Oct 2015 B1
9172922 Kasmir et al. Oct 2015 B1
9179107 Scalisi et al. Nov 2015 B1
9179108 Scalisi et al. Nov 2015 B1
9179109 Kasmir et al. Nov 2015 B1
9183683 Osman et al. Nov 2015 B2
9196104 Dumas et al. Nov 2015 B2
9196133 Scalisi et al. Nov 2015 B2
9197867 Scalisi et al. Nov 2015 B1
9206620 Karsil et al. Dec 2015 B2
9208628 Gokcebay Dec 2015 B2
9217616 Sullivan et al. Dec 2015 B2
9218696 Dumas et al. Dec 2015 B2
9222282 Russo et al. Dec 2015 B2
9222284 Gokcebay Dec 2015 B2
D747384 Scalisi Jan 2016 S
D747385 Scalisi Jan 2016 S
D747640 Scalisi Jan 2016 S
9230424 Scalisi et al. Jan 2016 B1
9237318 Kasmir et al. Jan 2016 B2
9247219 Kasmir et al. Jan 2016 B2
9251360 Meyer et al. Feb 2016 B2
9253176 Ford et al. Feb 2016 B2
9253455 Harrison et al. Feb 2016 B1
9258281 Metivier et al. Feb 2016 B2
9273492 Gokcebay Mar 2016 B2
9292985 Ahearn et al. Mar 2016 B2
9303935 Milde, Jr. Apr 2016 B2
9305412 Winkelman Apr 2016 B2
9307403 Neafsey et al. Apr 2016 B2
9310147 Milde, Jr. Apr 2016 B2
9312926 Neafsey et al. Apr 2016 B2
9316025 Lien Apr 2016 B2
9316454 Milde, Jr. Apr 2016 B2
9317985 Tehranchi et al. Apr 2016 B2
9317986 Tehranchi et al. Apr 2016 B2
9322194 Cheng et al. Apr 2016 B2
9322201 Cheng et al. Apr 2016 B1
9326094 Johnson et al. Apr 2016 B2
D755037 Czerwinski et al. May 2016 S
9328533 Wu May 2016 B2
9328535 Baker et al. May 2016 B2
9330514 Kuenzi et al. May 2016 B2
9332377 Agardh et al. May 2016 B2
9336637 Neil et al. May 2016 B2
9342936 Scalisi May 2016 B2
9349113 Bashkin May 2016 B2
9351100 Tarnhed et al. May 2016 B2
9353551 Martinez et al. May 2016 B2
9359794 Cheng Jun 2016 B2
9363803 Seo et al. Jun 2016 B2
9369454 Porzio et al. Jun 2016 B2
9369455 Huang et al. Jun 2016 B2
9374349 Corlett et al. Jun 2016 B1
9378598 Dumas et al. Jun 2016 B2
9378599 Lee Jun 2016 B2
9382739 Johnson et al. Jul 2016 B1
9390572 Almomani Jul 2016 B2
9395133 Milde et al. Jul 2016 B2
9406178 Pukari Aug 2016 B2
9426653 Becker et al. Aug 2016 B2
9437062 Ahearn et al. Sep 2016 B2
9437063 Schoenfelder et al. Sep 2016 B2
9443362 Singh Sep 2016 B2
9443365 Ahearn et al. Sep 2016 B2
9447609 Johnson et al. Sep 2016 B2
9449443 Libin et al. Sep 2016 B2
9449448 Andersen Sep 2016 B2
9454889 Kerning Sep 2016 B2
9462470 Ehrensvard Oct 2016 B2
9464462 Liu Oct 2016 B1
9467859 Moss et al. Oct 2016 B2
9470017 Cheng et al. Oct 2016 B1
9470018 Cheng et al. Oct 2016 B1
9472034 Ahearn et al. Oct 2016 B2
9476226 Wheeler et al. Oct 2016 B2
9478084 Robinson Oct 2016 B1
9489511 Rodzevski et al. Nov 2016 B2
9489787 Ives-Halperin et al. Nov 2016 B1
9500006 Dayanikli et al. Nov 2016 B2
9501880 Handville et al. Nov 2016 B2
9501883 Handville et al. Nov 2016 B2
9508206 Ahearn et al. Nov 2016 B2
9508239 Harrison et al. Nov 2016 B1
9509719 Neely Nov 2016 B2
9514327 Ford Dec 2016 B2
9524594 Ouyang et al. Dec 2016 B2
9524601 Dumas Dec 2016 B1
9528294 Johnson et al. Dec 2016 B2
9528296 Cheng et al. Dec 2016 B1
9530262 Johnson Dec 2016 B2
9530264 Caterino et al. Dec 2016 B2
9530295 Johnson Dec 2016 B2
9531721 Neafsey et al. Dec 2016 B2
9534420 Cheng et al. Jan 2017 B1
9536359 Gokcebay Jan 2017 B1
9536363 Ahearn et al. Jan 2017 B2
9540848 Wu Jan 2017 B1
9542785 Meganck et al. Jan 2017 B2
9546504 Overgaard Jan 2017 B2
9548973 Hulusi et al. Jan 2017 B2
9553860 Meyer Jan 2017 B2
9562370 Ohl et al. Feb 2017 B2
9567773 Dore et al. Feb 2017 B2
9574372 Johnson et al. Feb 2017 B2
9580931 Myers et al. Feb 2017 B2
9587415 Walls et al. Mar 2017 B2
9589397 Christopher et al. Mar 2017 B1
9589403 Lingan et al. Mar 2017 B2
9589406 Borg et al. Mar 2017 B2
9591682 Astrand et al. Mar 2017 B2
9593522 Murar et al. Mar 2017 B1
9595148 Borg et al. Mar 2017 B2
9613476 Johnson Apr 2017 B2
9613483 Giobbi Apr 2017 B2
9617757 Lowder Apr 2017 B2
9619954 Allibhoy et al. Apr 2017 B2
9624695 Cheng et al. Apr 2017 B1
9626859 Ribas et al. Apr 2017 B2
9631400 Liu et al. Apr 2017 B2
9640001 Vazquez et al. May 2017 B1
9640004 Lowder May 2017 B2
9644398 Cheng et al. May 2017 B1
9644399 Johnson et al. May 2017 B2
9644400 Cheng et al. May 2017 B1
9647996 Johnson et al. May 2017 B2
9652913 Drako et al. May 2017 B2
9652917 Johnson et al. May 2017 B2
9654450 Ford et al. May 2017 B2
9659422 Lovelock et al. May 2017 B2
9659424 Huber et al. May 2017 B2
9663972 Ullrich et al. May 2017 B2
9666000 Schoenfelder et al. May 2017 B1
9672345 Davis et al. Jun 2017 B2
9672674 Meganck et al. Jun 2017 B2
9679429 Duncan et al. Jun 2017 B2
9681426 Seo et al. Jun 2017 B2
9683391 Johnson et al. Jun 2017 B2
9683392 Cheng et al. Jun 2017 B1
9685015 Johnson Jun 2017 B2
9685017 Johnson Jun 2017 B2
9685018 Johnson Jun 2017 B2
9690272 Chin et al. Jun 2017 B2
9690348 Chin et al. Jun 2017 B2
9690959 Chin et al. Jun 2017 B2
9691198 Cheng et al. Jun 2017 B2
9691205 Robinson Jun 2017 B2
9691207 Almomani Jun 2017 B2
9695616 Johnson et al. Jul 2017 B2
9697656 Trani Jul 2017 B2
9697657 Anderson et al. Jul 2017 B2
9697664 Ribas et al. Jul 2017 B2
9704314 Johnson et al. Jul 2017 B2
9704316 Kirkjan Jul 2017 B2
9704320 Johnson et al. Jul 2017 B2
9705265 Lowder Jul 2017 B2
9706365 Johnson et al. Jul 2017 B2
9710987 Scoggins et al. Jul 2017 B2
9713002 Roy et al. Jul 2017 B2
9721413 Dumas et al. Aug 2017 B2
9722756 Seo et al. Aug 2017 B2
9725927 Cheng Aug 2017 B1
9726448 Milde et al. Aug 2017 B1
9727328 Johnson Aug 2017 B2
9728022 Gengler et al. Aug 2017 B2
9728023 Johnson Aug 2017 B2
9736284 Scalisi et al. Aug 2017 B2
9739555 Milde et al. Aug 2017 B2
9741186 Lemke Aug 2017 B1
9743049 Scalisi et al. Aug 2017 B2
9747735 Drako et al. Aug 2017 B1
9747737 Kuenzi Aug 2017 B2
9747739 Gengler et al. Aug 2017 B2
9754433 Lagimodiere et al. Sep 2017 B2
9760705 Davis et al. Sep 2017 B2
9761073 Cheng et al. Sep 2017 B2
9761074 Cheng et al. Sep 2017 B2
9763086 Benoit et al. Sep 2017 B2
9767267 Davis et al. Sep 2017 B2
9767630 Kazerani et al. Sep 2017 B1
9767632 Johnson Sep 2017 B2
9769161 Davis et al. Sep 2017 B2
9769435 Scalisi et al. Sep 2017 B2
9773364 Kerning et al. Sep 2017 B2
9779569 Yun Oct 2017 B2
9781599 Myers et al. Oct 2017 B2
9786133 Harrison et al. Oct 2017 B2
9792747 Baumgarte et al. Oct 2017 B2
9797166 Dore et al. Oct 2017 B2
9799183 Harrison et al. Oct 2017 B2
9803942 Milde, Jr. Oct 2017 B2
9805534 Ho et al. Oct 2017 B2
9811960 Voss Nov 2017 B2
9818247 Johnson Nov 2017 B2
9826561 Bolin et al. Nov 2017 B2
9836906 Carstens et al. Dec 2017 B2
9841743 Davis Dec 2017 B2
9842446 Vecchiotti et al. Dec 2017 B2
9842447 Badger, II Dec 2017 B2
9847020 Davis Dec 2017 B2
9852559 Rettig et al. Dec 2017 B2
9852562 Belhadia et al. Dec 2017 B2
9852567 Hild et al. Dec 2017 B2
9860928 Astrand et al. Jan 2018 B2
9865112 Maiwand et al. Jan 2018 B2
9865113 Maiwand et al. Jan 2018 B2
9865144 Trani Jan 2018 B2
9870460 Eberwine et al. Jan 2018 B2
9870665 Maiwand et al. Jan 2018 B2
9879932 Milde et al. Jan 2018 B2
9883370 Kerning et al. Jan 2018 B2
9886617 Rowe et al. Feb 2018 B2
9886806 Bashkin Feb 2018 B2
9888216 Scalisi et al. Feb 2018 B2
9892579 Ku Feb 2018 B2
9898880 Nagisetty et al. Feb 2018 B2
9902368 Maiwand et al. Feb 2018 B2
9913135 Perold et al. Mar 2018 B2
9916707 Vincent et al. Mar 2018 B2
9916746 Johnson et al. Mar 2018 B2
9922473 Haworth et al. Mar 2018 B1
9922481 Johnson et al. Mar 2018 B2
9924319 Hoyer et al. Mar 2018 B2
9934637 Ribas et al. Apr 2018 B2
9940491 Lim et al. Apr 2018 B2
9940768 Carstens et al. Apr 2018 B2
9947153 Bergerhoff et al. Apr 2018 B2
9947154 Davis et al. Apr 2018 B2
9947155 Trani Apr 2018 B2
9947158 Baumgarte et al. Apr 2018 B2
9959690 Zielinski et al. May 2018 B2
9959692 Hild et al. May 2018 B2
9963107 Murar et al. May 2018 B2
9965911 Wishne May 2018 B2
9972144 Klein et al. May 2018 B2
9985950 Caterino et al. May 2018 B2
9997036 Scalisi Jun 2018 B2
9998922 Robinton et al. Jun 2018 B2
10008057 Ives-Halperin et al. Jun 2018 B2
10008061 Klink et al. Jun 2018 B2
10009145 Seo et al. Jun 2018 B2
10012010 Baker et al. Jul 2018 B2
10013825 Belhadia et al. Jul 2018 B2
10015653 Lang et al. Jul 2018 B2
10017963 Johnson et al. Jul 2018 B2
10026249 Grandpre et al. Jul 2018 B2
10026253 Giobbi Jul 2018 B2
10027170 Holmstroem Jul 2018 B2
10033702 Ford et al. Jul 2018 B2
10033972 Almomani et al. Jul 2018 B2
10037525 Neafsey Jul 2018 B2
10044519 Kasmir et al. Aug 2018 B2
10050948 Lagerstedt et al. Aug 2018 B2
10062232 Allibhoy et al. Aug 2018 B2
10062251 Kasmir et al. Aug 2018 B2
10074224 Ho et al. Sep 2018 B2
10083559 Schoenfelder et al. Sep 2018 B2
10083560 Baumgarte et al. Sep 2018 B2
10115256 Davis Oct 2018 B2
10125519 Gengler et al. Nov 2018 B1
10181231 Kristensen et al. Jan 2019 B2
10186099 Ahearn et al. Jan 2019 B2
10192383 Aase Jan 2019 B2
10249120 Ahearn et al. Apr 2019 B2
10264433 Ahearn et al. Apr 2019 B2
10282930 Borg et al. May 2019 B2
10349279 Myers et al. Jul 2019 B2
10360743 Ahearn et al. Jul 2019 B2
10366551 Drako et al. Jul 2019 B2
10453280 Kontturi Oct 2019 B2
10472859 Ku Nov 2019 B2
10490005 Caterino et al. Nov 2019 B2
10492066 Tarmey et al. Nov 2019 B2
10540835 Kuenzi et al. Jan 2020 B2
10554644 Toepke et al. Feb 2020 B2
10580240 Caterino et al. Mar 2020 B2
11339589 Allen May 2022 B2
11447980 Snodgrass Sep 2022 B2
11466473 Barnett, III Oct 2022 B2
20020144526 Ming-Chih Oct 2002 A1
20030217574 Meis Nov 2003 A1
20040007032 Davis Jan 2004 A1
20040055346 Gillert Mar 2004 A1
20040069028 Dimig et al. Apr 2004 A1
20040107751 Hyatt Jun 2004 A1
20040154364 Dimig et al. Aug 2004 A1
20040255628 Meyerle Dec 2004 A1
20050050929 Meyerle Mar 2005 A1
20050127687 Dimig Jun 2005 A1
20060010945 Herdman Jan 2006 A1
20060059548 Hildre et al. Mar 2006 A1
20060170533 Chioiu et al. Aug 2006 A1
20070017265 Andersson Jan 2007 A1
20070200665 Studerus Aug 2007 A1
20070229257 Bliding et al. Oct 2007 A1
20080072636 Padilla et al. Mar 2008 A1
20080086844 Meyerle Apr 2008 A1
20080180211 Lien Jul 2008 A1
20080229793 Lange Sep 2008 A1
20090013736 Voosen Jan 2009 A1
20090127328 Aissa May 2009 A1
20090280862 Loughlin et al. Nov 2009 A1
20090320538 Pellaton Dec 2009 A1
20100011822 Imedio Ocana Jan 2010 A1
20100116007 Thimmappa et al. May 2010 A1
20100194526 Loughlin et al. Aug 2010 A1
20100194527 Loughlin et al. Aug 2010 A1
20100199733 Herdman Aug 2010 A1
20110232341 Herdman Sep 2011 A1
20110291798 Schibuk Dec 2011 A1
20120169461 Dubois, Jr. Jul 2012 A1
20120213362 Bliding et al. Aug 2012 A1
20120313383 Lundberg et al. Dec 2012 A1
20130008213 Brown et al. Jan 2013 A1
20130014552 Bench et al. Jan 2013 A1
20130015671 Calleberg Jan 2013 A1
20130061055 Schibuk Mar 2013 A1
20130063246 Kim Mar 2013 A1
20130139561 Parto et al. Jun 2013 A1
20130212661 Neafsey et al. Aug 2013 A1
20130257589 Mohiuddin et al. Oct 2013 A1
20130312468 Read et al. Nov 2013 A1
20130335193 Hanson et al. Dec 2013 A1
20140002236 Pineau et al. Jan 2014 A1
20140051407 Ahearn et al. Feb 2014 A1
20140077929 Dumas et al. Mar 2014 A1
20140145823 Aase May 2014 A1
20140150502 Duncan Jun 2014 A1
20140157842 Almomani et al. Jun 2014 A1
20140165673 Tyner et al. Jun 2014 A1
20140223976 Chiou et al. Aug 2014 A1
20140260452 Chen Sep 2014 A1
20140292481 Dumas et al. Oct 2014 A1
20140298869 Wang Oct 2014 A1
20140313010 Huang et al. Oct 2014 A1
20140340196 Myers et al. Nov 2014 A1
20140365773 Gerhardt et al. Dec 2014 A1
20140365781 Dmitrienko et al. Dec 2014 A1
20150101370 Russo et al. Apr 2015 A1
20150119019 Minichmayr Apr 2015 A1
20150163206 McCarthy et al. Jun 2015 A1
20150184425 Ellis et al. Jul 2015 A1
20150206367 Goldman et al. Jul 2015 A1
20150233142 Schweitzer et al. Aug 2015 A1
20150235492 Hong et al. Aug 2015 A1
20150240531 Blust et al. Aug 2015 A1
20150259950 Schweitzer et al. Sep 2015 A1
20150279132 Perotti Oct 2015 A1
20150287256 Davis Oct 2015 A1
20150292240 Ribas et al. Oct 2015 A1
20150292246 Schweitzer et al. Oct 2015 A1
20150294517 Herrala Oct 2015 A1
20150300048 Yen et al. Oct 2015 A1
20150339870 Cojocaru et al. Nov 2015 A1
20150350913 Eberwine et al. Dec 2015 A1
20150356797 McBride et al. Dec 2015 A1
20150356801 Nitu et al. Dec 2015 A1
20160014103 Masters et al. Jan 2016 A1
20160019733 Robinton et al. Jan 2016 A1
20160035165 Dumas et al. Feb 2016 A1
20160040452 Ku Feb 2016 A1
20160042581 Ku Feb 2016 A1
20160042582 Hyde et al. Feb 2016 A1
20160047142 Gengler et al. Feb 2016 A1
20160048673 Marchiori et al. Feb 2016 A1
20160049027 Soldner et al. Feb 2016 A1
20160086400 Dumas et al. Mar 2016 A1
20160145900 Kaiser May 2016 A1
20160189454 Johnson et al. Jun 2016 A1
20160241559 Trani et al. Aug 2016 A1
20160241999 Chin et al. Aug 2016 A1
20160249159 Berg et al. Aug 2016 A1
20160258189 Frolov Sep 2016 A1
20160258202 Scalisi Sep 2016 A1
20160261824 Scalisi Sep 2016 A1
20160275733 Carstens et al. Sep 2016 A1
20160275735 Carstens et al. Sep 2016 A1
20160275739 Scalisi Sep 2016 A1
20160275741 Carstens et al. Sep 2016 A1
20160277383 Guyomarc'H et al. Sep 2016 A1
20160277388 Lowe et al. Sep 2016 A1
20160284147 Trani Sep 2016 A1
20160284170 Kasmir et al. Sep 2016 A1
20160284183 Trani Sep 2016 A1
20160300417 Hatton Oct 2016 A1
20160300476 Kasmir et al. Oct 2016 A1
20160307380 Ho et al. Oct 2016 A1
20160308859 Barry et al. Oct 2016 A1
20160319569 Johnson et al. Nov 2016 A1
20160319571 Johnson Nov 2016 A1
20160330413 Scalisi et al. Nov 2016 A1
20160341537 Ku Nov 2016 A1
20160343188 Johnson Nov 2016 A1
20160344091 Trani Nov 2016 A1
20160358433 Johnson Dec 2016 A1
20160358437 Johnson et al. Dec 2016 A1
20170002587 Wheeler Jan 2017 A1
20170009491 Nguyen et al. Jan 2017 A1
20170016249 Johnson et al. Jan 2017 A1
20170022733 Lowder Jan 2017 A1
20170022735 Lowder Jan 2017 A1
20170024693 Wiechers Jan 2017 A1
20170030109 Duncan et al. Feb 2017 A1
20170034485 Scalisi Feb 2017 A1
20170048495 Scalisi Feb 2017 A1
20170051533 Kester et al. Feb 2017 A1
20170076520 Ho et al. Mar 2017 A1
20170084132 Scalisi Mar 2017 A1
20170085843 Scalisi et al. Mar 2017 A1
20170085844 Scalisi et al. Mar 2017 A1
20170098335 Payack, Jr. Apr 2017 A1
20170109954 Drako et al. Apr 2017 A1
20170132861 Ho et al. May 2017 A1
20170145714 Ohl et al. May 2017 A1
20170180539 Payack, Jr. Jun 2017 A1
20170187995 Scalisi et al. Jun 2017 A1
20170193724 Johnson et al. Jul 2017 A1
20170211294 Reese et al. Jul 2017 A1
20170213404 Sivalingam et al. Jul 2017 A1
20170221291 Gokcebay Aug 2017 A1
20170226772 Lowder Aug 2017 A1
20170228603 Johnson Aug 2017 A1
20170228953 Lupovici Aug 2017 A1
20170236345 Watters Aug 2017 A1
20170236346 Murar et al. Aug 2017 A1
20170236350 Lin Aug 2017 A1
20170236354 Baker et al. Aug 2017 A1
20170241164 Brown et al. Aug 2017 A1
20170243420 Lien Aug 2017 A1
20170243455 Johnson et al. Aug 2017 A1
20170251366 Perna et al. Aug 2017 A1
20170263065 Johnson Sep 2017 A1
20170284128 Lim et al. Oct 2017 A1
20170302424 Seo et al. Oct 2017 A1
20170311161 Kuenzi Oct 2017 A1
20170321453 Zheng et al. Nov 2017 A1
20170328661 Milde, Jr. Nov 2017 A1
20170330226 Kuenzi et al. Nov 2017 A1
20170337758 Ahearn et al. Nov 2017 A1
20170345236 Kuenzi et al. Nov 2017 A1
20170352207 Siklosi Dec 2017 A1
20170365119 Yun Dec 2017 A1
20180007041 Davis et al. Jan 2018 A1
20180045479 Milde, Jr. Feb 2018 A1
20180051484 Picard et al. Feb 2018 A1
20180068503 Prasad et al. Mar 2018 A1
20180069722 Scalisi et al. Mar 2018 A1
20180073274 Johnson et al. Mar 2018 A1
20180081335 Davis Mar 2018 A1
20180082577 Davis Mar 2018 A1
20180089915 Lundberg Mar 2018 A1
20180091500 Baty et al. Mar 2018 A1
20180091641 Trani Mar 2018 A1
20180094456 Lowder Apr 2018 A1
20180096593 Davis Apr 2018 A1
20180103030 Einberg et al. Apr 2018 A1
20180114384 Graziano Apr 2018 A1
20180115897 Einberg et al. Apr 2018 A1
20180122219 Caterino et al. May 2018 A1
20180130273 Eid May 2018 A1
20180135336 Johnson et al. May 2018 A1
20180135337 Johnson et al. May 2018 A1
20180146336 Hoyer et al. May 2018 A1
20180151007 Einberg et al. May 2018 A1
20180151013 Carstens et al. May 2018 A1
20180179785 Liddell et al. Jun 2018 A1
20180179786 Johnson Jun 2018 A1
20180191889 Gerhardt et al. Jul 2018 A1
20180204399 Newman Jul 2018 A1
20180211457 Haworth et al. Jul 2018 A1
20180211462 Wendling et al. Jul 2018 A1
20180225899 Baumgarte et al. Aug 2018 A1
20180253917 Kazerani et al. Sep 2018 A1
20180261029 Johnson et al. Sep 2018 A1
20180268675 Johnson et al. Sep 2018 A1
20180270214 Caterino et al. Sep 2018 A1
20180332033 Lakhani et al. Nov 2018 A1
20180357845 Berg et al. Dec 2018 A1
20190026731 Neafsey Jan 2019 A1
20190035185 Kuenzi Jan 2019 A1
20190035188 Kuenzi et al. Jan 2019 A1
20190141504 Ahearn et al. May 2019 A1
20190172281 Einberg et al. Jun 2019 A1
20190218826 Allen et al. Jul 2019 A1
20190279451 Wishne Sep 2019 A1
20190325678 Ahearn et al. Oct 2019 A1
20190335334 Myers et al. Oct 2019 A1
20190340854 Ahearn et al. Nov 2019 A1
20190347883 Klink et al. Nov 2019 A1
20190362578 Baker et al. Nov 2019 A1
20200024868 Snodgrass Jan 2020 A1
20200040607 Snodgrass et al. Feb 2020 A1
20200151986 Kuenzi et al. May 2020 A1
20200318392 Barnett, III et al. Oct 2020 A1
20210246689 Allen et al. Aug 2021 A1
20220251879 Allen et al. Aug 2022 A1
Foreign Referenced Citations (87)
Number Date Country
1056921 Dec 1991 CN
1181121 May 1998 CN
1702274 Nov 2005 CN
2858885 Jan 2007 CN
1930351 Mar 2007 CN
101065552 Oct 2007 CN
101500861 Aug 2009 CN
104763242 Jul 2015 CN
105971401 Sep 2016 CN
29703559 Apr 1997 DE
19612156 Jul 1998 DE
29911356 Oct 1999 DE
19854454 Sep 2000 DE
102007005214 Jun 2008 DE
202008007068 Oct 2009 DE
102018202563 Aug 2019 DE
0588209 Mar 1994 EP
0999328 May 2000 EP
1065335 Jan 2001 EP
1079051 Feb 2001 EP
1174572 Jan 2002 EP
1653415 May 2006 EP
1903168 Mar 2008 EP
2275628 Jan 2011 EP
2348490 Jul 2011 EP
2620919 Jul 2013 EP
2725823 Apr 2014 EP
2998485 Mar 2016 EP
3009992 Apr 2016 EP
3147868 Mar 2017 EP
3156980 Apr 2017 EP
3188136 Jul 2017 EP
1908898 Dec 2017 EP
3293995 Mar 2018 EP
3327679 May 2018 EP
3358534 Aug 2018 EP
2178476 Feb 1987 GB
2262770 Mar 1995 GB
2004020767 Mar 2004 WO
2004034336 Apr 2004 WO
2007142405 Dec 2007 WO
2012009607 Jan 2012 WO
2012073265 Jun 2012 WO
2013019281 Feb 2013 WO
2014140922 Sep 2014 WO
2014150172 Sep 2014 WO
2014151692 Sep 2014 WO
2015013275 Jan 2015 WO
2015031812 Mar 2015 WO
2015054646 Apr 2015 WO
2015054667 Apr 2015 WO
2015138726 Sep 2015 WO
2015138740 Sep 2015 WO
2015138747 Sep 2015 WO
2016001489 Jan 2016 WO
2016023558 Feb 2016 WO
2016075545 May 2016 WO
2016130777 Aug 2016 WO
2016131416 Aug 2016 WO
2016150951 Sep 2016 WO
2016172119 Oct 2016 WO
2016185013 Nov 2016 WO
2016196025 Dec 2016 WO
2016202796 Dec 2016 WO
2017066849 Apr 2017 WO
2017082823 May 2017 WO
2017091826 Jun 2017 WO
2017136110 Aug 2017 WO
2017175020 Oct 2017 WO
2017180381 Oct 2017 WO
2017180388 Oct 2017 WO
2017180454 Oct 2017 WO
2017180563 Oct 2017 WO
2017201029 Nov 2017 WO
2017207476 Dec 2017 WO
2018041904 Mar 2018 WO
2018075605 Apr 2018 WO
2018081697 May 2018 WO
2018091660 May 2018 WO
2018104383 Jun 2018 WO
2018104384 Jun 2018 WO
2018128754 Jul 2018 WO
2018128755 Jul 2018 WO
2018136740 Jul 2018 WO
2018136744 Jul 2018 WO
2019051337 Mar 2019 WO
2019200257 Oct 2019 WO
Non-Patent Literature Citations (6)
Entry
International Search Report and Written Opinion, ISA/US, PCT/US19/27220, dated Jun. 10, 2019, 13 pgs.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2019/027220, dated Oct. 22, 2020, 9 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2018/050117, dated Mar. 19, 2020, 17 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2018/050117, dated Nov. 8, 2018, 18 pages.
Computer Generated Translation for DE 102007005214 B3, Generated on Aug. 29, 2023, https://worldwide.espacenet.com/ (Year: 2023).
Computer Generated Translation for DE 202008007068 U1, Generated on Aug. 29, 2023, https://worldwide.espacenet.com/ (Year: 2023).
Related Publications (1)
Number Date Country
20200199911 A1 Jun 2020 US
Provisional Applications (1)
Number Date Country
62556195 Sep 2017 US