This invention relates to electro-optic displays, and processes for the production of such displays. Some of the processes of the invention relate particularly to the production of electrophoretic displays.
The term “electro-optic”, as applied to a material or a display, is used herein in its conventional meaning in the imaging art to refer to a material having first and second display states differing in at least one optical property, the material being changed from its first to its second display state by application of an electric field to the material. Although the optical property is typically color perceptible to the human eye, it may be another optical property, such as optical transmission, reflectance, luminescence or, in the case of displays intended for machine reading, pseudo-color in the sense of a change in reflectance of electromagnetic wavelengths outside the visible range.
The terms “bistable” and “bistability” are used herein in their conventional meaning in the art to refer to displays comprising display elements having first and second display states differing in at least one optical property, and such that after any given element has been driven, by means of an addressing pulse of finite duration, to assume either its first or second display state, after the addressing pulse has terminated, that state will persist for at least several times, for example at least four times, the minimum duration of the addressing pulse required to change the state of the display element. It is shown in U.S. Pat. No. 7,170,670 that some particle-based electrophoretic displays capable of gray scale are stable not only in their extreme black and white states but also in their intermediate gray states, and the same is true of some other types of electro-optic displays. This type of display is properly called “multi-stable” rather than bistable, although for convenience the term “bistable” may be used herein to cover both bistable and multi-stable displays.
The term “pixel” is used herein in its conventional meaning in the electro-optic display art to mean the smallest area of a display which can display the full range of colors capable of being shown by the display. In a color display, each pixel is itself composed of a plurality of sub-pixels having differing colors, a sub-pixel being the smallest unit of a display which can be independently controlled. Typically, in a color display, each pixel comprises three or four sub-pixels of differing colors, for example, red, green and blue, or red, green, blue and white. (For purposes of the present invention, white is regarded as a color.)
Several types of electro-optic displays are known. One type of electro-optic display is a rotating bichromal member type as described, for example, in U.S. Pat. Nos. 5,808,783; 5,777,782; 5,760,761; 6,054,071 6,055,091; 6,097,531; 6,128,124; 6,137,467; and 6,147,791 (although this type of display is often referred to as a “rotating bichromal ball” display, the term “rotating bichromal member” is preferred as more accurate since in some of the patents mentioned above the rotating members are not spherical). Such a display uses a large number of small bodies (typically spherical or cylindrical) which have two or more sections with differing optical characteristics, and an internal dipole. These bodies are suspended within liquid-filled vacuoles within a matrix, the vacuoles being filled with liquid so that the bodies are free to rotate. The appearance of the display is changed by applying an electric field thereto, thus rotating the bodies to various positions and varying which of the sections of the bodies is seen through a viewing surface. This type of electro-optic medium is typically bistable.
Another type of electro-optic display uses an electrochromic medium, for example an electrochromic medium in the form of a nanochromic film comprising an electrode formed at least in part from a semi-conducting metal oxide and a plurality of dye molecules capable of reversible color change attached to the electrode; see, for example O'Regan, B., et al., Nature 1991, 353, 737; and Wood, D., Information Display, 18(3), 24 (March 2002). See also Bach, U., et al., Adv. Mater., 2002, 14(11), 845. Nanochromic films of this type are also described, for example, in U.S. Pat. Nos. 6,301,038; 6,870,657; and 6,950,220. This type of medium is also typically bistable.
Another type of electro-optic display is an electro-wetting display developed by Philips and described in Hayes, R. A., et al., “Video-Speed Electronic Paper Based on Electrowetting”, Nature, 425, 383-385 (2003). It is shown in U.S. Pat. No. 7,420,549 that such electro-wetting displays can be made bistable.
Particle-based electrophoretic display, in which a plurality of charged particles move through a fluid under the influence of an electric field, have been the subject of intense research and development for a number of years. Electrophoretic displays can have attributes of good brightness and contrast, wide viewing angles, state bistability, and low power consumption when compared with liquid crystal displays. Nevertheless, problems with the long-term image quality of these displays have prevented their widespread usage. For example, particles that make up electrophoretic displays tend to settle, resulting in inadequate service-life for these displays.
As noted above, electrophoretic media require the presence of a fluid. In most prior art electrophoretic media, this fluid is a liquid, but electrophoretic media can be produced using gaseous fluids; see, for example, Kitamura, T., et al., “Electrical toner movement for electronic paper-like display”, IDW Japan, 2001, Paper HCS1-1, and Yamaguchi, Y., et al., “Toner display using insulative particles charged triboelectrically”, IDW Japan, 2001, Paper AMD4-4). See also U.S. Patent Publication No. 2005/0001810; European Patent Applications 1,462,847; 1,482,354; 1,484,635; 1,500,971; 1,501,194; 1,536,271; 1,542,067; 1,577,702; 1,577,703; and 1,598,694; and International Applications WO 2004/090626; WO 2004/079442; and WO 2004/001498. Such gas-based electrophoretic media appear to be susceptible to the same types of problems due to particle settling as liquid-based electrophoretic media, when the media are used in an orientation which permits such settling, for example in a sign where the medium is disposed in a vertical plane. Indeed, particle settling appears to be a more serious problem in gas-based electrophoretic media than in liquid-based ones, since the lower viscosity of gaseous suspending fluids as compared with liquid ones allows more rapid settling of the electrophoretic particles.
Numerous patents and applications assigned to or in the names of the Massachusetts Institute of Technology (MIT) and E Ink Corporation have recently been published describing encapsulated electrophoretic media. Such encapsulated media comprise numerous small capsules, each of which itself comprises an internal phase containing electrophoretically-mobile particles suspended in a liquid suspending medium, and a capsule wall surrounding the internal phase. Typically, the capsules are themselves held within a polymeric binder to form a coherent layer positioned between two electrodes. Encapsulated media of this type are described, for example, in U.S. Pat. Nos. 5,930,026; 5,961,804; 6,017,584; 6,067,185; 6,118,426; 6,120,588; 6,120,839; 6,124,851; 6,130,773; 6,130,774; 6,172,798; 6,177,921; 6,232,950; 6,249,271; 6,252,564; 6,262,706; 6,262,833; 6,300,932; 6,312,304; 6,312,971; 6,323,989; 6,327,072; 6,376,828; 6,377,387; 6,392,785; 6,392,786; 6,413,790; 6,422,687; 6,445,374; 6,445,489; 6,459,418; 6,473,072; 6,480,182; 6,498,114; 6,504,524; 6,506,438; 6,512,354; 6,515,649; 6,518,949; 6,521,489; 6,531,997; 6,535,197; 6,538,801; 6,545,291; 6,580,545; 6,639,578; 6,652,075; 6,657,772; 6,664,944; 6,680,725; 6,683,333; 6,693,620; 6,704,133; 6,710,540; 6,721,083; 6,724,519; 6,727,881; 6,738,050; 6,750,473; 6,753,999; 6,816,147; 6,819,471; 6,822,782; 6,825,068; 6,825,829; 6,825,970; 6,831,769; 6,839,158; 6,842,167; 6,842,279; 6,842,657; 6,864,875; 6,865,010; 6,866,760; 6,870,661; 6,900,851; 6,922,276; 6,950,220; 6,958,848; 6,967,640; 6,980,196; 6,982,178; 6,987,603; 6,995,550; 7,002,728; 7,012,600; 7,012,735; 7,023,420; 7,030,412; 7,030,854; 7,034,783; 7,038,655; 7,061,663; 7,071,913; 7,075,502; 7,075,703; 7,079,305; 7,106,296; 7,109,968; 7,110,163; 7,110,164; 7,116,318; 7,116,466; 7,119,759; 7,119,772; 7,148,128; 7,167,155; 7,170,670; 7,173,752; 7,176,880; 7,180,649; 7,190,008; 7,193,625; 7,202,847; 7,202,991; 7,206,119; 7,223,672; 7,230,750; 7,230,751; 7,236,290; 7,236,292; 7,242,513; 7,247,379; 7,256,766; 7,259,744; 7,280,094; 7,304,634; 7,304,787; 7,312,784; 7,312,794; 7,312,916; 7,327,511; 7,339,715; 7,349,148; 7,352,353; 7,365,394; and 7,365,733; and U.S. Patent Applications Publication Nos. 2002/0060321; 2002/0090980; 2003/0102858; 2003/0151702; 2003/0222315; 2004/0105036; 2004/0112750; 2004/0119681; 2004/0155857; 2004/0180476; 2004/0190114; 2004/0257635; 2004/0263947; 2005/0000813; 2005/0007336; 2005/0012980; 2005/0018273; 2005/0024353; 2005/0062714; 2005/0099672; 2005/0122284; 2005/0122306; 2005/0122563; 2005/0134554; 2005/0151709; 2005/0152018; 2005/0156340; 2005/0179642; 2005/0190137; 2005/0212747; 2005/0253777; 2005/0280626; 2006/0007527; 2006/0038772; 2006/0139308; 2006/0139310; 2006/0139311; 2006/0176267; 2006/0181492; 2006/0181504; 2006/0194619; 2006/0197737; 2006/0197738; 2006/0202949; 2006/0223282; 2006/0232531; 2006/0245038; 2006/0262060; 2006/0279527; 2006/0291034; 2007/0035532; 2007/0035808; 2007/0052757; 2007/0057908; 2007/0069247; 2007/0085818; 2007/0091417; 2007/0091418; 2007/0109219; 2007/0128352; 2007/0146310; 2007/0152956; 2007/0153361; 2007/0200795; 2007/0200874; 2007/0201124; 2007/0207560; 2007/0211002; 2007/0211331; 2007/0223079; 2007/0247697; 2007/0285385; 2007/0286975; 2007/0286975; 2008/0013155; 2008/0013156; 2008/0023332; 2008/0024429; 2008/0024482; 2008/0030832; 2008/0043318; 2008/0048969; 2008/0048970; 2008/0054879; 2008/0057252; and 2008/0074730; and International Applications Publication Nos. WO 00/38000; WO 00/36560; WO 00/67110; and WO 01/07961; and European Patents Nos. 1,099,207 B1; and 1,145,072 B1.
Although electrophoretic media are often opaque (since, for example, in many electrophoretic media, the particles substantially block transmission of visible light through the display) and operate in a reflective mode, many electrophoretic displays can be made to operate in a so-called “shutter mode” in which one display state is substantially opaque and one is light-transmissive. See, for example, the aforementioned U.S. Pat. Nos. 6,130,774 and 6,172,798, and U.S. Pat. Nos. 5,872,552; 6,144,361; 6,271,823; 6,225,971; and 6,184,856. Dielectrophoretic displays, which are similar to electrophoretic displays but rely upon variations in electric field strength, can operate in a similar mode; see U.S. Pat. No. 4,418,346. Other types of electro-optic displays may also be capable of operating in shutter mode. Electro-optic media operating in shutter mode may be useful in multi-layer structures for full color displays; in such structures, at least one layer adjacent the viewing surface of the display operates in shutter mode to expose or conceal a second layer more distant from the viewing surface.
An encapsulated electrophoretic display typically does not suffer from the clustering and settling failure mode of traditional electrophoretic devices and provides further advantages, such as the ability to print or coat the display on a wide variety of flexible and rigid substrates. (Use of the word “printing” is intended to include all forms of printing and coating, including, but without limitation: pre-metered coatings such as patch die coating, slot or extrusion coating, slide or cascade coating, curtain coating; roll coating such as knife over roll coating, forward and reverse roll coating; gravure coating; dip coating; spray coating; meniscus coating; spin coating; brush coating; air knife coating; silk screen printing processes; electrostatic printing processes; thermal printing processes; ink jet printing processes; electrophoretic deposition (see U.S. Pat. No. 7,339,715); and other similar techniques.) Thus, the resulting display can be flexible. Further, because the display medium can be printed (using a variety of methods), the display itself can be made inexpensively.
Other types of electro-optic media may also be used in the displays of the present invention.
One major reason why encapsulated electrophoretic displays can be produced inexpensively by printing processes is that the electrophoretic medium itself has substantial mechanical strength and cohesion; typically the individual capsules are bound together by a polymeric binder to increase the cohesion of the layer. Thus, not only can the display medium itself be printed, but as described in U.S. Pat. No. 6,177,921, an electrode may be formed by printing a conductive material directly on to the electrophoretic medium; alternatively, an electrode pre-formed on a substrate can be laminated on to the electrophoretic medium, which is able to withstand the heat and pressure required for such lamination without damage. In such printed or laminated structures, the mechanical strength and cohesion of the electrophoretic medium maintain the requisite spacing between the electrodes disposed on either side of the medium without any need for mechanical spacers or similar devices to control this spacing. Accordingly, if the electrodes (and any substrates attached thereto) are flexible, the encapsulated electrophoretic display can be curved or rolled without affecting the display qualities of the device; see, for example, Drzaic et al., A Printed and Rollable Bistable Electronic Display SID (Society for Information Display) 98 Digest, page 1131 (1998), which illustrates a flexible encapsulated electrophoretic display being rolled around a pencil without damage.
Furthermore, because of the mechanical strength and cohesion of the electrophoretic medium, such a medium can in principle be applied to any substrate on which an electrode can be provided; for example, the substrate could have an arbitrary three-dimensional shape, as opposed to an essentially laminar sheet which is curved in one dimension. Techniques such as sputtering may be used to apply electrodes to arbitrary three-dimensional shapes, but prior art techniques for applying an electrophoretic medium to such arbitrary shapes leave a great deal to be desired, especially given the need for careful control of the deposition of such a medium to produce optimum optical performance.
Display performance (e.g., its optical performance) and visual appeal (i.e., minimizing visual defects) depends critically on obtaining a high quality coating, that is coatings are preferably of uniform thickness (often a monolayer of capsules is desirable), and contain a high areal density of capsules with a minimum of defects. For example, regions where capsules are not in contact with the electrode or where the surface density of capsules varies laterally with respect to the substrate, or where the coating thickness varies, show up as a degraded dark or white states, non-uniformity in the optical state or graininess, or as non-uniformities during switching respectively.
Some of the printing/coating techniques described above can produce high quality printings/coatings of capsules on to planar or flexible substrates; during coating, flexible substrates are usually constrained so that at least one of the radii of curvature of the substrate is infinite, i.e., the substrate is held in a cylindrical form with the axis of the cylinder perpendicular to the direction of coating. In particular, certain of the aforementioned E Ink and MIT patents and applications describe the use of a metered slot coating technique to produce monolayer capsule coatings and lamination adhesive coatings suitable for use in commercial products.
However, as already mentioned these prior art techniques are not satisfactory for forming, on arbitrary three-dimensional shapes, electrophoretic medium coatings with a sufficiently uniform thickness to give optimum optical performance. While coating methods such as dip or spray coating can be applied to arbitrary three-dimensional shapes, it is difficult to or impossible to achieve uniform capsule monolayers over the substrate surface using these coating techniques.
Other problems encountered with slot coating techniques include:
Also, as is well known to those skilled in slot coating technology, slot coating imposes limitations upon the viscosity and other physical properties of the material being coated, and typically requires the addition of slot coating additives to control the rheology of the coated material to ensure that the coating does not flow and develop non-uniformities in thickness prior to drying. As discussed in many of the aforementioned E Ink and MIT patents and applications, typically the capsules are mixed with a polymeric binder prior to coating, this polymeric binder serving to form the capsules into a coherent layer after coating and drying. The capsule/binder mixture is then coated on to a polymeric film substrate bearing a conductive coating of indium tin oxide (ITO) or a conductive polymer and dried to form a coherent layer on the conductive-coating bearing surface of the substrate; the opposed surface of the substrate forms the viewing surface of the final display. Although the binder serves several useful functions, including ensuring adequate adhesion of the capsule film to the substrate on which it is coated, excessive amounts of binder can hinder capsule contact with the electrode which is normally present on the substrate, and may also hinder the desirable flattening of the faces of the capsules in contact with the conductive coating (see, for example, the aforementioned U.S. Pat. No. 6,067,185). Because the binder typically has a substantial effect on the viscosity and other physical properties of the capsule/binder mixture, at least in some cases it may be difficult to reduce the amount of binder used and still maintain these physical properties at values compatible with slot coating.
Also, some of the aforementioned E Ink and MIT patents and applications (see especially 2002/0113770) describe displays in which more than one type of capsule is used, the plurality of types of capsules being arranged in a predetermined pattern on a substrate. For example, a full color display could make use of three different types of capsules, say white/red, white/green and white/blue arranged in stripes of triads; such a display could achieve full color without requiring a color filter of the type used in full color liquid crystal displays. However, while conventional printing techniques might be used to prepare large displays of this type having resolutions of (say) less than 10 lines per inch (approximately 0.4 lines per mm), producing high resolution displays of this type with resolutions of about 100 lines per inch (approximately 4 lines per mm) with such conventional techniques is very difficult. Again, while spray or ink jet coating might be used to apply the patterned coatings of capsules, producing monolayer capsule coatings using these methods will be difficult or impossible.
Improved methods for achieving patterned deposition of encapsulated electrophoretic media would facilitate several applications of electrophoretic displays that are presently difficult or impossible to achieve. Also, improved patterned deposition of electrophoretic media could improve the properties of several kinds of displays presently made by other processes. For example, spot-color displays can be made by superposing a colored film on top of a monochrome (black and white) display. If the backplane driving the display is appropriately segmented and connected to appropriate electronics, the part of the monochrome display under the colored film can be driven separately from the rest of the display so as to produce an area of color in addition to monochrome information. The colored film must be registered with the backplane, and the displayed color can only be that of the film, plus black. Switching between two colors (red plus blue, for example) is not possible in this type of display. Patterned electrophoretic medium deposition would allow deposition of media of arbitrary colors and color combinations. Media deposition registered with backplane segments would obviate the registration step, and could be used to provide high resolution flexible color applications.
Full color displays require separate addressing of (typically) three or four differently colored sub-pixels. Most prior art full color electrophoretic (and other electro-optic) displays have used a registered color filter array superposed on a monochrome display driven by an active matrix backplane. An alternative way of achieving a full color electrophoretic display would be to use the same backplane with a patterned array of electrophoretic media containing appropriate sets of electrophoretic particles (most commonly, red plus black, green plus black, blue plus black, and optionally white plus black). Using multiple electrophoretic media in this way has several advantages in the construction of highly flexible full color displays, including avoiding difficulties in registration, especially registration when the display is flexed.
The present invention seeks to provide processes for the production of electrophoretic displays, and in particular for processes for depositing capsules on a substrate, which reduce or eliminate the problems of the prior art processes for depositing capsules described above. Some processes of the present invention can be used to produce full color displays. The present invention also provides apparatus for use in this process.
The present invention also provides improvements in the type of electrophoretic and other electro-optic displays which use a color filter array (“CFA”) registered with a monochrome display driven by an active (or possibly passive) matrix backplane (this type of display may hereinafter be termed a “CFA display”). Conventionally, a CFA display is manufactured by superimposing a CFA in (theoretically) perfect registration with a backplane, both the CFA and the backplane having the same resolution, i.e., the spacing between the sub-pixels of the CFA being the same as the spacing between the pixel electrodes of the backplane. There is commercial pressure to increase the resolution of color electro-optic displays in order to avoid the individual pixels being apparent to some customers; for example, some monochrome electronic book reader (E-book reader) displays have a resolution of 166 dpi (about 6.7 dots per mm). If the same backplane is used for an RGBW color display with the red, green, blue and white sub-pixels of each color pixel arranged in a 2×2 matrix, the resolution of the color display drops to 88 dpi (about 3.4 dots per mm), which is objectionable to many users who find the individual pixels readily visible.
It has been suggested that the resolution of the display be doubled to make the pixel less visible. However, if one simply doubles the resolution of both the CFA and the backplane, the length of sub-pixel edges (the lines between one sub-pixel and an adjacent sub-pixel of a different color) will also double. As discussed in more detail below, in practice the sub-pixel edges are subject to certain edge effects which compromise the color rendering of the display by causing desaturation and darkening of the primary colors. The magnitude of these edge effects is a function of the length of the sub-pixel edges, and doubling the length of the sub-pixel edges will also double the associated edge effects. Such edge effects can cause serious adverse effects upon the color rendering properties of the display. For example, in one commercial form of electrophoretic display, it has been estimated that changing the size of sub-pixels from 152 μm (167 dpi) to 76 μm (334 dpi) will result in a reduction of about 30 percent in the original color gamut of the display.
One aspect of the present invention relates to a color display in which high resolution can be achieved without excessive edge effects due to adjacent sub-pixels of differing colors. The problems with CFA's described above also apply to displays which use multiple electro-optic media having different colors to form the colored pixels (so-called “inherent color displays”), and the present invention can also be applied to such color displays.
The following description of the various aspects of the present invention will assume familiarity with the process described and claimed in the aforementioned U.S. Pat. No. 7,339,715 which, as already mentioned, is incorporated in its entirety herein by reference. Basically, this patent describes a process for forming a coating of an encapsulated electrophoretic medium on a conductive portion of a substrate, the process comprising: dispersing in a fluid a plurality of capsules each comprising a capsule wall, a fluid encapsulated within the capsule wall and a plurality of electrically charged particles disposed in the fluid and capable of moving therethrough on application of an electric field to the capsule; contacting the conductive portion of the substrate with the fluid; and applying a potential difference between the conductive portion of the substrate and a counter-electrode in electrical contact with the fluid, thereby causing capsules to be deposited upon the conductive portion of the substrate.
This patent also describes apparatus for forming a coating of an encapsulated electrophoretic medium on a substrate comprising a conductive layer. the apparatus comprising: a coating die having walls defining an aperture and means for supplying a fluid form of the encapsulated electrophoretic medium to the aperture; transport means for moving the substrate in one direction past the coating die; an electrode arranged adjacent the aperture in the coating die such that the substrate passes the electrode after having passed the coating die; and voltage supply means arranged to apply a voltage between the electrode and the conductive layer of the substrate.
In one aspect, this invention provides a process for forming a coating of an encapsulated electrophoretic medium on a substrate comprising a conductive layer, the process comprising:
contacting the substrate with a fluid form of the encapsulated electrophoretic medium; and
while the substrate is in contact with the fluid form, moving the substrate past an electrode while applying a voltage between the electrode and the conductive layer of the substrate, the voltage being varied with time such that the electrophoretic medium is deposited on a plurality of discrete areas of the substrate, these discrete areas being separated by areas in which electrophoretic medium is not deposited on the substrate.
In this process, after deposition of the electrophoretic medium on discrete areas of the substrate, the substrate may be washed to remove electrophoretic medium therefrom. The electrophoretic medium may also be cured (a term which is used herein to cover drying, cross-linking or any other method used to convert fluid versions of electrophoretic media to solid versions thereof) after washing. The electrode will typically have a width, measured perpendicular to the direction of movement of the substrate, at least twice as great as its length, measured parallel to the direction of movement of the substrate; the width to length ratio may be much greater than two. The substrate may be provided with markings, and the process may include detecting these markings and using the detection of the markings to control the variation of the voltage applied between the electrode and the conductive layer of the substrate. The markings may have the form of a plurality of spaced bars extending substantially perpendicular to the direction of movement of the substrate.
Certain variants of the aforementioned process are especially useful for forming color displays comprising multiple types of electrophoretic medium. For example, in one such variant of the present process, after deposition of the electrophoretic medium on discrete areas of the substrate, non-deposited electrophoretic medium is removed from the substrate, and the substrate is then contacted with a fluid form of a second encapsulated electrophoretic medium. While the substrate is in contact with the fluid form of the second encapsulated electrophoretic medium, the substrate is moved past an electrode while a voltage is applied between the electrode and the conductive layer of the substrate, this voltage being varied with time such that the second electrophoretic medium is deposited on a plurality of discrete areas of the substrate not occupied by the previously-deposited (“first”) electrophoretic medium. The plurality of discrete areas of the substrate on which the first electrophoretic medium is present may have the form of stripes extending perpendicular to the direction of movement of the substrate, and the second electrophoretic medium may be deposited as a series of stripes substantially parallel to but spaced from the stripes of the first electrophoretic medium. Alternatively, if the plurality of discrete areas of the substrate, on which the first electrophoretic medium is present, have the form of stripes extending perpendicular to the direction of movement of the substrate, the movement of the substrate during contact with the fluid form of the second electrophoretic medium may be substantially parallel to the stripes of the first-deposited electrophoretic medium, so that the second electrophoretic medium is deposited as a series of broken stripes running substantially perpendicular to the stripes of the first electrophoretic medium. In any event, after deposition of the second electrophoretic medium on the substrate, non-deposited second electrophoretic medium may be removed from the substrate, and the substrate contacted with a fluid form of a third encapsulated electrophoretic medium, thereby depositing the third electrophoretic medium on areas of the substrate not occupied by the first and second electrophoretic media. While the substrate is in contact with the fluid form of the third encapsulated electrophoretic medium, the substrate may be moved past an electrode while applying a voltage between the electrode and the conductive layer of the substrate, the voltage being varied with time such that the third electrophoretic medium is deposited on areas of the substrate not occupied by the first and second electrophoretic media. For example, the three electrophoretic media may be deposited as a series of cyclically repeating parallel stripes. Alternatively, in the previously-discussed variant, in which the plurality of discrete areas of the substrate on which the first electrophoretic medium is present have the form of stripes extending perpendicular to the direction of movement of the substrate, and the second electrophoretic medium is deposited as a series of broken stripes running substantially perpendicular to the stripes of the first electrophoretic medium, the third electrophoretic medium may be deposited on substantially all areas of the substrate not occupied by the first and second electrophoretic media.
In all variants of the present invention, the substrate may comprise a light-transmissive polymeric film and a light-transmissive conductive layer. After deposition of the encapsulated electrophoretic medium the substrate/electrophoretic medium sub-assembly thus produced may be laminated to a second sub-assembly comprising a lamination adhesive layer and a release sheet, with the lamination adhesive layer being laminated to the electrophoretic medium, thus forming a front plane laminate as described in the aforementioned U.S. Pat. No. 6,982,178.
The invention extends to an electrophoretic display produced a process of the present invention. Such displays of the present invention may be used in any application in which prior art electro-optic displays have been used. Thus, for example, the present displays may be used in electronic book readers, portable computers, tablet computers, cellular telephones, smart cards, signs, watches, shelf labels and flash drives.
Certain variants of the process described above can be used (as illustrated below) to form colored displays in which the size of the areas having the same color (whether these colored areas are defined by differing colored electro-optic media or by colored areas of a color filter array) differs from those of the sub-pixel electrodes. However, the colored displays of the present invention are not restricted to any particular process used for their production.
Accordingly, in another aspect this invention provides a color display having areas of at least three different colors, the areas of different colors forming continuous areas of a single color each covering a plurality of sub-pixel electrodes, the continuous areas of a single color and the sub-pixel electrodes being arranged such that the sub-pixels are rectangular and each sub-pixel of a given color has sub-pixels of the same given color disposed along at least two of its adjacent edges.
In one form of such a color display, the display has continuous areas of three different colors, the continuous areas of a first color having the form of a series of spaced parallel stripes and the continuous areas of the second and third colors having the form of alternating rectangles of the second and third colors disposed in the spaces between the spaced parallel stripes of the first color.
Another form of such a color display, has continuous areas of four different colors, with each area of a single color covering a N×n array of sub-pixel electrodes, where N and n are integers. In such a display, a single color pixel of the display is commonly a 2×2 array of sub-pixels, but 3×3 and 4×4 arrays, or even larger arrays. When the individual colored areas are arranged as stripes, it is also possible to use sub-pixel arrangements having differing numbers of sub-pixels in the two dimensions, such as 3×2 and 4×2 sub-pixel arrangements. A tetrachromatic color display of the present invention may be a red/green/blue/white (RGBW) or red/green/blue/yellow (RGBY) display but other color combinations are possible; for example, the sub-pixels may use the orange/lime/purple/white (OLPW) color combination described in US 2009/0237776. In such a tetrachromatic color display in which each single color area covers a 2×2 array of sub-pixel electrodes, the four areas defined by the sub-pixel electrodes may belong to four different pixels.
The color display of the present invention enable edge effects to be reduced, since each sub-pixel of a given color has two neighboring sub-pixels of the same color (for purposes of this application, two sub-pixels are regarding as neighboring when they share a common edge; sub-pixels which share only a corner are not regarded as neighboring), and (for reasons explained below) there are no edge effects between neighboring sub-pixels having the same color.
As already mentioned, U.S. Pat. No. 7,339,715 describes a process for forming a coating of an encapsulated electrophoretic medium on a substrate. In this process, there are dispersed in a fluid a plurality of capsules, each of which comprises a capsule wall, a fluid encapsulated within the capsule wall and a plurality of electrically charged particles disposed in the fluid and capable of moving therethrough on application of an electric field to the capsule. A conductive portion of a substrate is contacted with the fluid, and a potential difference is applied between this conductive portion of the substrate and a counter-electrode in electrical contact with the fluid. The application of this potential difference causes capsules to be deposited upon the conductive portion of the substrate. Thus, in this process the capsules are electrophoretically deposited on a predetermined portion of the substrate, and the process may hereinafter for convenience be referred to as the “electrophoretic capsule deposition process” or “ECD process”.
In one variant of this process, the substrate bears one or more electrodes, and a voltage is applied to these electrodes, simultaneously or sequentially, to deposit capsules on the electrodes. Sequential application of voltage to differing groups of electrodes permits the capsule-containing fluid to be changed between the application of voltage to the differing groups, and thus allows differing types of capsules to be deposited upon the differing groups of electrodes. Thus, the process may advantageously be used to prepare the type of display previously discussed in which different types of capsules are patterned on to differing areas of a substrate, for example to produce a full color display. A typical full color display of this type will be an active matrix display having a common electrode (extending over the whole display, or at least a large number of pixels thereof) on one side of the electrophoretic medium and a matrix of pixel electrodes, one for each pixel of the display, on the opposed side of the electrophoretic medium. In such an active matrix display, there will of course be separate sets of pixel electrodes for the red, green and blue (or other colors used) pixels. The process allows for easy patterning of the various types of capsules on to the pixel electrodes. For example, the matrix of pixel electrodes may first be contacted with a dispersion of “red” capsules (i.e., the capsules required to be patterned on to the red pixels of the display) and the potential difference applied only between the pixel electrodes for the red pixels of the display and the counter-electrode, so that the red capsules are deposited only upon the “red” pixel electrodes. After drying, and optionally curing, of the red capsule layer thus deposited, the process is then repeated for the green and blue capsules, thus ensuring that all three types of capsules are deposited upon the correct pixel electrodes. Obviously, an exactly similar process may be used to produce a yellow/cyan/magenta display.
As described in the aforementioned US 2008/0023332, the process of U.S. Pat. No. 7,339,715 can be used to deposit multiple types of capsules on a single substrate, the necessary alignment of the various coated areas being achieved by providing an appropriate template for the coating stripes; this template may be printed (or engraved) directly on the substrate or printed on a separate film which is then secured to the substrate. The template is then used to control the voltage applied between the electrode and the substrate. Since the template is permanently attached to the substrate, and is not removed therefrom during washing, drying (or other curing), remounting of the substrate on the coating apparatus, synchronizing the voltage applied between the electrode and the substrate with the template automatically aligns the various stripes of capsules deposited. The template will primarily be described in the form of an optically-encoded stripe (a bar-code), but can be provided in a number of other forms, including a mechanical or electro-mechanical device (say a sliding contact, one part attached to the substrate, another to the electrode or the coating head used to deposit the capsules), or a magnetically encoded signal detected by a magnetic read head, or any other similar technique.
The template can be a simple series of printed black and white bars, two possible forms of which are illustrated in
Various other methods of bar coding can be used to control deposition of three or more types of capsules. For example,
More elaborate patterning of capsules can be effected by using bar-code EDAC with an electrode that is electrically segmented i.e., which is divided into a series of segments insulated from each other so that the voltage between each segment and the substrate can be controlled independently. By coupling information on the bar-code template (giving information about the position of the substrate in a direction parallel to the direction of translation) with electronic control of the various segments of the electrode (giving information about the position in a direction perpendicular to the direction of substrate translation), it is possible to deposit arbitrary patterns of capsules. Full-color displays for attachment to an active matrix backplane could be made in this way, or by simple stripe coating (though stripe coating would require twice as high a resolution), but arbitrary, reprogrammable spot color coating of multiple colors of capsules can be achieved only by such simultaneous control of deposition in two dimensions.
In addition to the bar-coating electrodeposition techniques described above, there are several other ways of using electrodeposition to achieve patterned deposition of capsules for use in electrophoretic displays. For example, a patterned backplane may be used with different segments that can be individually addressed during the electrodeposition step; a segmented printed circuit board (PCB) can be employed in this way. A set of segments is connected together and a voltage may be applied between these segments and a counter-electrode through a slurry of binder and capsules of a first type. The counter-electrode can be in the form of a coating head that moves relative to the PCB, or a stationary electrode that covers the entire surface of the PCB at one time. After an appropriate time and applied voltage, the counter-electrode is removed, the non-deposited capsules are removed by washing, and the coated PCB dried. Only the segments to which voltage was applied will be coated with deposited capsules and binder. It has been found to be advantageous to interconnect all of the segments that are not being coated in a given step so that they are at the same potential as the counter electrode, since this precaution will diminish unwanted deposition of stray capsules on these segments. A different set of segments can be coated with capsules of a second type by repeating the electrodeposition, washing, and drying steps. This procedure can be repeated an arbitrary number of times limited only by the number of different segments on the PCB.
This approach to patterned deposition has the advantage that no alignment steps are necessary during the preparation of a display. The capsules are automatically deposited only on the segments that will power them during display operation. In principle, this process can be extended to very high-resolution displays, such as those used in an active matrix display. In practice, it is necessary that the display electronics be designed to allow the passage of the required currents and the application of the required voltage across the slurry during the electrodeposition step. Active matrix backplanes and backplane electronics designed simply to drive electrophoretic displays commonly cannot supply the required currents or voltages, so either a separate deposition circuit must be designed into the backplane or the electronics designed differently so as to allow the electrodeposition step(s).
It is also possible to use a patterned counter-electrode in a similar way. For example an array of dots of capsules can be prepared by using a counter-electrode in the form of an array of one or more rows of needles. The needles are supported a short distance above an unpatterned conductive substrate in contact with a capsule slurry, or other fluid form of an electrophoretic medium, and a short pulse of current applied between the needles and the substrate. Washing and drying will provide a substrate with an array of capsule dots in register with the needles of the counter-electrode. The counter-electrode can be of essentially any shape, so that any pattern of capsules can be deposited on the conductive substrate. It is desirable that the substrate have the highest possible conductivity, or that the counter-electrode be designed so that portions of it can be powered sequentially, since these techniques will improve the uniformity of capsule deposition. Alternatively, strips of substrate may be coated sequentially; for example, the substrate may be attached to a cylindrical mandrel, which is rolled across the powered counter-electrode during capsule deposition to improve coating uniformity.
Another variant of the process of the present invention permits deposition of up to three different types of capsules without the complication of providing a bar code on the substrate to control the relative positions of the different types of capsules; this variant allows for deposition of three different types of capsules that involves only a single, very simple alignment, namely a rotation of the substrate by 90° (or some other similar angle) between successive coating operations.
As noted above, spaced stripes of capsules separated by stripes free from capsules can be produced by modulating the voltage applied between an electrode and a conductive substrate as the substrate is translated past the electrode. It has been found that stripes with widths of less than or equal to about 1/16th of an inch (about 1.5 mm), separated by gaps of a similar dimension, can be deposited using a rectified square wave potential applied to the electrode as it is translated relative to the substrate, using a typical prior art capsule slurry and an electrode/substrate coating gap of about 3 mils (about 76 μm). The width of the stripes can be controlled by a number of experimental parameters, including the width of the conductive part of the electrode, the potential between electrode and substrate, the duty cycle of the square wave, its frequency, and the speed of translation. Varying some of these parameters has the expected effects. If the frequency of the square wave is increased, or the translation speed reduced, the stripes become narrower and closer together. As the duty cycle changes to positive (with respect to the substrate) pulses of shorter duration, the stripes become narrower, and the gaps between them wider. The dimensions of the electrode, especially the width of its tip portion in the direction of translation, can influence the width of the stripes, so that for narrow stripes the thinnest possible tip width is desirable. The composition of the coating medium is probably also important in this respect.
It has also been found that areas of the substrate on which capsules have already been deposited (especially if the capsules are washed and dried), are very resistant to electrodeposition of a second layer of capsules. For example, once one set of stripes has been produced by the voltage modulation process described above, a second set of stripes of a different color or type from the first can be deposited by electrodeposition without gating the voltage in any way. Thus, uniform stripes of two different capsule types can readily be produced.
It has been found that, if the voltage modulation process described above is repeated with a second type of capsules, but the substrate is rotated by 90° (or a similar angle) between the two coating operations, electrodeposition of the second type of capsules occurs in the form of “broken stripes”, i.e., the second type of capsules are not deposited as continuous stripes running at right angles to the stripes of the first type of capsules, but rather as discrete patches between the stripes of the first capsules; the second type of capsules do not deposit in the areas where the stripes of the first capsules are already present. The length (parallel to the long dimension of the first stripes) and frequency of the patches of the second type of capsules are determined by the same consideration as the width of the first stripes (voltage, translation speed, gating frequency, duty cycle, etc.), while the width of the patches (perpendicular to the long dimension of the stripes of the first capsules) is equal to the gaps between the stripes.
After normal washing and drying following the electrodeposition of the second type of capsules, the substrate is left with bare (capsule free) patches having a width equal to that of the gaps between the first stripes and a length equal to the spacing between the patches of the second type of capsules. These bare patches can then be coated with a third type (or color) of capsules by electrodeposition without voltage modulation, thus producing a final substrate being an ordered arrangement of three different types of capsules without requiring the presence of a template on the substrate to control the relative alignment of the three different types of capsules.
The electrophoretic medium layer of the display shown in
The extreme color states of the electrophoretic media used in the experimental display were of course unusual, but similar processes can be carried out using (for example), conventional red/black, green/black, and blue/black (or the corresponding/white) media.
As noted above, a commercial display requires a backplane that allows each sub-pixel to be switched independently, and thus the arrangement of pixel electrodes in the backplane (whether that backplane be of the direct drive type, in which each pixel electrode has a separate conductor by means of which its voltage can be controlled, or of the active matrix type) must conform to the arrangement of color sub-pixels produced by a particular patterning technique. In color electrophoretic media of the type shown in
The color pixel shown in
Finally, the color pixel shown in
However, the resolution of a display formed from the color pixel shown in
As may readily be seen from
It will be seen from
It should be noted that the pixel electrode immediately below the pixel electrode 712, 714, 716 has its sub-pixel electrodes arranged in the same manner as the sub-pixel electrodes 712, 714 and 716, whereas the pixel electrodes immediately to the left and right of the pixel electrode 712, 714, 716 have their sub-pixel electrodes laterally reversed relative to the sub-pixel electrodes 712, 714 and 716.
Thus, in the display shown in
A preferred display of this type is illustrated in
(It might at first glance appear that a ray, such as ray 818 in
Similar edge effects are produced by rays such as ray 820 in
It will readily be apparent from the foregoing explanation of the origin of edge effects that the color distortion caused by the edge effects only occurs at edges between sub-pixels of different colors. For example, if both the center and right-hand sub-pixels shown in
In the display shown in
This aspect of the present invention is not restricted to color displays using color filter arrays, but is also applicable to certain type of inherent color display. For example U.S. Pat. No. 6,933,098 describes an inherent microcell electrophoretic display which uses a single type of white electrophoretic particle suspending in the differently dyed liquids, the liquid being contained in separate microcells. Switching of this display is effected by moving the electrophoretic particles between a position adjacent a viewing surface (which causes the microcell to appear white) and a position remote from the viewing surface (which causes incident light to pass through the colored fluid, be reflected from the white electrophoretic particles and pass back through the fluid, so that the microcell takes on the color of the fluid). Thus each microcell, and hence each sub-pixel containing one or more microcells, is capable of displaying white and one other color. Other variations of inherent color displays use sub-pixels capable of displaying one selected color plus black. It should readily be apparent that both these type of inherent color display can suffer from edge effects produced in a manner very similar to those explained above with reference to
It will be apparent to those skilled in the technology of electro-optic displays that modification of color electro-optic displays in accordance with the present invention will require changes in the methods used to render images from outside sources (such as digital photographs) on the display. The presently preferred method is to process the image at the full resolution of the TFT and the corresponding color information is calculated from a neighborhood and reduced to the underlying CFA color only at the final step of the process.
Numerous changes and modifications can be made in the preferred embodiments of the present invention already described without departing from the spirit and skill of the invention. Accordingly, the foregoing description is to be construed in an illustrative and not in a limitative sense.
This application is a continuation-in-part of application Ser. No. 11/833,578, filed Aug. 3, 2007 (Publication No. 2008/0023332, now U.S. Pat. No. 7,910,175, issued Mar. 22, 2011). This application is also related to application Ser. No. 09/349,806, filed Jul. 8, 1999 (Publication No. 2002/0113770), now abandoned, and to application Ser. No. 10/817,464, filed Apr. 2, 2004 (Publication No. 2004/0190114, now U.S. Pat. No. 7,667,684, issued Feb. 23, 2010), which is a continuation of the aforementioned application Ser. No. 09/349,806. This application is also related to U.S. Pat. No. 7,339,715. The entire contents of the aforementioned applications, and of all other U.S. patents and published and copending applications mentioned below, are herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4418346 | Batchelder | Nov 1983 | A |
5760761 | Sheridon | Jun 1998 | A |
5777782 | Sheridon | Jul 1998 | A |
5808783 | Crowley | Sep 1998 | A |
5872552 | Gordon, II et al. | Feb 1999 | A |
5930026 | Jacobson et al. | Jul 1999 | A |
5961804 | Jacobson et al. | Oct 1999 | A |
6017584 | Albert et al. | Jan 2000 | A |
6054071 | Mikkelsen, Jr. | Apr 2000 | A |
6055091 | Sheridon et al. | Apr 2000 | A |
6067185 | Albert et al. | May 2000 | A |
6097531 | Sheridon | Aug 2000 | A |
6118426 | Albert et al. | Sep 2000 | A |
6120588 | Jacobson | Sep 2000 | A |
6120839 | Comiskey et al. | Sep 2000 | A |
6124851 | Jacobson | Sep 2000 | A |
6128124 | Silverman | Oct 2000 | A |
6130773 | Jacobson et al. | Oct 2000 | A |
6130774 | Albert et al. | Oct 2000 | A |
6137467 | Sheridon et al. | Oct 2000 | A |
6144361 | Gordon, II et al. | Nov 2000 | A |
6147791 | Sheridon | Nov 2000 | A |
6172798 | Albert et al. | Jan 2001 | B1 |
6177921 | Comiskey et al. | Jan 2001 | B1 |
6184856 | Gordon, II et al. | Feb 2001 | B1 |
6225971 | Gordon, II et al. | May 2001 | B1 |
6232950 | Albert et al. | May 2001 | B1 |
6249271 | Albert et al. | Jun 2001 | B1 |
6252564 | Albert et al. | Jun 2001 | B1 |
6262706 | Albert et al. | Jul 2001 | B1 |
6262833 | Loxley et al. | Jul 2001 | B1 |
6271823 | Gordon, II et al. | Aug 2001 | B1 |
6300932 | Albert | Oct 2001 | B1 |
6301038 | Fitzmaurice et al. | Oct 2001 | B1 |
6312304 | Duthaler et al. | Nov 2001 | B1 |
6312971 | Amundson et al. | Nov 2001 | B1 |
6323989 | Jacobson et al. | Nov 2001 | B1 |
6327072 | Comiskey et al. | Dec 2001 | B1 |
6376828 | Comiskey | Apr 2002 | B1 |
6377387 | Duthaler et al. | Apr 2002 | B1 |
6392785 | Albert et al. | May 2002 | B1 |
6392786 | Albert | May 2002 | B1 |
6413790 | Duthaler et al. | Jul 2002 | B1 |
6422687 | Jacobson | Jul 2002 | B1 |
6445374 | Albert et al. | Sep 2002 | B2 |
6445489 | Jacobson et al. | Sep 2002 | B1 |
6459418 | Comiskey et al. | Oct 2002 | B1 |
6473072 | Comiskey et al. | Oct 2002 | B1 |
6480182 | Turner et al. | Nov 2002 | B2 |
6498114 | Amundson et al. | Dec 2002 | B1 |
6504524 | Gates et al. | Jan 2003 | B1 |
6506438 | Duthaler et al. | Jan 2003 | B2 |
6512354 | Jacobson et al. | Jan 2003 | B2 |
6515649 | Albert et al. | Feb 2003 | B1 |
6518949 | Drzaic | Feb 2003 | B2 |
6521489 | Duthaler et al. | Feb 2003 | B2 |
6531997 | Gates et al. | Mar 2003 | B1 |
6535197 | Comiskey et al. | Mar 2003 | B1 |
6538801 | Jacobson et al. | Mar 2003 | B2 |
6545291 | Amundson et al. | Apr 2003 | B1 |
6580545 | Morrison et al. | Jun 2003 | B2 |
6639578 | Comiskey et al. | Oct 2003 | B1 |
6652075 | Jacobson | Nov 2003 | B2 |
6657772 | Loxley | Dec 2003 | B2 |
6664944 | Albert et al. | Dec 2003 | B1 |
6680725 | Jacobson | Jan 2004 | B1 |
6683333 | Kazlas et al. | Jan 2004 | B2 |
6693620 | Herb et al. | Feb 2004 | B1 |
6704133 | Gates et al. | Mar 2004 | B2 |
6710540 | Albert et al. | Mar 2004 | B1 |
6721083 | Jacobson et al. | Apr 2004 | B2 |
6724519 | Comiskey et al. | Apr 2004 | B1 |
6727881 | Albert et al. | Apr 2004 | B1 |
6738050 | Comiskey et al. | May 2004 | B2 |
6750473 | Amundson et al. | Jun 2004 | B2 |
6753999 | Zehner et al. | Jun 2004 | B2 |
6816147 | Albert | Nov 2004 | B2 |
6819471 | Amundson et al. | Nov 2004 | B2 |
6822782 | Honeyman et al. | Nov 2004 | B2 |
6825068 | Denis et al. | Nov 2004 | B2 |
6825829 | Albert et al. | Nov 2004 | B1 |
6825970 | Goenaga et al. | Nov 2004 | B2 |
6831769 | Holman et al. | Dec 2004 | B2 |
6839158 | Albert et al. | Jan 2005 | B2 |
6842167 | Albert et al. | Jan 2005 | B2 |
6842279 | Amundson | Jan 2005 | B2 |
6842657 | Drzaic et al. | Jan 2005 | B1 |
6864875 | Drzaic et al. | Mar 2005 | B2 |
6865010 | Duthaler et al. | Mar 2005 | B2 |
6866760 | Paolini, Jr. et al. | Mar 2005 | B2 |
6870657 | Fitzmaurice et al. | Mar 2005 | B1 |
6870661 | Pullen et al. | Mar 2005 | B2 |
6900851 | Morrison et al. | May 2005 | B2 |
6922276 | Zhang et al. | Jul 2005 | B2 |
6933098 | Chan-Park et al. | Aug 2005 | B2 |
6950220 | Abramson et al. | Sep 2005 | B2 |
6958848 | Cao et al. | Oct 2005 | B2 |
6967640 | Albert et al. | Nov 2005 | B2 |
6980196 | Turner et al. | Dec 2005 | B1 |
6982178 | LeCain et al. | Jan 2006 | B2 |
6987603 | Paolini, Jr. et al. | Jan 2006 | B2 |
6995550 | Jacobson et al. | Feb 2006 | B2 |
7002728 | Pullen et al. | Feb 2006 | B2 |
7012600 | Zehner et al. | Mar 2006 | B2 |
7012735 | Honeyman et al. | Mar 2006 | B2 |
7023420 | Comiskey et al. | Apr 2006 | B2 |
7030412 | Drzaic et al. | Apr 2006 | B1 |
7030854 | Baucom et al. | Apr 2006 | B2 |
7034783 | Gates et al. | Apr 2006 | B2 |
7038655 | Herb et al. | May 2006 | B2 |
7061663 | Cao et al. | Jun 2006 | B2 |
7071913 | Albert et al. | Jul 2006 | B2 |
7075502 | Drzaic et al. | Jul 2006 | B1 |
7075703 | O'Neil et al. | Jul 2006 | B2 |
7079305 | Paolini, Jr. et al. | Jul 2006 | B2 |
7106296 | Jacobson | Sep 2006 | B1 |
7109968 | Albert et al. | Sep 2006 | B2 |
7110163 | Webber et al. | Sep 2006 | B2 |
7110164 | Paolini, Jr. et al. | Sep 2006 | B2 |
7116318 | Amundson et al. | Oct 2006 | B2 |
7116466 | Whitesides et al. | Oct 2006 | B2 |
7119759 | Zehner et al. | Oct 2006 | B2 |
7119772 | Amundson et al. | Oct 2006 | B2 |
7148128 | Jacobson | Dec 2006 | B2 |
7167155 | Albert et al. | Jan 2007 | B1 |
7170670 | Webber | Jan 2007 | B2 |
7173752 | Doshi et al. | Feb 2007 | B2 |
7176880 | Amundson et al. | Feb 2007 | B2 |
7180649 | Morrison et al. | Feb 2007 | B2 |
7190008 | Amundson et al. | Mar 2007 | B2 |
7193625 | Danner et al. | Mar 2007 | B2 |
7202847 | Gates | Apr 2007 | B2 |
7202991 | Zhang et al. | Apr 2007 | B2 |
7206119 | Honeyman et al. | Apr 2007 | B2 |
7223672 | Kazlas et al. | May 2007 | B2 |
7230750 | Whitesides et al. | Jun 2007 | B2 |
7230751 | Whitesides et al. | Jun 2007 | B2 |
7236290 | Zhang et al. | Jun 2007 | B1 |
7236291 | Kaga et al. | Jun 2007 | B2 |
7236292 | LeCain et al. | Jun 2007 | B2 |
7242513 | Albert et al. | Jul 2007 | B2 |
7247379 | Pullen et al. | Jul 2007 | B2 |
7256766 | Albert et al. | Aug 2007 | B2 |
7259744 | Arango et al. | Aug 2007 | B2 |
7280094 | Albert | Oct 2007 | B2 |
7304634 | Albert et al. | Dec 2007 | B2 |
7304787 | Whitesides et al. | Dec 2007 | B2 |
7312784 | Baucom et al. | Dec 2007 | B2 |
7312794 | Zehner et al. | Dec 2007 | B2 |
7312916 | Pullen et al. | Dec 2007 | B2 |
7321459 | Masuda et al. | Jan 2008 | B2 |
7327511 | Whitesides et al. | Feb 2008 | B2 |
7339715 | Webber et al. | Mar 2008 | B2 |
7349148 | Doshi et al. | Mar 2008 | B2 |
7352353 | Albert et al. | Apr 2008 | B2 |
7365394 | Denis et al. | Apr 2008 | B2 |
7365733 | Duthaler et al. | Apr 2008 | B2 |
7369299 | Sakurai et al. | May 2008 | B2 |
7375875 | Whitesides et al. | May 2008 | B2 |
7382363 | Albert et al. | Jun 2008 | B2 |
7388572 | Duthaler et al. | Jun 2008 | B2 |
7391555 | Albert et al. | Jun 2008 | B2 |
7411719 | Paolini, Jr. et al. | Aug 2008 | B2 |
7411720 | Honeyman et al. | Aug 2008 | B2 |
7420549 | Jacobson et al. | Sep 2008 | B2 |
7442587 | Amundson et al. | Oct 2008 | B2 |
7443571 | LeCain et al. | Oct 2008 | B2 |
7453445 | Amundson | Nov 2008 | B2 |
7477444 | Cao et al. | Jan 2009 | B2 |
7492339 | Amundson | Feb 2009 | B2 |
7492497 | Paolini, Jr. et al. | Feb 2009 | B2 |
7528822 | Amundson et al. | May 2009 | B2 |
7532388 | Whitesides et al. | May 2009 | B2 |
7535624 | Amundson et al. | May 2009 | B2 |
7545358 | Gates et al. | Jun 2009 | B2 |
7551346 | Fazel et al. | Jun 2009 | B2 |
7554712 | Patry et al. | Jun 2009 | B2 |
7561324 | Duthaler et al. | Jul 2009 | B2 |
7583427 | Danner et al. | Sep 2009 | B2 |
7598173 | Ritenour et al. | Oct 2009 | B2 |
7602374 | Zehner et al. | Oct 2009 | B2 |
7605799 | Amundson et al. | Oct 2009 | B2 |
7636191 | Duthaler | Dec 2009 | B2 |
7649674 | Danner et al. | Jan 2010 | B2 |
7667684 | Jacobson et al. | Feb 2010 | B2 |
7672040 | Sohn et al. | Mar 2010 | B2 |
7679599 | Kawai | Mar 2010 | B2 |
7679814 | Paolini et al. | Mar 2010 | B2 |
7688297 | Zehner et al. | Mar 2010 | B2 |
7705823 | Nihei et al. | Apr 2010 | B2 |
7705824 | Baucom et al. | Apr 2010 | B2 |
7728811 | Albert et al. | Jun 2010 | B2 |
7733311 | Amundson et al. | Jun 2010 | B2 |
7733335 | Zehner et al. | Jun 2010 | B2 |
7733554 | Danner et al. | Jun 2010 | B2 |
7787169 | Abramson et al. | Aug 2010 | B2 |
7839564 | Whitesides et al. | Nov 2010 | B2 |
7843621 | Danner et al. | Nov 2010 | B2 |
7859637 | Amundson et al. | Dec 2010 | B2 |
7893435 | Kazlas et al. | Feb 2011 | B2 |
7903319 | Honeyman et al. | Mar 2011 | B2 |
7910175 | Webber et al. | Mar 2011 | B2 |
7952557 | Amundson et al. | May 2011 | B2 |
7952790 | Honeyman et al. | May 2011 | B2 |
7999787 | Amundson et al. | Aug 2011 | B2 |
8009348 | Zehner et al. | Aug 2011 | B2 |
8018640 | Whitesides et al. | Sep 2011 | B2 |
8035886 | Jacobson | Oct 2011 | B2 |
8054526 | Bouchard | Nov 2011 | B2 |
8064962 | Wilcox et al. | Nov 2011 | B2 |
8115729 | Danner et al. | Feb 2012 | B2 |
8125501 | Amundson et al. | Feb 2012 | B2 |
8129655 | Jacobson et al. | Mar 2012 | B2 |
8139050 | Jacobson et al. | Mar 2012 | B2 |
8174490 | Whitesides et al. | May 2012 | B2 |
8466852 | Drzaic et al. | Jun 2013 | B2 |
8558783 | Wilcox et al. | Oct 2013 | B2 |
20020060321 | Kazlas et al. | May 2002 | A1 |
20020090980 | Wilcox et al. | Jul 2002 | A1 |
20030102858 | Jacobson et al. | Jun 2003 | A1 |
20040105036 | Danner et al. | Jun 2004 | A1 |
20040119681 | Albert et al. | Jun 2004 | A1 |
20040155857 | Duthaler et al. | Aug 2004 | A1 |
20050001810 | Yakushiji et al. | Jan 2005 | A1 |
20050012980 | Wilcox et al. | Jan 2005 | A1 |
20050018273 | Honeyman et al. | Jan 2005 | A1 |
20050122284 | Gates et al. | Jun 2005 | A1 |
20050122306 | Wilcox et al. | Jun 2005 | A1 |
20050122563 | Honeyman et al. | Jun 2005 | A1 |
20050156340 | Valianatos et al. | Jul 2005 | A1 |
20050253777 | Zehner et al. | Nov 2005 | A1 |
20050259068 | Nihei et al. | Nov 2005 | A1 |
20060087479 | Sakurai et al. | Apr 2006 | A1 |
20060087489 | Sakurai et al. | Apr 2006 | A1 |
20060087718 | Takagi et al. | Apr 2006 | A1 |
20060181504 | Kawai | Aug 2006 | A1 |
20060209008 | Nihei et al. | Sep 2006 | A1 |
20060214906 | Kobayashi et al. | Sep 2006 | A1 |
20060231401 | Sakurai et al. | Oct 2006 | A1 |
20070052757 | Jacobson | Mar 2007 | A1 |
20070091417 | Cao et al. | Apr 2007 | A1 |
20070091418 | Danner et al. | Apr 2007 | A1 |
20070211002 | Zehner et al. | Sep 2007 | A1 |
20070285385 | Albert et al. | Dec 2007 | A1 |
20080024429 | Zehner | Jan 2008 | A1 |
20080024482 | Gates et al. | Jan 2008 | A1 |
20080043318 | Whitesides et al. | Feb 2008 | A1 |
20080048970 | Drzaic et al. | Feb 2008 | A1 |
20080054879 | LeCain et al. | Mar 2008 | A1 |
20090179842 | Chen et al. | Jul 2009 | A1 |
Number | Date | Country |
---|---|---|
1 099 207 | Mar 2002 | EP |
1 145 072 | May 2003 | EP |
WO 0036560 | Jun 2000 | WO |
WO 0038000 | Jun 2000 | WO |
WO 0067110 | Nov 2000 | WO |
WO 0107961 | Feb 2001 | WO |
WO 2004079442 | Sep 2004 | WO |
Entry |
---|
Kitamura, T., et al., “Electrical toner movement for electronic paper-like display”, Asia Display/IDW '01, p. 1517, Paper HCS1-1 (2001). |
Yamaguchi, Y., et al., “Toner display using insulative particles charged triboelectrically”, Asia Display/IDW '01, p. 1729, Paper AMD4-4 (2001). |
Hayes, R.A., et al., “Video-Speed Electronic Paper Based on Electrowetting”, Nature, vol. 425, Sep. 25, pp. 383-385 (2003). |
Number | Date | Country | |
---|---|---|---|
20110310461 A1 | Dec 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11833578 | Aug 2007 | US |
Child | 13032914 | US |