This invention relates, in general, to waveguides, and more particularly, to waveguides having liquid crystal materials therein.
Various devices such as bar code scanners, compact disk players, DVD players, range finders, designators, etc. use light to perform various functions, such as read data from optical media. Beams of light are also used in devices in communication devices, sample analyzing devices, pointing and designating devices, distance measurement devices, and time measurement devices.
Light can be controlled using standard lenses and mirrors. These passive methods cart be made active via mechanical motion. For example, mirrors can be placed on galvo-motors to move the mirror to control the direction of light propagation. This technique is used in barcode scanners, or optical readwrite heads in CD/DVD players. However, mechanical control over light is undesirable for several reasons. First, it is difficult to make such mechanical devices compact. Second, the mechanical nature of such moving devices have limited lifetimes due to mechanical wear and failure issues. Third, mechanical devices are inherently vibration sensitive, which limits the type of environment in which they can be used. Finally, mechanical devices necessitate a level of design complexity including gears, bearings, and other mechanical components, which add cost, expense, and maintenance issues to such designs.
Rather than move a lens or a mirror with a motor or actuator, light can be controlled through the use of waveguides. For instance, U.S. Pat. No. 5,347,377 entitled “Planar Waveguide Liquid Crystal Variable Retarder” relates generally to providing an improved waveguide liquid crystal optical device, and discloses in Table 1 the use of alternating current voltages between 2 and 50 volts rms. This patent teaches controlling only the optical phase delay flit only TM polarized light.
With conventional waveguides, electro-optic materials are employed whereby a voltage applied across the material changes the index of refraction, n. However, with conventional techniques, the index of refraction can only be changed a very small amount, such as 0.0001 per kilovolt for bulk materials. This limitation makes this type of light control extremely limited, and to date not a viable alternative to mechanical control of light.
While liquid crystal optics have become widespread in display applications, in such applications light is attenuated but not steered nor refocused, or only to a very small degree. In order to use conventional techniques for liquid crystal optics to achieve active optical control, prohibitively thick layers of liquid crystal (>100 microns) would be needed, which would render the device highly opaque and slow. The thick layers of liquid crystal can take seconds or even minutes to change, and are difficult or impossible to control. Although electro-optic beam-steerers have been made with standard thin liquid crystal cells, such devices have only realized minimal control (in the range of micro-degrees of steering).
U.S. Pat. No. 3,963,310 to Giallorenzi et al, entitled “Liquid Crystal Waveguide” teaches of utilizing liquid crystal—within the core of a waveguide. However, as recognized by the present inventors, such a waveguide would be problematic in that there would be substantial losses or attenuation of light traveling through such a waveguide. Furthermore, such a waveguide does not provide for control of light in a direction out-of-the-plane of the waveguide.
Accordingly, as recognized by the present inventors, what is needed is a liquid crystal waveguide for controlling light that permits active control of the propagation of light through and out of the waveguide.
In light of the above and according to one broad aspect alone embodiment of the invention, disclosed herein is a liquid crystal waveguide for dynamically controlling the propagation direction of light as it exits the waveguide. Generally, liquid crystal materials are disposed within waveguide in a cladding proximate or adjacent to a core layer of the waveguide. Portions of the liquid crystal material can be induced to form refractive or lens shapes in the cladding so as to permit electronic control of the refraction/bending of light as it travels through the waveguide. The waveguide may also have a taper region where the distance between the core of the waveguide and an out-coupling medium is decreased towards the output end of the waveguide, which encourages a beam of light or a laser beam, as it travels through the taper region, to exit the waveguide in a direction that is out-of-the-plane of the optical waveguide. The waveguide can therefore control the light beams propagation direction in both a dimension in the plane of the waveguide and also in a dimension that is out of the plane of the waveguide.
According to another broad aspect of one embodiment of the present invention, disclosed herein is a waveguide for controllably steering a light beam, wherein the waveguide is characterized by an effective index of refraction. In one example, the waveguide includes a core; at least one cladding having a liquid crystal material therein; at least one out-coupling medium having an index of refraction that is larger than the effective index of refraction of the waveguide, wherein the out-coupling medium is separated from the core within the waveguide by a thickness that decreases from a first thickness near the input end of the waveguide to a second thickness near the output end of the waveguide; and at least one electrode for receiving at least one voltage wherein the magnitude of the propagation angle is controlled by the voltage.
In one example, as the light beam travels through the waveguide, at least a portion of the light beam propagates into the out-coupling medium at a propagation angle out-of-the-plane of the waveguide. In one embodiment, the waveguide may include an upper cladding provided with liquid crystal material therein, and a lower cladding, and the out-coupling medium is a substrate positioned below a lower cladding, in another embodiment, the waveguide may include an upper cladding, and a tower cladding having liquid crystal material therein, and the out-coupling, medium is positioned below the lower cladding and above a substrate layer. In one example of the waveguide, the waveguide supports only one propagation mode per polarization state. The index of refraction of the substrate may be larger than the effective index of retraction of the waveguide.
According to another broad aspect of one embodiment of the present invention, disclosed herein a waveguide including a core for guiding a light beam; at least one cladding having a liquid crystal material within at least a portion of said cladding; a taper region wherein at least a portion of the light beam is transferred out of the waveguide and into an out-coupling medium at a propagation angle; and at least one electrode, wherein as a voltage is applied to said electrode, the propagation angle is controllably altered.
In the taper region of the waveguide, the distance between the core of the waveguide and an out-coupling medium is decreased towards the output end of the waveguide, which encourages a beam of light or a laser beam, as it travels through the taper region, to exit the waveguide in a direction that is out-of-the-plane of the optical waveguide. The waveguide can therefore control the light beam's propagation direction in both a dimension in the plane of the waveguide and also in a dimension that is out of the plane of the waveguide.
The foregoing and other useful features and advantages of the invention will be apparent from the following more particular description of a various embodiments of the invention as illustrated in the accompanying drawings.
Disclosed herein are various embodiments of a substantially planar waveguide for dynamically controlling the propagation direction of light passing through and out of the waveguide. Generally and in accordance with an embodiment of the present invention, liquid crystal materials are disposed within a waveguide in a cladding proximate or adjacent to a core layer of the waveguide. In one aspect of the invention, the waveguide may contain taper regions wherein the light exits the waveguide at a propagation angle out-of-the-plane of the waveguide. Furthermore, the magnitude of the propagation angle may be electronically controlled and therefore the light may be electronically steered as it exits the waveguide. In another aspect of the invention, portions of the liquid crystal material can be induced to form refractive shapes in the cladding so as to permit electronic control of the refraction/steering of light in-the-plane of the waveguide. In another aspect of the invention, the in-plane steering of light provided by the refractive shapes may be combined with the out-of-plane steering provided by the taper regions, thereby providing both in-plane and out-of-plane steering in a single waveguide device.
As disclosed herein, a waveguide may be formed using one or more taper regions that provide for controllably steering the light beam out-of-the-plane of the waveguide (see
As shown in the cross-sectional view of waveguide 10 in
In one example, the waveguide 10 may contain a taper region 26, wherein the distance between the core 12 and the out-coupling, medium 22 may decrease from a first thickness 28 to a second thickness 30 along the length of the waveguide 10, wherein in one example the first thickness is larger than the second thickness as shown in
As the light 32 propagates through the core 12 of the waveguide 10 and into the taper region 26, the evanescent tail of the guided light may penetrate into the out-coupling medium 22. As the distance between the core 12 and the out coupling medium 22 decreases from a first thickness to a smaller second thickness, more of the evanescent tail of the light penetrates into the out-coupling medium 22. In one example, the index of refraction of the out-coupling medium 22 may be larger than the effective index of the waveguide 10, in which case at least some of the output light 34 may leave the waveguide and propagate into the out-coupling medium 22 at a propagation angle that is out-of-the-plane of the waveguide 10. The light beam 12 may then leave the out-coupling medium 22, through an angled facet 24, and therefore propagate into free space as an output beam 34.
In one example, the shape of the taper region 26 is smooth, arcuate and continuous. In other words, as the distance between the core 12 and the out-coupling medium 22 is decreased or tapered from a first thickness to a second thickness, the shape of this taper 24 may be a smooth and continuous transition such as an s-taper or other smooth shape. In this case, where the thickness is large, the evanescent tail of the light beam 32 is only slightly in contact with the out-coupling medium 22, and therefore the intensity of the out-coupled light 34 is small. As the thickness is decreased, the amount of contact between the evanescent tail of the light beam 32 and the out-coupling medium 22 is increased and therefore the amount of light 34 that leaves the waveguide 10 is also increased. This continues, until the light intensity within the waveguide is sufficiently drained such that less light leaves the waveguide simply because there is less light still within the waveguide. In this manner the intensity profile of the light 34 leaving the waveguide 10 can be a smooth and continuous shape, such as a Gaussian profile or another smooth profile. In another example, the shape of the taper region 26 may be sharp or discontinuous, such as a step or otherwise steep edge.
In general and as discussed below, at least two indices of refraction can be realized within an electro-optic beam deflector waveguide device 10 made according to embodiments of the present invention. The first index of refraction, n1, is the index of refraction for the light that is guided or trapped within the waveguide 10. This is determined as an average or combination of: i) the index of refraction of the lower cladding, ii) the index of refraction of the core, and iii) the index of refraction of the upper cladding (in one example, the index of refraction of the upper cladding 14 (which contains a liquid crystal material 18) can be varied as described herein). This average or combination of these indexes of refraction is referred to as the effective index of the waveguide, n1.
A second index of refraction, n2, is the index of refraction of the out-coupling medium 22. In one embodiment of the invention, the index of refraction of the out coupling medium 22 is larger than the effective index of the waveguide. In this case, as the light beam 32 enters into the taper region 26, the light beam will leave the waveguide and propagate into the out-coupling medium 22 at an out-of-lane propagation angle 36 with respect to the plane of the waveguide or the waveguide normal. The magnitude of the propagation angle 36 will depend on the difference between the effective index of the waveguide, n1, and the index of refraction of the out-coupling medium, n2.
The liquid crystal material 18 (for example, in the upper cladding 14 as shown in
In one example, as n1 increases, the magnitude of the propagation angle 36 at which the light 34 leaves the waveguide 10 will also increase. Hence, the propagation angle 36 of light as it leaves the waveguide can be controlled electronically and without any moving parts to perform numerous useful functions, such as for use in a bar code scanner, a CD/DVD read/write head, a tunable laser, or other applications.
A waveguide 10 formed in accordance with an embodiment of the present invention may be generally rectangular in shape and may include a core 12 having a generally rectangular cross-section or defining a parallel piped. On the front end of the waveguide 10, light 32 is introduced, into the waveguide core 12 and propagates along the length of the waveguide into the taper region 26. As shown in
As shown in
A lower cladding layer 16 is provided on the substrate 22 and is preferably made of any dielectric materials with low absorptions whose index of refraction is less than the index of refraction of the core 12. Suitable materials include Silicon OxyNitride, Silicon-Rich Nitride, Silicon Nitride, Tantalum Pentoxide, Polymers, Pure Silicon, Ion exchange glass on substances such as Lithium Niobate, Sol-Gel, thermally oxidized silicon, glass. In one example, the interface between the lower cladding 16 and the core layer 12 is transparent so that light can penetrate the lower cladding 16 as it propagates through the core 12. In one example, the lower cladding 16 has a thickness that is tapered.
On top of the lower cladding 16, a waveguide core 12 or core material is provided. In one embodiment, the core 12 does not include any liquid crystal material 18 therein. The core 12 may be made of materials such as any dielectric materials with low absorptions whose index of refraction is greater than the index of refraction of the upper and lower claddings 14, 16. Suitable materials include, but are not limited to, Silicon OxyNitride, Silicon Rich Nitride, Silicon Nitride, Tantalum Pentoxide, Polymers, Pure Silicon, Ion exchange glass on substances such as Lithium Niobate, Sol-Gel, thermally oxidized silicon, glass. Furthermore, a core 12 may have a constant index of refraction along the length of the waveguide, or alternatively have an index of refraction that varies across or along the device 10.
On top of the core layer, an alignment layer 40 (shown as the lower alignment layer in this example of
On top of the lower alignment layer, the upper cladding 14 is provided having liquid crystal material 18 therein as shown in
In one example, the upper cladding 14 is formed using spacer material to define a region or volume wherein liquid crystal material 18 may be contained therein, and optically transparent glue such as Norland 68 may be used to create transparent boundary walls to contain the liquid crystal 18.
On top of the upper cladding 14, an upper alignment layer 42 may be provided to initially align or bias the orientation of liquid crystal material 18 that is adjacent to or proximate to the upper alignment layer 42. As with the lower alignment layer 40, alignment can be achieved, for example, by buffed polyimide coating applied to the core 12 and or the coverplate 44, photo-aligned polyimide, angle deposited SiO and or SiO2, microgrooves etched or otherwise formed into the core 12 and or coverplate 44, ion-buffed surfaces on the core or lower cladding, a dispersed polymer matrix that is photoaligned, or direct buffing of either surface. In one example, the upper alignment layer 42 is generally transparent.
The alignment of the liquid crystal 18 between the lower and upper alignment layers 40, 42 is can be anti-parallel, parallel, twisted, or hybrid between twisted and parallel or anti-parallel. The direction of liquid crystal alignment can be at any angle with respect to the direction of light propagation. Described below are examples of where the alignment of the liquid crystal materials 18 is adapted to provide for refraction of TE or TM modulated light as it passes through a waveguide made according to embodiments of the present invention.
On top of the upper alignment layer 42 and below the glass cover 44, an upper electrode layer 20 is provided. In one example, the upper electrode layer 20 is a conductive coating applied to the bottom surface of the glass cover 44. The conductive coating can include, but is not limited to, ITO, Au, Ag, Al, Cu, or any other conductive coating. In another example, the upper electrode 20 can be p-doped silicon or any metal, such as silver, copper, aluminum, gold, titanium, alloys, or other conductive material, etc.
A glass cover or coverplate 44 may be made of materials such as, but not limited to, standard float glass such as Corning 1737, fused silica, or any flat surface. Since the evanescent portion of the light does not pass through the coverplate 44, the coverplate 44 can be made from non-transparent materials such as silicon wafers, ceramics, or polished metal surfaces. In another embodiment, the coverplate 44 may be a metal or any other conductive material and serve as the upper electrode.
Preferably, the core layer 12 is surrounded by an upper and lower cladding 14, 16, wherein the interfaces between the lower cladding 16 and the core layer 12 and between the upper cladding 14 and the core layer 12 are transparent. As light 32 enters the core layer 12 and propagates through the core along the length of the waveguide, the evanescent portion of the propagating light waves penetrates into both the upper and lower cladding 14, 16. Preferably, the core layer 12 has a fixed index of refraction, and the lower cladding 16 also has a fixed index of refraction (
Furthermore, the evanescent portion of the light is only interacting with the liquid crystal molecules 18 that are close to the alignment layer 40. These molecules are more highly ordered than liquid crystal molecules further away from the alignment layer 40 and therefore scatter less light. In one example, the losses are sufficiently low (e.g., less than 0.5 dB/cm) that the waveguide length can be lengthy (e.g., 4 inches or greater).
While
In the example of
Embodiments of the present invention can be used to selectively control the propagation angle for particular types of polarized light, such as TM polarized light and TE polarized light. Generally, TM (Transverse Magnetic) polarized light means that the magnetic field of the light wave is traversing the plane of the waveguide, while the electric field is substantially perpendicular to the plane of the waveguide. TE (Transverse Electric) polarized light is characterized by the electric field of the light traversing the plane of the waveguide, while the magnetic field of the light is substantially perpendicular to the plane of the waveguide. Furthermore, in one example the waveguide may be constructed such that the waveguide only supports and single TE mode and/or only a single TM mode of light. This is referred to as a single mode waveguide. In one example, the thickness of the waveguide core 12 may be sufficiently small such that the waveguide is single mode. In another example, the difference between the index of refraction of the core 12 and the claddings 14, 16 may be sufficiently small such that the waveguide is single mode. In another example the waveguide may support multiple TE and TM modes.
In another embodiment of the present invention, the one or more upper electrodes 20 may define one or more shapes 110 having at least one edge or interface that is non-normal to the direction of light propagation through the waveguide, as shown in
In general, at least two indices of refraction can realized within a waveguide made according to embodiments of the present invention, such as the example of
The liquid crystal material beneath the patterned electrode(s) 20 can be characterized as having a tunable and dynamic index of refraction n4. In one example, when no voltage 38 is applied to the upper electrode, n4 equals n3 and no refraction occurs. As voltage 38 is applied and increased between the upper patterned electrode(s) 20 and the lower electrode plane 22, the index of refraction n4 of the liquid crystal material 18 under the upper patterned electrode(s) 20 is controllably changed as a function of the voltage applied. Depending upon the implementation, the applied voltage can be a DC voltage, or an AC voltage, for instance, at low frequencies to high frequencies such as 50 KHz, or discrete voltages applied to each electrode 20.
Hence, as the difference between n4 and n3 increases, the amount of refraction or bending of light passing through the waveguide can be increased as well. Hence, the amount of bending or refraction of light as it passes through the waveguide can be controlled electronically and without any moving parts to perform numerous useful functions, such as for use in a bar code scanner, a CD/DVD read/write head, a tunable laser, or other applications.
Referring to
As shown in
In another example of the invention and as shown in
For intermediate values of steering, rows 114 may receive a full voltage up to a desired intermediate row electrode, which is held at an intermediate value of voltage. The remaining rows may be off (e.g., receive no applied voltage) and give no further deflection to the light beam. To obtain continuous steering of light, the first row electrode receives a voltage from zero to full voltage and then fixed at full voltage, then the next row electrode receives a voltage from zero increasing to full voltage and then to a fixed voltage; and the process can be repeated for each next row electrode.
The array of electrode rows shown in
In another example of the invention, as shown in
Furthermore, as the light beam propagates through the out-coupling medium 22 it may impinge on an angled output facet 24B such that the light beam leaves the out-coupling medium and propagates into free space as an output light beam. In this way, the output light beam may be controllably steered in both the horizontal/lateral/azimuthal direction, and in the vertical/elevation direction.
Embodiments of the present invention may be used in conjunction with conventional digital and analog circuitry, either separately or integrated on a single integrated circuit, for instance, the voltage applied to one or more patterned electrodes 202, 204, 210 may be controlled by a microprocessor or other logic or programmable logic devices, and such logic may be included on-chip with the waveguide.
While
In accordance with an embodiment of the present invention, waveguides can be formed incorporating one or more features as disclosed in the following pending applications and issued patents, the disclosures of which are hereby incorporated by reference in their entirety: U.S. patent application Ser. No. 11/040,549 filed Jan. 21, 2005, entitled “Tunable Laser Having Liquid Crystal Waveguide” and published as U.S. Patent Application Publication No. US2005/0265403; U.S. patent application Ser. No. 10/963,946 filed Oct. 12, 2004, entitled “Liquid Crystal Waveguide Having Refractive Shapes for Dynamically Controlling Light” and published as U.S. Patent Application Publication No. US2005/0271325; and U.S. Pat. No. 7,570,320 issued Aug. 4, 2009, entitled “Thermo-Optic Liquid Crystal Waveguide.”
Described below is an example of a liquid crystal waveguide in which the waveguide was designed to provide for 2 degrees of steering out-of-the-plane of the waveguide. It is understood that this example is provided for illustrative purposes only, and does not limit the scope of embodiments of the present invention. In one example, a waveguide beam steering device may be formed utilizing a p-doped silicon wafer, with both sides polished, as the lower electrode, which may be a thick Si wafer, for example, the thickness may be 5 mm and the wafer may be polished to be flat. Upon the p-doped silicon wafer, a silica layer may be deposited with a thickness of 600 nanometers. On top of the silica layer another silica layer may be deposited through a mask so as to create a taper in the thickness of silica. This second layer may be deposited to a thickness of 1200 nm such that she taper region has a first thickness of 1800 nm and a second thickness of 600 nm. The taper region may extend over 1 mm or over several mms. In this example, two 1 mm long taper regions were constructed, the first for coupling of the input light beam into the waveguide and the second for transferring the light beam out of the waveguide and into the out-coupling medium, which in this case was the 5 mm thick Si substrate.
Once the above mentioned layers have been applied, the wafer may be diced into smaller 20 millimeter by 60 millimeter parts, or into other sizes. Each diced part may then be coated with an alignment film approximately 120 angstroms in thickness. The alignment film was used to create the homogeneous orientation of the liquid crystal upper cladding. The film was produced by spin coating an 9:1 mixture of Nissan polyimide varnish solvent #4L to Nissan polyimide type 7992 filtered at 0.2 microns at 2000 revolutions per minute. The same spin coating process was performed on the cover plate, which was made of 90 mil thick fused quartz glass coated on one side with an indium tin oxide (ITO) film to produce the 100 ohms/square conductive layer used for the upper electrodes.
Once both the wafer and the patterned cover glass were coated, the polyimide was imidized by baking in an oven at 200 degrees Celsius for approximately 1 hour. The polyimide coatings were mechanically buffed with a dense piled cloth to induce preferential alignment along the light wave propagation direction of the waveguide. The liquid crystal upper cladding layer was formed by spacing the ground plane cover glass window from the diced wafer parts with 5-micron borosilicate glass spacers immersed in a ultra-violet curing adhesive Norland 68. Approximately 500-micron dots of the spacing mixture were placed at the four corners that created the cell gap for the liquid crystal to be disposed therein. The cover plate was attached to the rest of the waveguide so as to create an anti-parallel alignment layer on the waveguide core. The cell gap was then exposed to 365 nanometer light until fully cured. Straight Norland 68 was used to backfill via capillary action the remaining exposed edges making up the cell gap. One 3-millimeter openings was left 90 degrees to the buff direction. BLO37 liquid crystal, obtained from EMD Chemicals, Inc., was then introduced to one of the two edge openings and allowed to fill the cell gap via capillary force. Once filled, the holes were plugged by using Norland UVS-91 visible-uv curing adhesive. Once the above waveguide structure was fabricated angled input and output facets were fabricated. This was accomplished by grinding and then polishing the 5 mm thick Si wafer to yield angled facets. The facet angle was chosen such that the incoming and outgoing light beams were at normal incidence to the angled substrate facet. 30 AWG braided wires were then attached to the two upper electrodes and one lower electrode using conductive epoxy.
TM light at a wavelength of approximately 1550 nm was introduced into the TM0 mode of the waveguide. Amplitude modulated 5 KHz square-wave drive voltages were applied to the ITO upper electrode change the effective index of waveguide in the second or out-coupling taper region. To measure the beam deflection change as a function of applied voltage, a InGaAs CCD video camera was used to visually map the output light beam on a screen. The experimental results are shown in Table 1.
While the methods disclosed herein have been described and shown with reference to particular operations performed in a particular order, it will be understood that these operations may be combined, sub-divided, or re-ordered to form equivalent methods without departing from the teachings of the present invention. Accordingly, unless specifically indicated herein, the order and grouping of the operations are not a limitation of the present invention.
It should be appreciated that reference throughout this specification to “one embodiment” or “an embodiment” or “one example” or “on example” means that a particular feature, structure or characteristic described in connection with the embodiment may be included, if desired, in at least one embodiment of the present invention. Therefore, it should be appreciated that two or more references to “an embodiment” or “one embodiment” or “an alternative embodiment” or “one example” or “an example” in various portions of this specification are not necessarily all referring to the same embodiment.
It should be appreciated that in the foregoing description of exemplary embodiments of the invention, various features of the invention are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure and aiding in the understanding of one or more of the various inventive aspects. Inventive aspects lie in less than all features of a single foregoing disclosed embodiment, and each embodiment described herein may contain more than one inventive feature.
While the invention has been particularly shown and described with reference to embodiments thereof, it will be understood by those skilled in the art that various other changes in the form and details may be made without departing from the spirit and scope of the invention.
This Application is a Continuation which claims the benefit of priority of U.S. patent application Ser. No. 14/832,574, entitled “Electro-Optic Beam Deflector Device” filed Aug. 21, 2015, which is a Divisional and claims the benefit of priority of U.S. patent application Ser. No. 12/660,028, entitled “Electro-Optic Beam Deflector Device” filed Feb. 17, 2010, which claims under 35 U.S.C. § 119(e) the benefit of U.S. provisional patent application No. 61/207,851 entitled “Electro-Optic Beam Deflector Device” filed Feb. 17, 2009, the disclosures of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3506779 | Hempstead | Apr 1970 | A |
3912362 | Hudson | Oct 1975 | A |
3922064 | Clark et al. | Nov 1975 | A |
3923376 | Martin | Dec 1975 | A |
3963310 | Giallorenzi | Jun 1976 | A |
3995623 | Blake et al. | Dec 1976 | A |
4006967 | Kenan | Feb 1977 | A |
4116655 | Lewis | Sep 1978 | A |
4261721 | Lewis | Apr 1981 | A |
4737014 | Green | Apr 1988 | A |
4896325 | Coldren | Jan 1990 | A |
4917097 | Proudian et al. | Apr 1990 | A |
5044712 | Soref | Sep 1991 | A |
5132079 | Stewart | Jul 1992 | A |
5167233 | Eberle et al. | Dec 1992 | A |
5255112 | Hori | Oct 1993 | A |
5291567 | Revelli, Jr. | Mar 1994 | A |
5301201 | Dutta | Apr 1994 | A |
5317446 | Mir | May 1994 | A |
5319668 | Luecke | Jun 1994 | A |
5325860 | Seward et al. | Jul 1994 | A |
5347377 | Revelli, Jr. | Sep 1994 | A |
5388169 | Kobayashi | Feb 1995 | A |
5499256 | Bischel | Mar 1996 | A |
5504772 | Deacon | Apr 1996 | A |
5513196 | Bischel | Apr 1996 | A |
5596671 | Rockwell, III | Jan 1997 | A |
5603327 | Eberle et al. | Feb 1997 | A |
5766974 | Sardella | Jun 1998 | A |
5789776 | Lancaster | Aug 1998 | A |
5837613 | Kalnitsky | Nov 1998 | A |
5873835 | Hastings et al. | Feb 1999 | A |
5953477 | Wach et al. | Sep 1999 | A |
5965691 | Gibbons | Oct 1999 | A |
6041071 | Tayebati | Mar 2000 | A |
6049958 | Eberle et al. | Apr 2000 | A |
6078704 | Bischel | Jun 2000 | A |
6078831 | Belef et al. | Jun 2000 | A |
6134003 | Tearney et al. | Oct 2000 | A |
6178035 | Eda | Jan 2001 | B1 |
6205159 | Sesko | Mar 2001 | B1 |
6215928 | Friesem | Apr 2001 | B1 |
6222970 | Wach et al. | Apr 2001 | B1 |
6241397 | Bao et al. | Jun 2001 | B1 |
6315732 | Suorsa et al. | Nov 2001 | B1 |
6324204 | Deacon | Nov 2001 | B1 |
6330388 | Bendett | Dec 2001 | B1 |
6373872 | Deacon | Apr 2002 | B2 |
6416234 | Wach et al. | Jul 2002 | B1 |
6449084 | Guo | Sep 2002 | B1 |
6470036 | Bailey | Oct 2002 | B1 |
6480513 | Kapany | Nov 2002 | B1 |
6546163 | Thackara | Apr 2003 | B2 |
6559921 | Leslie | May 2003 | B1 |
6594408 | Noe | Jul 2003 | B1 |
6603902 | So | Aug 2003 | B1 |
6608952 | Eggleton | Aug 2003 | B2 |
6650822 | Zhou | Nov 2003 | B1 |
6659957 | Vardi et al. | Dec 2003 | B1 |
6661936 | Noe | Dec 2003 | B2 |
6763047 | Daiber | Jul 2004 | B2 |
6768856 | Akwani | Jul 2004 | B2 |
6813417 | Oh | Nov 2004 | B2 |
6816140 | Fujieda | Nov 2004 | B2 |
6816516 | Daiber | Nov 2004 | B2 |
6853654 | McDonald | Feb 2005 | B2 |
6859567 | Galstian | Feb 2005 | B2 |
6859572 | Ishibashi | Feb 2005 | B2 |
6920159 | Sidorin | Jul 2005 | B2 |
6938474 | Melvås | Sep 2005 | B2 |
6948859 | Anderson | Sep 2005 | B2 |
7079724 | Thackara | Jul 2006 | B2 |
7082238 | Nishimura | Jul 2006 | B2 |
7097620 | Corl et al. | Aug 2006 | B2 |
7141815 | Yankielun | Nov 2006 | B2 |
7146070 | Li | Dec 2006 | B1 |
7184148 | Alphonse | Feb 2007 | B2 |
7190464 | Alphonse | Mar 2007 | B2 |
7242480 | Alphonse | Jul 2007 | B2 |
7242832 | Carlin et al. | Jul 2007 | B2 |
7245789 | Bates et al. | Jul 2007 | B2 |
7315665 | Anderson | Jan 2008 | B1 |
7403678 | Thapliya | Jul 2008 | B2 |
7417740 | Alphonse et al. | Aug 2008 | B2 |
7447388 | Bates et al. | Nov 2008 | B2 |
7570320 | Anderson | Aug 2009 | B1 |
7599588 | Eberle et al. | Oct 2009 | B2 |
7634163 | Moy et al. | Dec 2009 | B2 |
7720116 | Anderson | May 2010 | B2 |
7753852 | Maschke | Jul 2010 | B2 |
7986407 | Moser et al. | Jul 2011 | B2 |
8049885 | Moser et al. | Nov 2011 | B1 |
8118494 | Larson | Feb 2012 | B2 |
8139212 | Moser et al. | Mar 2012 | B2 |
8155489 | Saarikko | Apr 2012 | B2 |
8184285 | Moser et al. | May 2012 | B2 |
8311372 | Anderson | Nov 2012 | B2 |
8320723 | Eberle et al. | Nov 2012 | B2 |
8369017 | Moser et al. | Feb 2013 | B2 |
8380025 | Anderson | Feb 2013 | B2 |
8463080 | Anderson et al. | Jun 2013 | B1 |
8583218 | Eberle | Nov 2013 | B2 |
8860897 | Anderson | Oct 2014 | B1 |
8861908 | Eberle et al. | Oct 2014 | B2 |
8923102 | Shi et al. | Dec 2014 | B1 |
8989523 | Anderson | Mar 2015 | B2 |
8995038 | Anderson | Mar 2015 | B1 |
9088126 | Zheng et al. | Jul 2015 | B2 |
9097896 | Moser et al. | Aug 2015 | B2 |
9244546 | Mimura et al. | Jan 2016 | B2 |
9286920 | Hu et al. | Mar 2016 | B1 |
9291776 | Svilans | Mar 2016 | B2 |
9366938 | Anderson | Jun 2016 | B1 |
9473768 | Uyeno et al. | Oct 2016 | B2 |
9477135 | Uyeno et al. | Oct 2016 | B1 |
9533123 | Eberle | Jan 2017 | B2 |
9587983 | Ho et al. | Mar 2017 | B1 |
9599565 | Carriere et al. | Mar 2017 | B1 |
20010033400 | Sutherland | Oct 2001 | A1 |
20020031299 | Hatakoshi | Mar 2002 | A1 |
20020041412 | Hajjar | Apr 2002 | A1 |
20020041726 | Thackara | Apr 2002 | A1 |
20020059827 | Smith | May 2002 | A1 |
20020131694 | So | Sep 2002 | A1 |
20020140879 | Fujieda | Oct 2002 | A1 |
20020150362 | Gutin | Oct 2002 | A1 |
20020154878 | Akwani | Oct 2002 | A1 |
20020181880 | Dautartas | Dec 2002 | A1 |
20030048817 | Steffens | Mar 2003 | A1 |
20030059148 | Nishizawa | Mar 2003 | A1 |
20030086448 | Deacon | May 2003 | A1 |
20030103708 | Galstian | Jun 2003 | A1 |
20030108273 | Kowalczyk | Jun 2003 | A1 |
20030137999 | Spiegelberg | Jul 2003 | A1 |
20030142262 | Leslie | Jul 2003 | A1 |
20030169958 | Ridgway | Sep 2003 | A1 |
20030214059 | Itoh | Nov 2003 | A1 |
20030214700 | Sidorin | Nov 2003 | A1 |
20030219197 | Kawamoto | Nov 2003 | A1 |
20030231279 | Wessel | Dec 2003 | A1 |
20040057475 | Frankel | Mar 2004 | A1 |
20040067000 | Bates et al. | Apr 2004 | A1 |
20040067013 | Gu | Apr 2004 | A1 |
20040129949 | Deliwala | Jul 2004 | A1 |
20040150329 | Asai | Aug 2004 | A1 |
20040158028 | Buhler | Aug 2004 | A1 |
20040169132 | Yankielun | Sep 2004 | A1 |
20040208412 | Miyazaki | Oct 2004 | A1 |
20040264902 | Zoorob | Dec 2004 | A1 |
20050047739 | Parker | Mar 2005 | A1 |
20050121734 | Degertekin et al. | Jun 2005 | A1 |
20050123228 | Nishizawa et al. | Jun 2005 | A1 |
20050135439 | Chapman | Jun 2005 | A1 |
20050180713 | Heideman | Aug 2005 | A1 |
20050265403 | Anderson | Dec 2005 | A1 |
20050271325 | Anderson | Dec 2005 | A1 |
20060008596 | Pokorny | Jan 2006 | A1 |
20060077319 | Kitamura | Apr 2006 | A1 |
20070116408 | Eberle et al. | May 2007 | A1 |
20070133925 | Bates et al. | Jun 2007 | A1 |
20070206904 | Sezerman et al. | Sep 2007 | A1 |
20080008413 | Anderson | Jan 2008 | A1 |
20080008414 | Anderson | Jan 2008 | A1 |
20080013587 | Tempea | Jan 2008 | A1 |
20080077225 | Carlin et al. | Mar 2008 | A1 |
20080119739 | Vardi et al. | May 2008 | A1 |
20080161548 | Gupta et al. | Jul 2008 | A1 |
20080161648 | Karasawa | Jul 2008 | A1 |
20090003841 | Ghidini | Jan 2009 | A1 |
20100013497 | Evans | Jan 2010 | A1 |
20100113942 | Eberle et al. | May 2010 | A1 |
20100220956 | Saarikko | Sep 2010 | A1 |
20110123154 | Eberle et al. | May 2011 | A1 |
20120269478 | Anderson | Oct 2012 | A1 |
20130148933 | Eberle et al. | Jun 2013 | A1 |
20140101922 | Eberle | Apr 2014 | A1 |
20140180031 | Anderson | Jun 2014 | A1 |
20140180034 | Hoseit et al. | Jun 2014 | A1 |
20140200438 | Millett et al. | Jul 2014 | A1 |
20150045645 | Eberle et al. | Feb 2015 | A1 |
20170079510 | Eberle | Mar 2017 | A1 |
20170091536 | Uyeno | Mar 2017 | A1 |
20170153530 | Anderson | Jun 2017 | A1 |
20170192264 | Anderson | Jul 2017 | A1 |
Number | Date | Country |
---|---|---|
1186940 | Mar 2002 | EP |
59-52219 | Mar 1984 | JP |
63-244004 | Oct 1988 | JP |
Entry |
---|
“U.S. Appl. No. 14/832,574, Final Office Action dated Jun. 23, 2016”, 25 pgs. |
“U.S. Appl. No. 12/660,028, Final Office Action dated Apr. 1, 2016”, 28 pgs. |
“U.S. Appl. No. 12/660,028, Non Final Office Action dated Mar. 6, 2014”, 14 pgs. |
“U.S. Appl. No. 12/660,028, Non Final Office Action dated Jul. 6, 2015”, 24 pgs. |
“U.S. Appl. No. 12/660,028, Response filed Feb. 26, 2013 to Non Final Office Action dated Dec. 21, 2012”, 8 pgs. |
“U.S. Appl. No. 14/221,143, Notice of Allowance dated Apr. 11, 2016”, 11 pgs. |
“U.S. Appl. No. 14/832,574, Non Final Office Action dated Oct. 8, 2015”, 11 pgs. |
“U.S. Appl. No. 15/428,432, Notice of Allowance dated Jul 6, 2017”, 22 pgs. |
“U.S. Appl. No. 15/481,179, Notice of Allowance dated Jun. 30, 2017”, 20 pgs. |
“BBO”, Crystech, [online]. Retrieved from the Internet : <URL: http://www.ilphotonics.com/cdv2/CrystechCrystalsOptics/CrystalsCrystech/Non_Linear_Crystals/BBO.pdf>, (Jun. 17, 2013), 4 pgs. |
“Google Searches for: ‘liquid crystal cladding evanescent waveguide’ and ‘liquid crystal evanescent waveguide’”, (2017), 2 pgs. |
“Optical Grade Silicon Wafers”, Precision Micro-Optics, [online]. Retrieved from the Internet: <URL: http://www.pmoptics.com/files/Optical_Silicon_wafer.pdf>, (Feb. 19, 2010), 2 pgs. |
“Potassium Titanyl Phosphate (KTP)”, Almaz Optics, [online]. [retrieved on Jun. 17, 2013]. Retrieved from the Internet : <URL: http://www.almazoptics.com/KTP.htm>, (Jun. 17, 2013), 4 pgs. |
Casson, Joanna L., et al., “Near-IR Turnable Laser with an Integrated LiTa03 Electro-Optic Deflector”, Applied Optics, vol. 41, No. 30, (Oct. 20, 2002.), 6416-6419. |
Clark, Noel A., et al., “Surface-stabilized ferroelectric liquid-crystal electro-optic waveguide switch”, Applied Physics Letter, 57(18), (1990), 1852-1854. |
Coppola, Giuseppe, et al., “Optoelectronic Router in Glass Waveguide with a Liquid Crystal Cladding”, Proceedings of SPIE, vol. 4829—19th Congress of the International Commission for Optics: Optics for the Quality of Life, (2003), 527-529. |
Davis, et al., “Liquid Crystal Waveguides: New Devices Enabled by >1000 Waves of Optical Phase Control”, Vescent Photonics Inc., Proc. of SPIE vol. 7618. |
Desmat, Hans, et al., “Silicon-on-Insulator Optical Waveguides with Liquid Crystal Cladding for Switching and Tuning”, Proceedings of the European Conference on Optical Communication (ECOC) 2003, vol. 3, (2003), 430-431. |
Gialorenzi, T. G., et al., “Light scattering from nematic liquid-crystal waveguide”. Journal of Applied Physics, vol. 46, No. 3, (Mar. 1975), 1271-1282. |
Gialorenzi, T. G., et al, “Lighting Scattering from Smectic Liquid-Crystal Waveguides”, Journal of Applied Physics, vol. 47, No. 5 (May 1976), 1820-1826. |
Hermann, David S., “Integrated Optics with Liquid Crystals”, Chalmers University of Technology, (2000), 1-34. |
Hu, Chenming, et al., “Losses of a Nematic Liquid-Crystal Optical Waveguide”, Journal of the Optical Society of America, vol. 64, No. 11, (Nov. 1974), 1424-1432. |
Hu, Chenming, et al., “Optical Deflection in Thin-Film Nematic Liquid-Crystal Waveguides”, IEEE Journal of Quantum Electronics, vol. QE-10, No. 2, (Feb. 1974), 218-222. |
Karpierz, M. A., “Nonlinear properties of waveguides with twisted nematic liquid crystal”, Acta Physica Polonica A, vol. 99, (2001), 161-173. |
Kobayashi, Morio, et al., “2x2 Optical Waveguide Matrix Switch Using Nematic Liquid Crystal”, IEEE Transactions on Microwave Theory and Techniques, vol. MTT-30, No. 10, (Oct. 1982), 1591-1598. |
Kwan, Oh Kee, et al., “Proposal of Electrically Tunable External-Cavity Laser Diode”, IEEE Photonics Technology Letters, vol. 16, No. 8, (Aug. 2004), 1804-1806. |
Li, Zheng, et al., “Radiation Hardness of High Resistivity Magnetic Czochralski Silicon Detectors After Gamma, Neutron, and Proton Radiations”, IEEE Transactions on Nuclear Science, vol. 51, No. 4, (Aug. 2004), 1901-1908. |
Liu, Zao, “Polarization Cross Coupling in Asymmetric Photonic Waveguides”, Thesis, Master of Science, Electrical and Computer Engineering , Northeastern University, Dept. Of Electrical and Computer Engineering, (Jan. 1, 2010), 73 pgs. |
Maune, Brett, et al., “Electronically tunable ring resonators incorporating nematic liquid crystals as cladding layers”, Applied Physics, vol. 83, No. 23, (2003), 4689-4691. |
Mormile, Pasquale, et al., “A basic element for integrated electro-optical devices based on Liquid Crystal waveguides”, Proc. SPIE 4078, (2000), 779-785. |
Okamura, Yasuyuki, et al., “Low Voltage Driving in Nematic Liquid Crystal Overlayered Waveguide”, Journal of Lightwave Technology, vol. LT-4, No. 3, (Mar. 1986), 360-363. |
Repasky, Kevin S., et al., “Tunable External-Cavity Diode Laser Based on Integrated Waveguide Structures”, Opt. Eng. 42(8), (Aug. 2003), 2229-2234. |
Schnur, Joel M., et al., “Prospectus for the Development of Liquid-Crystal Waveguides”, Naval Research Laboratory, NRL Report 7507, (Nov. 10, 1972), 21 pgs. |
Sheridan, J. P., et al., “Elector-optically induced deflection in liquid-crystal waveguides”, Journal of Applied Physics, vol. 45, No. 12, (Dec. 1974), 5160-5163. |
Sirleto, Luigi, et al., “Electro-Optical Switch and Continuously Tunable Filter Based on a Bragg Grating in a Planar Waveguide with a Liquid Crystal Overlayer”, Opt. Eng. 41(11 ), (Nov. 2002), 2890-2896. |
Sirleto, Luigi, et al., “Optical multimode interference router based on a liquid crystal waveguide”, Journal of Optics A: Pure Appl. Opt,. 5(5), (2003), S298-S304. |
Sneh, Anat, et al., “High-Speed Continuously Tunable Liquid Crystal Filter for WDM Networks”, Journal of Lightwave Technology, vol. 14, No. 6, (Jun. 1996), 1067-1080. |
Tien, P K, et al., “Theory of Prism-Film Coupler and Thin-Film Light Guides”, Journal of the Optical Society of America, vol. 60, No. 10, (Oct. 1970), 1325-1337. |
Ulrich, F., et al., “Offset Prism for Optical Waveguide Coupling”, Applied Optics, vol. 13, No. 8, (Aug. 1974), 1850-1852. |
Ulrich, R, et al., “Measurement of Thin Film Parameters with a Prism Coupler”, Applied Optics, vol. 12, No. 12, (Dec. 1973), 2901-2908. |
Ulrich, R, et al., “Optimum Excitation of Optical Surface Waves”, Journal of the Optical Society of America, vol. 61, No. 11, (Nov. 1971), 1467-1477. |
Ulrich, R, “Theory of the Prism-Film Coupler by Plane-Wave Analysis”, Journal of the Optical Society of America, vol. 60, No. 10, (Oct. 1970), 1337-1350. |
Valera, J. D., et al., “Bistability and switching in Thin-film waveguides with liquid-crystal cladding”, Applied Physics Letter, 48(9), (Mar. 3, 1986), 573-574. |
Whinnery, J. R., et al., “Liquid-Crystal Waveguides for Integrated Optics”, IEEE Journal of Quantum Electronics, vol. QE-13, No. 4, (Apr. 1977), 262-267. |
Number | Date | Country | |
---|---|---|---|
20170192264 A1 | Jul 2017 | US |
Number | Date | Country | |
---|---|---|---|
61207851 | Feb 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12660028 | Feb 2010 | US |
Child | 14832574 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14832574 | Aug 2015 | US |
Child | 15360752 | US |