1. Field of the Invention:
The present invention relates generally to wireline assemblies used in wellbore operations and, specifically to an electro-mechanical anchoring system for a wireline tool string.
2. Description of the Prior Art:
During the production of hydrocarbons from subterranean well formations, a casing string is typically cemented in order to consolidate the wellbore. Typically, a tubing string extends from the well surface to the required depth in the wellbore in order to flow hydrocarbon fluids from the subterranean formation to the surface.
A perforating gun assembly is lowered from the surface and positioned within the casing adjacent the producing interval. The gun may be run on a tubing string or may be suspended from a wireline from the surface. In the case of the wireline tool, an electrical current transmitted through the wireline can be used to actuate the perforating guns in order to perforate the surrounding well casing and allow the flow of fluids to the well surface.
In certain types of wellbore conditions, it may be necessary to provide additional means for holding the wireline tool string in place downhole during underbalanced perforating and/or flowing of the well after perforating.
While various mechanical devices have been utilized in the prior art, most were overly complicated and were sometimes less than reliable in operation.
A need exists for an apparatus to provide a means for holding a wireline tool string in place downhole during underbalanced wellbore operations.
A need also exists for such a device which can be electro-mechanically actuated and which also features a back-up manual release.
A need exists for such a device which will positively indicate when the “set” position has been achieved.
A need also exists for such a device which is simple in design and relatively economical to manufacture.
The foregoing needs are met with the electro-mechanical wireline assembly of the invention. The electro-mechanical wireline assembly of the invention is used for anchoring a wireline tool string in place in a wellbore, for example, during underbalanced well conditions. The wireline assembly of the invention allows a wireline tool string to be used in the presence of much higher underbalanced wellbore conditions than currently possible when perforating or flowing the well for production information.
The electro-mechanical assembly of the invention is designed to be set by supplying electrical power to an electric motor assembly which forces a slip guide beneath gripping slips to force the slips radially outward into contact with a surrounding casing/tubing wall. Tension can then pulled on the wireline cable connected to the assembly in order to insure that the system is in the set position. Once confirmation is received that the assembly is set, the perforating guns included as a part of the assembly can be fired and the well flowed.
After flowing the well and stabilizing the pressure in the wellbore, the wireline assembly is unset by again supplying power to the electric motor to reverse the setting motion and remove the slip guides from beneath the gripping slips. If, for some reason, electrical power cannot be supplied to the electric motor after the perforating step, then a back-up mechanical release mechanism is utilized to release the wireline assembly mechanically.
The back-up release mechanism is actuated by slacking off tension on the wireline to telescope the tool downwardly within itself. The downward telescoping action engages collet fingers with a releasing neck on a collet latch sub provided as a part of the assembly. An upward pull on the wireline cable then shears one or more shear pins and allows the back-up release mechanism to release the tool as tension continues to be applied upwardly.
In a preferred embodiment, the electro-mechanical wireline assembly of the invention includes an upper connecting means for connecting the assembly to a wireline leading to the well surface. A lower connecting means is provided for engaging a wireline tool such as a perforating gun assembly. An outer mandrel is connected to the lower connecting means. An inner mandrel is carried at least partly within the outer mandrel and is capable of axial movement relative thereto. A slip gripping assembly is carried on the outer mandrel and includes a plurality of gripping slips normally biased radially inward but movable radially outward for engaging a surrounding wellbore and holding a wireline tool string in place in the wellbore.
An electric motor assembly is carried on the wireline assembly between the upper connecting means and the lower connecting means. The electric motor assembly is actuable by an electric current supplied from the well surface through the wireline to effect axial movement of the inner mandrel relative to the outer mandrel to expand the gripping slips in a radial direction between a start position and a set position. Switch means, included as a part of the electric motor assembly, are provided to reverse the direction of axial movement of the inner mandrel relative to the outer mandrel to retract the gripping slips and return the slips to the start position. Preferably, the assembly further comprises a back-up manual release means for manually retracting the gripping slips radially inward upon completion of wellbore operations.
Additional objects, features and advantages will be apparent in the written description which follows.
Turning first to
As shown in
The outer mandrel 23 has a series of window openings 47 for receiving a retaining means such as retaining dogs 50. Other retaining means such as a plurality of retaining balls could also be utilized. The retaining dogs 50 initially prevent downward axial movement of a tubular collet housing 51. The tubular collet housing 51 terminates at a lower extent in collet fingers 53 which are engageable upon downward axial movement with the fishing neck 45 of the collet latch housing 35.
The collet housing 51 has an externally threaded upper extent 55 for engaging a mating internally threaded surface 57 of an outer motor housing 59. The outer motor housing 59 is a generally tubular body having an externally threaded upper extent 61 (
The coiled wire 75 is connected by means of a conventional lead-in 77 to a connecting assembly including the upper portion 79 and lower portion 81. The upper portion 79 has a bore 80 containing contact spring (FIG. 1B). Bushing 84 connects the opposing ends 86, 88 of the conductors which allow the follow up electrical current to the terminal 90. Terminal 90 is connected by means of an electrical lead 83 with an electric motor assembly 85 located within tubular member 87. The tubular member 87 is threadedly connected at an upper extent 89 to the lower portion 81 of the connecting assembly and at the lower extent 91 (
The application of an electrical current to the motor assembly 85 acts through bearing assembly 95 and ball nut assembly 97 to turn screw 99. The externally threaded screw 99 connects through a ball nut adapter 101 to an upper extent 103 of an inner mandrel 105. The inner mandrel 105 passes through mating bores in the motor frame 93 and outer mandrel 23 and terminates at a lower extent 107 (
Referring to
Turning to
After the pressure is stabilized, the wireline assembly can be released by sending an electrical current back to the motor assembly 85 to turn the screw 99 in the opposite direction (from setting rotation) to move the slip guide 29, inner mandrell 105, ball nut adapter 101 and ball nut assembly 97 back to the running-in position.
Referring to
Initially, during run-in, power through diode D11 is connected through switching device S2 and switching device S1, which is configured to pass the power in a first polarity, to motor M1. Power out of the motor M1 is connected to the negative feedback loop (resistor R7:1) of op-amp U1 through resistor R8:1, allowing the current drawn by motor M1 to be monitored. When the motor M1 binds (and begins drawing significantly more current) during setting of the wireline assembly, op-amp U1 trips switching device S2 to disconnect the applied input power from motor M1, which in turn causes switching device S1 to trip, reversing the polarity of the connection of motor M1 to the power connections at diodes D11 and D12. Op-amp U1 and switching device S2 may then be reset by disconnecting and reconnecting power to the control circuit. Power is therefore again transmitted to motor M1 from diode D11, but with the opposite polarity as before due to the prior tripping of switching device S1. Subsequent cycling (disconnect/reconnect) of power to the control circuit may be employed to restore switching device S1 to its original position.
It should be noted that only the positive power connection (through diode D11) is employed to directly control motor switching, although the negative power connection through the diode D12 is employed to sense current drawn by motor M1. This allows the negative power connection from the surface to the employed to fire the perforating guns, utilizing circuitry not shown in FIG. 6.
While the tool has been described as being operated with an electric current supplied from a power source at the well surface, it will be appreciated that it could be modified to operate with a power source located downhole on the tool, as well.
If, for some reason, an electrical current cannot be transmitted to the motor assembly 85 after firing the perforating guns, a mechanical back-up release mechanism is utilized.
After shearing the pins 37 (FIG. 4D), upward movement on the wireline pulls the collet latch housing 51 upwardly to the allow the collets on the slip guide 27 to spring out into the internal recess 39 of the collet latch housing 35. The slip guide 27 is then pulled axially upward from beneath the gripping slips. The gripping slips 21 are then retracted radially inward by means of the biasing force exerted by coiled springs 25 to the running-end position. Once the slips are collapsed, the tools is released and can be retrieved on the wireline from the wellbore. The weight of the tool string is carried out of the hole in the same manner as depicted with respect to the initial running-in position illustrated in
An invention has been provided with several advantages. The electro-mechanical wireline assembly of the invention allows a wireline tool string to be securely anchored in position within a wellbore even during severely underbalanced well conditions. The wireline assembly is simple in design and relatively economical to manufacture and is extremely reliable in operation. Because an electric motor assembly is used to actuate the slip gripping operation, the operator at the well surface knows with certainty when the gripping operation is complete because the motor stalls out. The desired wellbore operations, such as firing of the perforating gun assembly can then be safely carried out. The electric motor assembly also provides a convenient mechanism for the reverse movement of the slip gripping assembly. If, for some reason, the electric motor assembly cannot be reactuated, a simple mechanical release mechanism is provided.
While the invention has been shown in only one of its forms, it is not thus limited but is susceptible to various changes and modifications without departing from the spirit thereof.
Number | Name | Date | Kind |
---|---|---|---|
3677080 | Hallmark | Jul 1972 | A |
3686943 | Smith | Aug 1972 | A |
4375834 | Trott | Mar 1983 | A |
4429741 | Hyland | Feb 1984 | A |
5184676 | Graham et al. | Feb 1993 | A |
5228507 | Obrejanu et al. | Jul 1993 | A |
5303776 | Ryan | Apr 1994 | A |
5370186 | Ireland | Dec 1994 | A |
5431230 | Land et al. | Jul 1995 | A |
5954131 | Sallwasser | Sep 1999 | A |
6315043 | Farrant et al. | Nov 2001 | B1 |