The present invention relates generally to the field of interior rearview mirror assemblies for vehicles.
It is known to provide a mirror assembly that is adjustably mounted to an interior portion of a vehicle, such as via a double ball pivot or joint mounting configuration where the mirror casing and reflective element are adjusted relative to the interior portion of a vehicle by pivotal movement about the double ball pivot configuration. The mirror casing and reflective element are pivotable about either or both of the ball pivot joints by a user that is adjusting a rearward field of view of the reflective element. The mirror reflective element may comprise a variable reflectance mirror reflective element that varies its reflectance responsive to electrical current applied to conductive coatings or layers of the reflective element.
The present invention provides an electrochromic rearview mirror assembly, such as an interior or exterior rearview mirror assembly. The mirror assembly includes a mirror reflective element sub-assembly that includes an electrochromic (EC) cell and an EC driving circuit. The EC driving circuit includes a fixed voltage switching regulator configured to provide voltage to a power input of the electrochromic (EC) cell and a drive transistor connected to an output of the fixed voltage switching regulator and configured to switch the provided voltage on and off to the EC cell. The circuit also includes a protection diode connected to the drive transistor and the EC cell and a bleach transistor connected to the power input of the EC cell and to ground. A controller is connected to the fixed voltage switching regulator, the drive transistor, and the bleach transistor, and the controller is configured to control the fixed voltage switching regulator, the drive transistor, and the bleach transistor to control the voltage provided to the EC cell.
These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.
Referring now to the drawings and the illustrative embodiments depicted therein, an interior rearview mirror assembly 10 for a vehicle includes a casing 12 and a reflective element 14 positioned at a front portion of the casing 12 (
In the illustrated embodiment, and as shown in
The electrochromic reflective element or EC cell requires precise power control in order to provide on-demand variable dimming. The EC cell requires a control circuit or EC drive circuit that controls the EC cells responsive to, for example, an ambient light sensor and/or a glare light sensor (whereby, in nighttime driving conditions, the EC drive circuit dims or darkens the EC cell to reduce glare light at the mirror reflective element or cell when viewed by the driver of the vehicle). The ambient light sensor may be disposed anywhere at the vehicle (such as, for example, at the respective mirror assembly). The glare sensor is typically at or near the respective EC cell or mirror reflective element (such as behind the mirror reflective element and viewing/sensing through the mirror reflective element). Responsive to detection of glare at the glare sensor and EC cell, the EC drive circuit applies an appropriate or selected voltage at the electrically conductive coatings at the opposing surfaces of the glass substrate (that oppose and contact the EC medium) to cause an appropriate or selected degree of darkening of the EC cell to vary or attenuate reflectance off the mirror reflector (at the rear substrate and behind the EC medium) to reduce reflectance of light to the driver of the vehicle that is viewing the mirror assembly and EC cell.
As shown in
Referring now to
The circuit 400 allows for an unregulated (e.g., from 4.5V to 36V) voltage input with significant efficiency increases over typical circuits. For example, a typical circuit is approximately 9 percent efficient, while the EC driving circuit 400 is greater than 50 percent efficient (e.g., 55 percent to 60 percent efficient or 57 percent to 60 percent efficient). This leads to a drastically reduced power draw (e.g., 0.2 W from circuit 400 instead of 1.4 W from a typical driving circuit). As shown in
Thus, the circuit 400 of the present invention minimizes power losses through the use of a low resistance switch and low source voltage (e.g., 2V). This leads to a reduction in power dissipated and therefore a reduction in temperature. The PWM control allows for fine adjustment of EC cell dimming. Dynamic feedback provides precise reporting of EC cell status, and the EC cell may be shut down completely if a fault is detected. The standby current that circuit 400 consumes while the EC cell is disabled is much lower than a typical driving circuit. A single switching regulator can drive two or more EC cells simultaneously with much less PCB area required. The switching regulator allows for stable operation over a wide range of input voltages and temperatures and may be fine-tuned with software to further increase performance under specific conditions or for specific applications. While the illustrated embodiment demonstrates an interior mirror, EC driving circuit 400 is suitable for any EC cell, including those found in exterior mirrors.
As discussed above, the electro-optic or electrochromic mirror assembly includes an electro-optic or electrochromic reflective element that is dimmed or darkened via an EC drive circuit. The electrochromic mirror element of the electrochromic mirror assembly may utilize the principles disclosed in commonly assigned U.S. Pat. Nos. 8,730,553; 8,508,831; 7,626,749; 7,274,501; 7,255,451; 7,195,381; 7,184,190; 6,690,268; 5,140,455; 5,151,816; 6,178,034; 6,154,306; 6,002,544; 5,910,854; 5,724,187; 5,668,663; 5,610,756; 5,567,360; 5,525,264; 5,406,414; 5,253,109; 5,142,407; 5,076,673; 5,073,012; 5,066,112; 5,117,346 and/or 4,712,879, which are hereby incorporated herein by reference in their entireties. The perimeter edges of the reflective element may be encased or encompassed by the perimeter element or portion of the bezel portion to conceal and contain and envelop the perimeter edges of the substrates and the perimeter seal disposed therebetween.
The mirror assembly may comprise any suitable construction, such as, for example, a mirror assembly with the reflective element being nested in the mirror casing and with a bezel portion that circumscribes a perimeter region of the front surface of the reflective element, or with the mirror casing having a curved or beveled perimeter edge around the reflective element and with no overlap onto the front surface of the reflective element (such as by utilizing aspects of the mirror assemblies described in U.S. Pat. Nos. 7,255,451; 7,289,037; 7,360,932; 8,049,640; 8,277,059 and/or 8,529,108, or such as a mirror assembly having a rear substrate of an electro-optic or electrochromic reflective element nested in the mirror casing, and with the front substrate having curved or beveled perimeter edges, or such as a mirror assembly having a prismatic reflective element that is disposed at an outer perimeter edge of the mirror casing and with the prismatic substrate having curved or beveled perimeter edges, such as described in U.S. Pat. Nos. 8,508,831; 8,730,553; 9,598,016 and/or 9,346,403, and/or U.S. Publication Nos. US-2014-0313563 and/or US-2015-0097955, and/or U.S. Des. Pat. Nos. D633,423; D633,019; D638,761 and/or D647,017, which are hereby incorporated herein by reference in their entireties (and with electrochromic and prismatic mirrors of such construction are commercially available from the assignee of this application under the trade name INFINITY™ mirror).
The mirror assembly may include user actuatable inputs operable to control any of the accessories of or associated with the mirror assembly and/or an accessory module or the like. For example, the mirror assembly may include touch sensitive elements or touch sensors or proximity sensors, such as the types of touch sensitive elements described in U.S. Pat. Nos. 5,594,222; 6,001,486; 6,310,611; 6,320,282; 6,627,918; 7,224,324 and/or 7,253,723, and/or U.S. Publication Nos. US-2014-0022390 and/or US-2014-0293169, which are hereby incorporated herein by reference in their entireties, or such as proximity sensors of the types described in U.S. Pat. Nos. 7,224,324; 7,249,860 and/or 7,446,924, and/or International Publication No. WO 2004/058540, which are hereby incorporated herein by reference in their entireties, or such as membrane type switches, such as described in U.S. Pat. No. 7,360,932, which is hereby incorporated herein by reference in its entirety, or such as detectors and the like, such as the types disclosed in U.S. Pat. Nos. 7,255,541; 6,504,531; 6,501,465; 6,492,980; 6,452,479; 6,437,258 and/or 6,369,804, which are hereby incorporated herein by reference in their entireties, and/or the like, while remaining within the spirit and scope of the present invention.
Optionally, the mirror assembly may include one or more other displays, such as the types disclosed in U.S. Pat. Nos. 5,530,240 and/or 6,329,925, which are hereby incorporated herein by reference in their entireties, and/or display-on-demand transflective type displays, and/or video displays or display screens, such as the types disclosed in U.S. Pat. Nos. 8,890,955; 7,855,755; 7,338,177; 7,274,501; 7,255,451; 7,195,381; 7,184,190; 7,046,448; 5,668,663; 5,724,187; 5,530,240; 6,329,925; 6,690,268; 7,734,392; 7,370,983; 6,902,284; 6,428,172; 6,420,975; 5,416,313; 5,285,060; 5,193,029 and/or 4,793,690, and/or in U.S. Pat. Pub. Nos. US-2006-0050018; US-2009-0015736; US-2009-0015736; and/or US-2010-0097469, which are all hereby incorporated herein by reference in their entireties.
Changes and modifications in the specifically described embodiments may be carried out without departing from the principles of the present invention, which is intended to be limited only by the scope of the appended claims as interpreted according to the principles of patent law.
The present application claims the filing benefits of U.S. provisional application Ser. No. 62/699,393, filed Jul. 17, 2018, which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4712879 | Lynam et al. | Dec 1987 | A |
5066112 | Lynam et al. | Nov 1991 | A |
5073012 | Lynam | Dec 1991 | A |
5076673 | Lynam et al. | Dec 1991 | A |
5115346 | Lynam | May 1992 | A |
5140455 | Varaprasad et al. | Aug 1992 | A |
5142407 | Varaprasad et al. | Aug 1992 | A |
5151816 | Varaprasad et al. | Sep 1992 | A |
5253109 | O'Farrell et al. | Oct 1993 | A |
5406414 | O'Farrell et al. | Apr 1995 | A |
5525264 | Cronin et al. | Jun 1996 | A |
5567360 | Varaprasad et al. | Oct 1996 | A |
5610756 | Lynam et al. | Mar 1997 | A |
5668663 | Varaprasad et al. | Sep 1997 | A |
5724187 | Varaprasad et al. | Mar 1998 | A |
5910854 | Varaprasad et al. | Jun 1999 | A |
6002511 | Varaprasad et al. | Dec 1999 | A |
6154306 | Varaprasad et al. | Nov 2000 | A |
6178034 | Allemand et al. | Jan 2001 | B1 |
6449082 | Agrawal et al. | Sep 2002 | B1 |
6690268 | Schofield et al. | Feb 2004 | B2 |
7184190 | McCabe et al. | Feb 2007 | B2 |
7195381 | Lynam et al. | Mar 2007 | B2 |
7215318 | Turnbull | May 2007 | B2 |
7255451 | McCabe et al. | Aug 2007 | B2 |
7274501 | McCabe et al. | Sep 2007 | B2 |
7289037 | Uken et al. | Oct 2007 | B2 |
7360932 | Uken et al. | Apr 2008 | B2 |
7626749 | Baur et al. | Dec 2009 | B2 |
8049640 | Uken et al. | Nov 2011 | B2 |
8277059 | McCabe et al. | Oct 2012 | B2 |
8508831 | De Wind et al. | Aug 2013 | B2 |
8529108 | Uken et al. | Sep 2013 | B2 |
8730553 | De Wind et al. | May 2014 | B2 |
9346403 | Uken et al. | May 2016 | B2 |
9598016 | Blank et al. | Mar 2017 | B2 |
20140313563 | Uken et al. | Oct 2014 | A1 |
20150097955 | De Wind et al. | Apr 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20200023775 A1 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
62699393 | Jul 2018 | US |