Electro-optical switching system and method

Information

  • Patent Grant
  • 7746532
  • Patent Number
    7,746,532
  • Date Filed
    Friday, May 5, 2006
    18 years ago
  • Date Issued
    Tuesday, June 29, 2010
    14 years ago
Abstract
In an optical switch, a set of coherent electromagnetic radiation is selectively delayed and recombined to produce constructively or destructively combined radiation. When the radiation is constructively combined, a signal is transmitted out of the switch to a remote receiver. When the radiation is destructively combined, a signal is not transmitted out of the switch to a remote receiver.
Description
CROSS-REFERENCE TO CO-PENDING APPLICATIONS

The present invention is related to the following co-pending U.S. Patent applications: (1) U.S. patent application Ser. No. 11/238,991, entitled “Ultra-Small Resonating Charged Particle Beam Modulator,” and filed Sep. 30, 2005; (2) U.S. patent application Ser. No. 10/917,511, filed on Aug. 13, 2004, entitled “Patterning Thin Metal Film by Dry Reactive Ion Etching,”; (3) U.S. application Ser. No. 11/203,407, filed on Aug. 15, 2005, entitled “Method Of Patterning Ultra-Small Structures”; (4) U.S. application Ser. No. 11/243,476, entitled “Structures And Methods For Coupling Energy From An Electromagnetic Wave,” filed on Oct. 5, 2005; (5) U.S. application Ser. No. 11/243,477, entitled “Electron Beam Induced Resonance,” filed on Oct. 5, 2005, (6) U.S. application Ser. No. 11/411,130, entitled “Charged Particle Acceleration Apparatus and Method,” filed on Apr. 26, 2006, and (6) U.S. application Ser. No. 11/411,129, entitled “Micro Free Electron Laser (FEL),” filed on Apr. 26, 2006, all of which are commonly owned with the present application at the time of filing, and the entire contents of each of which are incorporated herein by reference.


BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention is directed to structures and methods of combining coherent electromagnetic radiation, and, in one embodiment, to structures and methods of combining coherent light using electrons in an electron beam and a set of resonant structures that resonate at a frequency higher than a microwave frequency.


2. Discussion of the Background


It is possible to emit a beam of charged particles according to a number of known techniques. Electron beams are currently being used in semiconductor lithography operations, such as in U.S. Pat. No. 6,936,981. The abstract of that patent also discloses the use of a “beam retarding system [that] generates a retarding electric potential about the electron beams to decrease the kinetic energy of the electron beams substantially near a substrate.”


An alternate charged particle source includes an ion beam. One such ion beam is a focused ion beam (FIB) as disclosed in U.S. Pat. No. 6,900,447 which discloses a method and system for milling. That patent discloses that “The positively biased final lens focuses both the high energy ion beam and the relatively low energy electron beam by functioning as an acceleration lens for the electrons and as a deceleration lens for the ions.” Col. 7, lines 23-27.


Free electron lasers are known. In at least one prior art free electron laser (FEL), very high velocity electrons and magnets are used to make the magnetic field oscillations appear to be very close together during radiation emission. However, the need for high velocity electrons is disadvantageous. U.S. Pat. No. 6,636,534 discloses a FEL and some of the background thereon.


SUMMARY OF THE INVENTION

It is an object of the present invention to combine coherent light using at least one optical switching element, where the coherent light is created by charged particles in a beam and a set of resonant structures that resonate at a frequency higher than a microwave frequency.


According to one aspect of the present invention, a series of electrically controllable light directing structures or waveguides are combined with a source of coherent light such that the coherent light can be optically switched. One such switch can be created using plural channels, where the level of influence on the light as it passes through the first and second channels controls whether light is transmitted out of the switch. In a first state, light passing through a first channel is delayed in relation to light passing through a second channel such that the light of the first and second channels are destructively combined. In a second state, light passing through a first channel is not delayed in relation to light passing through a second channel such that the light of the first and second channels are constructively combined. Electrical signals control the first and second states.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:



FIG. 1 is a top-view, high-level conceptual representation of a charged particle moving through a series of alternating electric fields according to a first embodiment of the present invention;



FIG. 2 is a top-view, high-level conceptual representation of a charged particle accelerating while being influenced by at least one field of a series of alternating electric fields according to a second embodiment of the present invention;



FIG. 3 is a top-view, high-level conceptual representation of a charged particle decelerating while being influenced by at least one field of a series of alternating electric fields according to a second embodiment of the present invention;



FIG. 4 is a perspective-view, high-level conceptual representation of a charged particle moving through a series of alternating electric fields produced by a resonant structure;



FIGS. 5A-5C are the outputs of a computer simulation showing trajectories and accelerations of model devices using potentials of +/−100V, +/−200V and +/−300V, respectively;



FIG. 6 is a top-view, high-level conceptual representation of a charged particle moving through a series of alternating electric fields according to a first embodiment of the present invention such that photons are emitted in phase with each other;



FIG. 7 is a top-view, high-level conceptual representation of a charged particle moving through a series of alternating electric fields according to a second embodiment of the present invention that includes a focusing element;



FIG. 8 is a top-view, high-level conceptual representation of a charged particle moving through a series of alternating electric fields according to a third embodiment of the present invention that includes a pre-bunching element;



FIGS. 9A through 9H are exemplary resonant structures acting as pre-bunching elements; and



FIG. 10 is a top-level diagram of an electro-optical switching device for controlling a transmission of a coherent light source.





DISCUSSION OF THE PREFERRED EMBODIMENTS

Turning now to the drawings, FIG. 1 is a high-level conceptual representation of a charged particle moving through a series of alternating electric fields according to a first embodiment of the present invention. As shown therein, a charged particle beam 100 including charged particles 110 (e.g., electrons) is generated from a charged particle source 120. The charged particle beam 100 can include ions (positive or negative), electrons, protons and the like. The beam may be produced by any source, including, e.g., without limitation an ion gun, a thermionic filament, a tungsten filament, a cathode, a planar vacuum triode, an electron-impact ionizer, a laser ionizer, a chemical ionizer, a thermal ionizer, an ion-impact ionizer.


As the beam 100 is projected, it passes between plural alternating electric fields 130p and 130n. As used herein, the phrase “positive electric field” 130p should be understood to mean an electric field with a more positive portion on the upper portion of the figure, and the phrase “negative electric field” 130n should be understood to mean an electric field with a more negative portion on the upper portion of the figure. In this first embodiment, the electric fields 130p and 130n alternate not only on the same side but across from each other as well. That is, each positive electric field 130p is surrounded by a negative electric field 130n on three sides. Likewise, each negative electric field 130n is surrounded by a positive field 130p on three sides. In the illustrated embodiment, the charged particles 110 are electrons which are attracted to the positive electric fields 130p and repelled by the negative electric fields 130n. The attraction of the charged particles 110 to their oppositely charged fields 130p or 130n accelerates the charged particles 110 transversely to their axial velocity.


The series of alternating fields creates an oscillating path in the directions of top to bottom of FIG. 1 and as indicated by the legend “velocity oscillation direction.” In such a case, the velocity oscillation direction is generally perpendicular to the direction of motion of the beam 100.


The charged particle source 120 may also optionally include one or more electrically biased electrodes 140 (e.g., (a) grounding electrodes or (b) positively biased electrodes) which help to keep the charged particles (e.g., (a) electrons or negatively charged ions or (b) positively charged ions) on the desired path.


In the alternate embodiments illustrated in FIGS. 2 and 3, various elements from FIG. 1 have been repeated, and their reference numerals are repeated in FIGS. 2 and 3. However, the order of the electric fields 130p and 130n below the path of the charged particle beam 100 has been changed. In FIGS. 2 and 3, while the electric fields 130n and 130p are still alternating on the same side, they are now of opposing direction on opposite sides of the beam 100, allowing for no net force on the charged particles 110 perpendicular to the beam 100. There is, though, a force of oscillatory character acting on the charged particles 100 in the direction of the beam 100. Thus, in the case of an electron acting as a charged particle 110, the electron 110a in FIG. 2 is an accelerating electron that is being accelerated by being repelled from the negative fields 130n2 while being attracted to the next positive fields 130p3 in the direction of motion of the beam 100. (The direction of acceleration is shown below the accelerating electron 100a).


Conversely, as shown in FIG. 3, in the case of an electron acting as a charged particle 110, the electron 110d in FIG. 2 is a decelerating electron that is being decelerated (i.e., negatively accelerated) as it approaches the negative fields 130n4 while still being attracted to the previous positive fields 130p3. The direction of acceleration is shown below the decelerating electron 100d. Moreover, both FIGS. 2 and 3 include the legend “velocity oscillation direction” showing the direction of the velocity changes. In such cases, the velocity oscillation direction is generally parallel to the direction of motion of the beam 100. It should be understood, however, that the direction of the electron does not change, only that its velocity increases and decreases in the illustrated direction.


By varying the order and strength of the electric fields 130n and 130p, a variety of magnitudes of acceleration can be achieved allowing for attenuation of the motion of the charged particles 110. As should be understood from the disclosure, the strengths of adjacent electric fields, fields on the same side of the beam 100 and fields on opposite sides of the beam 100 need not be the same strength. Moreover, the strengths of the fields and the directions of the fields need not be fixed either but may instead vary with time. The fields 130n and 130p may even be created by applying a electromagnetic wave to a resonant structure, described in greater detail below.


The electric fields utilized by the present invention can be created by any known method which allows sufficiently fine-tuned control over the paths of the charged particles so that they stay within intended path boundaries.


According to one aspect of the present invention, the electric fields can be generated using at least one resonant structure where the resonant structure resonates at a frequency above a microwave frequency. Resonant structures include resonant structures shown in or constructed by the teachings of the above-identified co-pending applications. In particular, the structures and methods of U.S. application Ser. No. 11/243,477, entitled “Electron Beam Induced Resonance,” filed on Oct. 5, 2005, can be utilized to create electric fields 130 for use in the present invention.



FIG. 4 is a perspective-view, high-level conceptual representation of a charged particle moving through a series of alternating electric fields produced by a resonant structure (RS) 402 (e.g., a microwave resonant structure or an optical resonant structure). An electromagnetic wave 406 (also denoted E) incident to a surface 404 of the RS 402 transfers energy to the RS 402, which generates a varying field 407. In the exemplary embodiment shown in FIG. 4, a gap 410 formed by ledge portions 412 can act as an intensifier. The varying field 407 is shown across the gap 410 with the electric and magnetic field components (denoted {right arrow over (E)} and {right arrow over (B)}) generally along the X and Y axes of the coordinate system, respectively. Since a portion of the varying field can be intensified across the gap 410, the ledge portions 412 can be sized during fabrication to provide a particular magnitude or wavelength of the varying field 407.


A charged particle source 414 (such as the source 120 described with reference to FIGS. 1-3) targets a beam 416 (such as a beam 100) of charged particles (e.g., electrons) along a straight path 420 through an opening 422 on a sidewall 424 of the device 400. The charged particles travel through a space 426 within the gap 410. Upon interaction with the varying field 426, the charged particles are shown angularly modulated from the straight path 420. Generally, the charged particles travel on an oscillating path 428 within the gap 410. After passing through the gap 410, the charged particles are angularly modulated on a new path 430. An angle β illustrates the deviation between the new path 430 and the straight path 420.


As would be appreciated by one of ordinary skill in the art, a number of resonant structures 402 can be repeated to provide additional electric fields for influencing the charged particles of the beam 416. Alternatively, the direction of the oscillation can be changed by turning the resonant structure 402 on its side onto surface 404.



FIGS. 5A-5C are outputs of computer simulations showing trajectories and accelerations of model devices according to the present invention. The outputs illustrate three exemplary paths, labeled “B”, “T” and “C” for bottom, top and center, respectively. As shown on FIG. 1, these correspond to charged particles passing through the bottom, top and center, respectively, of the opening between the electrodes 140. Since the curves for B, T and C cross in various locations, the graphs are labeled in various locations. As can be seen in FIG. 5A, the calculations show accelerations of about 0.5×1011 mm/μS2 for electrons with 1 keV of energy passing through a potential of +/−100 volts when passing through the center of the electrodes. FIG. 5B shows accelerations of about 1.0×1011 mm/μS2 for electrons with 1 keV of energy passing through a potential of +/−200 volts when passing through the center of the electrodes. FIG. 5C shows accelerations of about 1.0-3.0×1011 mm/μS2 for electrons with 1 keV of energy passing through a potential of +/−300 volts when passing through the center of the electrodes.


Utilizing the alternating electric fields of the present invention, the oscillating charged particles emit photons to achieve a radiation emitting device. Such photons can be used to provide radiation outside the device or to provide radiation for use internally as well. Moreover, the amount of radiation emitted can be used as part of a measurement device. It is also possible to construct the electrode of such a size and spacing that they resonate at or near the frequency that is being generated. This effect can be used to enhance the applied fields in the frequency range that the device emits.


Turning to FIG. 6, the structure of FIG. 1 has been supplemented with the addition of photons 600a-600c. In the illustrated embodiment, the electric fields 130p and 130n are selected such that the charged particles 110 are forced into an oscillating trajectory at (or nearly at) an integral multiple of the emitted wavelength. Using such a controlled oscillation, the electromagnetic radiation emitted at the maxima and minima of the oscillation constructively interferes with the emission at the next minimum or maximum. As can be seen, for example at 610, the photon emissions are in phase with each other. This produces a coherent radiation source that can be used in laser applications such as communications systems using optical switching.


In light of the variation in paths that a charged particle can undergo based on its initial path between electrodes 140, in a second embodiment of a coherent radiation source, a focusing element 700 is added in close proximity to the electrodes 140. The focusing element 700, while illustrated as being placed before the electrodes 140 may instead be placed after. In such a configuration, additional charged particles may traverse a center path between the fields and undergo constructive interference.


In a third embodiment of a coherent light source, a pre-bunching element 800 is added which helps to control the inter-arrival time between charged particles, and therefore aid in the production of coherent Electromagnetic Radiation (EMR). One possible configuration of a pre-bunching element 800 is a resonant structure such as is described in U.S. application Ser. No. 11/410,924, entitled “Selectable Frequency EMR Emitter,” filed on Apr. 26, 2006 and incorporated herein by reference. However, exemplary resonant structures are shown in FIGS. 9A-9H. As shown in FIG. 9A, a resonant structure 910 may comprise a series of fingers 915 which are separated by a spacing 920 measured as the beginning of one finger 915 to the beginning of an adjacent finger 915. The finger 915 has a thickness that takes up a portion of the spacing between fingers 915. The fingers also have a length 925 and a height (not shown). As illustrated, the fingers 915 of FIG. 9A are perpendicular to the beam 100.


Resonant structures 910 are fabricated from resonating material [e.g., from a conductor such as metal (e.g., silver, gold, aluminum and platinum or from an alloy) or from any other material that resonates in the presence of a charged particle beam]. Other exemplary resonating materials include carbon nanotubes and high temperature superconductors.


Any of the various resonant structures can be constructed in multiple layers of resonating materials but are preferably constructed in a single layer of resonating material (as described above). In one single layer embodiment, all of the parts of a resonant structure 910 are etched or otherwise shaped in the same processing step. In one multi-layer embodiment, resonant structures 910 of the same resonant frequency are etched or otherwise shaped in the same processing step. In yet another multi-layer embodiment, all resonant structures having segments of the same height are etched or otherwise shaped in the same processing step. In yet another embodiment, all of the resonant structures on a single substrate are etched or otherwise shaped in the same processing step.


The material need not even be a contiguous layer, but can be sub-parts of the resonant structures individually present on a substrate. The materials making up the sub-parts of the resonant structures can be produced by a variety of methods, such as by pulsed-plating, depositing, sputtering or etching. Preferred methods for doing so are described in co-pending U.S. application Ser. No. 10/917,571, filed on Aug. 13, 2004, entitled “Patterning Thin Metal Film by Dry Reactive Ion Etching,” and in U.S. application Ser. No. 11/203,407, filed on Aug. 15, 2005, entitled “Method Of Patterning Ultra-Small Structures,” both of which are commonly owned at the time of filing, and the entire contents of each of which are incorporated herein by reference.


At least in the case of silver, etching does not need to remove the material between segments or posts all the way down to the substrate level, nor does the plating have to place the posts directly on the bare substrate. Silver posts can be on a silver layer on top of the substrate. In fact, we discovered that due to various coupling effects, better results are obtained when the silver posts are set on a silver layer that is deposited on the substrate.


As shown in FIG. 9B, the fingers of the resonant structure 910 can be supplemented with a backbone. The backbone 912 connects the various fingers 915 of the resonant structure 910 forming a comb-like shape. Typically, the backbone 912 would be made of the same material as the rest of the resonant structure 910, but alternative materials may be used. In addition, the backbone 912 may be formed in the same layer or a different layer than the fingers 915. The backbone 912 may also be formed in the same processing step or in a different processing step than the fingers 915. While the remaining figures do not show the use of a backbone 912, it should be appreciated that all other resonant structures described herein can be fabricated with a backbone also.


The shape of the fingers 915 (or posts) may also be shapes other than rectangles, such as simple shapes (e.g., circles, ovals, arcs and squares), complex shapes [e.g., semi-circles, angled fingers, serpentine structures and embedded structures (i.e., structures with a smaller geometry within a larger geometry, thereby creating more complex resonances)] and those including waveguides or complex cavities. The finger structures of all the various shapes will be collectively referred to herein as “segments.” Other exemplary shapes are shown in FIGS. 9C-9H, again with respect to a path of a beam 100. As can be seen at least from FIG. 9C, the axis of symmetry of the segments need not be perpendicular to the path of the beam 100.


Exemplary dimensions for resonant structures include, but are not limited to:

    • (a) period (920) of segments: 150-220 nm;
    • (b) segment thickness: 75-110 nm;
    • (c) height of segments: 250-400 nm;
    • (d) length (925) of segments: 60-180 nm; and
    • (e) number of segments in a row: 200-300.


While the above description has been made in terms of structures for achieving the acceleration of charged particles, the present invention also encompasses methods of accelerating charged particles generally. Such a method includes: generating a beam of charged particles; providing a series of alternating electric fields along an intended path; and transmitting the beam of charged particles along the intended path through the alternating electric fields.


The resonant structures producing coherent light described above can be laid out in rows, columns, arrays or other configurations such that the intensity of the resulting EMR is increased.


The coherent EMR produced may additionally be used as an input signal to additional devices. For example, the coherent EMR may be used as an input signal to a light amplifier or may be used as part of a transmission system. One such device that the coherent EMR 1005 can be applied to is an electro-optical switch 1000, such as shown in FIG. 10. The coherent EMR 1005 is incident upon a splitter 1010 which divides the coherent EMR 1005 into first and second channels. The first channel is applied to a delay element 1020 controlled by an electrical signal applied to a control terminal 1030. The amount of delay is controlled by whether the electrical signal is active or inactive. The coherent EMR 1005 of the first and second channels is then recombined in a combiner element 1040.


If the signal applied to the control terminal 1030 is in a first state, then there is no delay of the coherent EMR 1005 in the first channel, and the coherent EMR 1005 of the first and second channels are combined constructively such that the EMR passes out of the switch 1000. However, if the signal applied to the control terminal 1030 is in a second state, then there is a delay of the coherent EMR 1005 in the first channel such that the first and second channels become out of phase with respect to each other. Thus, in the second state, the coherent EMR 1005 of the first and second channels are combined destructively and the EMR does not pass out of the switch 1000.


Data to be transmitted can be applied to the control terminal 1030 such that when data is to be transmitted, the EMR is combined in a first way (e.g., constructively), and when data is not to be transmitted, the EMR is combined in a second way (e.g., destructively). The data can be any one or a combination of payload information, header information and trailer information. Exemplary header and trailer information may include, but is not limited to, any necessary start bits, stop bits, and error correction and detection bits (e.g., parity bits). The payload represents the information that is desired to be transmitted, to which a communications controller may add header and trailer information.


The delay element can be made of a number of materials, including electrically-sensitive optically transparent materials such as materials exhibiting the Pockels effect—where a refractive index varies with an applied electric field. One such material is lithium niobate. Other materials, such as the materials used in the optical switching elements of Luxtera, Inc. of Carlsbad, Calif., can be used to produce optical switches for carrying the coherent EMR described above.


By combining the coherent EMR sources described above with optical switching elements in a similar or even identical semiconductor processing environment, the resulting switching devices can enjoy a high degree of integration. However, the optical switching elements may be fabricated in a different integrated circuit than the source of the coherent EMR. The optical switching element may form part of a micro-electro-mechanical systems (MEMS), or may be part of a multi-chip module which is combined with a coherent EMR source.


In addition to using coherent EMR from the above structures using a pre-bunching element and alternating electric fields, it is also possible to utilize EMR emitted directly from a resonant structure that is caused to resonate by passing a beam of charged particles in close enough proximity to its resonant elements, thus allowing for excitation. The frequency of the EMR can be controlled by properly selecting the dimensions of the resonant structure, such as is described in U.S. application Ser. No. 11/410,924, entitled “Selectable Frequency EMR Emitter,” filed on Apr. 26, 2006.


As would be understood by one of ordinary skill in the art, the above exemplary embodiments are meant as examples only and not as limiting disclosures. Accordingly, there may be alternate embodiments other than those described above that nonetheless still fall within the scope of the pending claims.

Claims
  • 1. A switched optical source comprising: a source of charged particles;a data input for receiving data to be transmitted;a resonant structure configured to be excited by charged particles emitted from the source of charged particles and configured to emit coherent electromagnetic radiation at a predominant frequency representing the data to be transmitted, wherein the predominant frequency has a frequency higher than that of a microwave frequency;a splitter for dividing the electromagnetic radiation into first and second channels;a delay element controlled by the data received via the data input for selectively delaying the coherent electromagnetic radiation associated with the first channel; anda combiner for combining the coherent electromagnetic radiation associated with the second channel with the coherent electromagnetic radiation selectively delayed by the delay element.
  • 2. The switched optical source as claimed in claim 1, wherein the resonant structure, the splitter, the delay element and the combiner are formed in a single integrated circuit.
  • 3. The switched optical source as claimed in claim 1, wherein the resonant structure is formed in a different integrated circuit than the splitter, the delay element and the combiner.
  • 4. The switched optical source as claimed in claim 1, wherein the delay element comprises a material exhibiting the Pockels effect.
  • 5. The switched optical source as claimed in claim 1, wherein the delay element comprises lithium niobate.
  • 6. A switched optical source comprising: a data input for receiving data to be transmitted;a series of alternating electric fields along an intended path;a pre-bunching element;a source of charged particles configured to transmit charged particles along an oscillating trajectory through the pre-bunching element and through the series of alternating electric fields, wherein the oscillating trajectory has a wavelength close to that of coherent radiation emitted from the charged particles during oscillation and wherein the coherent radiation emitted from the charged particles undergoes constructive interference;a splitter for dividing the coherent electromagnetic radiation into first and second channels;a delay element controlled by the data received via the data input for selectively delaying the coherent electromagnetic radiation associated with the first channel; anda combiner for combining the coherent electromagnetic radiation associated with the second channel with the coherent electromagnetic radiation selectively delayed by the delay element.
  • 7. The switched optical source as claimed in claim 6, wherein the pre-bunching element, the splitter, the delay element and the combiner are formed in a single integrated circuit.
  • 8. The switched optical source as claimed in claim 6, wherein the pre-bunching element is formed in a different integrated circuit than the splitter, the delay element and the combiner.
  • 9. The switched optical source as claimed in claim 6, wherein the delay element comprises a material exhibiting the Pockels effect.
  • 10. The switched optical source as claimed in claim 6, wherein the delay element comprises lithium niobate.
US Referenced Citations (311)
Number Name Date Kind
1948384 Lawrence Feb 1934 A
2307086 Varian et al. Jan 1943 A
2431396 Hansell Nov 1947 A
2473477 Smith Jun 1949 A
2634372 Salisbury Apr 1953 A
2932798 Kerst et al. Apr 1960 A
2944183 Drexler Jul 1960 A
2966611 Sandstrom Dec 1960 A
3231779 White Jan 1966 A
3297905 Rockwell et al. Jan 1967 A
3315117 Udelson Apr 1967 A
3387169 Farney Jun 1968 A
3543147 Kovarik Nov 1970 A
3546524 Stark Dec 1970 A
3560694 White Feb 1971 A
3571642 Westcott Mar 1971 A
3586899 Fleisher Jun 1971 A
3761828 Pollard et al. Sep 1973 A
3886399 Symons May 1975 A
3923568 Bersin Dec 1975 A
3989347 Eschler Nov 1976 A
4053845 Gould Oct 1977 A
4282436 Kapetanakos Aug 1981 A
4450554 Steensma et al. May 1984 A
4453108 Freeman, Jr. Jun 1984 A
4482779 Anderson Nov 1984 A
4528659 Jones, Jr. Jul 1985 A
4589107 Middleton et al. May 1986 A
4598397 Nelson et al. Jul 1986 A
4630262 Callens et al. Dec 1986 A
4652703 Lu et al. Mar 1987 A
4661783 Gover et al. Apr 1987 A
4704583 Gould Nov 1987 A
4712042 Hamm Dec 1987 A
4713581 Haimson Dec 1987 A
4727550 Chang et al. Feb 1988 A
4740963 Eckley Apr 1988 A
4740973 Madey Apr 1988 A
4746201 Gould May 1988 A
4761059 Yeh et al. Aug 1988 A
4782485 Gollub Nov 1988 A
4789945 Niijima Dec 1988 A
4806859 Hetrick Feb 1989 A
4809271 Kondo et al. Feb 1989 A
4813040 Futato Mar 1989 A
4819228 Baran et al. Apr 1989 A
4829527 Wortman et al. May 1989 A
4838021 Beattie Jun 1989 A
4841538 Yanabu et al. Jun 1989 A
4864131 Rich et al. Sep 1989 A
4866704 Bergman Sep 1989 A
4866732 Carey et al. Sep 1989 A
4873715 Shibata Oct 1989 A
4887265 Felix Dec 1989 A
4890282 Lambert et al. Dec 1989 A
4898022 Yumoto et al. Feb 1990 A
4912705 Paneth et al. Mar 1990 A
4932022 Keeney et al. Jun 1990 A
4981371 Gurak et al. Jan 1991 A
5023563 Harvey et al. Jun 1991 A
5036513 Greenblatt Jul 1991 A
5065425 Lecomte et al. Nov 1991 A
5113141 Swenson May 1992 A
5121385 Tominaga et al. Jun 1992 A
5127001 Steagall et al. Jun 1992 A
5128729 Alonas et al. Jul 1992 A
5130985 Kondo et al. Jul 1992 A
5150410 Bertrand Sep 1992 A
5155726 Spinney et al. Oct 1992 A
5157000 Elkind et al. Oct 1992 A
5163118 Lorenzo et al. Nov 1992 A
5185073 Bindra Feb 1993 A
5187591 Guy et al. Feb 1993 A
5199918 Kumar Apr 1993 A
5214650 Renner et al. May 1993 A
5233623 Chang Aug 1993 A
5235248 Clark et al. Aug 1993 A
5262656 Blondeau et al. Nov 1993 A
5263043 Walsh Nov 1993 A
5268693 Walsh Dec 1993 A
5268788 Fox et al. Dec 1993 A
5282197 Kreitzer Jan 1994 A
5283819 Glick et al. Feb 1994 A
5293175 Hemmie et al. Mar 1994 A
5302240 Hori et al. Apr 1994 A
5305312 Fornek et al. Apr 1994 A
5341374 Lewen et al. Aug 1994 A
5354709 Lorenzo et al. Oct 1994 A
5446814 Kuo et al. Aug 1995 A
5504341 Glavish Apr 1996 A
5578909 Billen Nov 1996 A
5604352 Schuetz Feb 1997 A
5608263 Drayton et al. Mar 1997 A
5666020 Takemura Sep 1997 A
5668368 Sakai et al. Sep 1997 A
5705443 Stauf et al. Jan 1998 A
5737458 Wojnarowski et al. Apr 1998 A
5744919 Mishin et al. Apr 1998 A
5757009 Walstrom May 1998 A
5767013 Park Jun 1998 A
5780970 Singh et al. Jul 1998 A
5790585 Walsh Aug 1998 A
5811943 Mishin et al. Sep 1998 A
5821836 Katehi et al. Oct 1998 A
5821902 Keen Oct 1998 A
5825140 Fujisawa Oct 1998 A
5831270 Nakasuji Nov 1998 A
5847745 Shimizu et al. Dec 1998 A
5889449 Fiedziuszko Mar 1999 A
5889797 Nguyen Mar 1999 A
5902489 Yasuda et al. May 1999 A
5963857 Greywall Oct 1999 A
5972193 Chou et al. Oct 1999 A
6005347 Lee Dec 1999 A
6008496 Winefordner et al. Dec 1999 A
6040625 Ip Mar 2000 A
6060833 Velazco May 2000 A
6080529 Ye et al. Jun 2000 A
6117784 Uzoh Sep 2000 A
6139760 Shim et al. Oct 2000 A
6180415 Schultz et al. Jan 2001 B1
6195199 Yamada Feb 2001 B1
6222866 Seko Apr 2001 B1
6278239 Caporaso et al. Aug 2001 B1
6281769 Fiedziuszko Aug 2001 B1
6297511 Syllaios et al. Oct 2001 B1
6301041 Yamada Oct 2001 B1
6309528 Taylor et al. Oct 2001 B1
6316876 Tanabe Nov 2001 B1
6338968 Hefti Jan 2002 B1
6370306 Sato et al. Apr 2002 B1
6373194 Small Apr 2002 B1
6376258 Hefti Apr 2002 B2
6407516 Victor Jun 2002 B1
6441298 Thio Aug 2002 B1
6448850 Yamada Sep 2002 B1
6453087 Frish et al. Sep 2002 B2
6470198 Kintaka et al. Oct 2002 B1
6504303 Small Jan 2003 B2
6525477 Small Feb 2003 B2
6534766 Abe et al. Mar 2003 B2
6545425 Victor Apr 2003 B2
6552320 Pan Apr 2003 B1
6577040 Nguyen Jun 2003 B2
6580075 Kametani et al. Jun 2003 B2
6603781 Stinson et al. Aug 2003 B1
6603915 Glebov et al. Aug 2003 B2
6624916 Green et al. Sep 2003 B1
6636185 Spitzer et al. Oct 2003 B1
6636534 Madey et al. Oct 2003 B2
6636653 Miracky et al. Oct 2003 B2
6640023 Miller et al. Oct 2003 B2
6642907 Hamada et al. Nov 2003 B2
6687034 Wine et al. Feb 2004 B2
6700748 Cowles et al. Mar 2004 B1
6724486 Shull et al. Apr 2004 B1
6738176 Rabinowitz et al. May 2004 B2
6741781 Furuyama May 2004 B2
6777244 Pepper et al. Aug 2004 B2
6782205 Trisnadi et al. Aug 2004 B2
6791438 Takahashi et al. Sep 2004 B2
6800877 Victor et al. Oct 2004 B2
6801002 Victor et al. Oct 2004 B2
6819432 Pepper et al. Nov 2004 B2
6829286 Guilfoyle et al. Dec 2004 B1
6834152 Gunn et al. Dec 2004 B2
6870438 Shino et al. Mar 2005 B1
6871025 Maleki et al. Mar 2005 B2
6885262 Nishimura et al. Apr 2005 B2
6900447 Gerlach et al. May 2005 B2
6909092 Nagahama Jun 2005 B2
6909104 Koops Jun 2005 B1
6924920 Zhilkov Aug 2005 B2
6936981 Gesley Aug 2005 B2
6943650 Ramprasad et al. Sep 2005 B2
6944369 Deliwala Sep 2005 B2
6952492 Tanaka et al. Oct 2005 B2
6953291 Liu Oct 2005 B2
6954515 Bjorkholm et al. Oct 2005 B2
6965284 Maekawa et al. Nov 2005 B2
6965625 Mross et al. Nov 2005 B2
6972439 Kim et al. Dec 2005 B1
6995406 Tojo et al. Feb 2006 B2
7010183 Estes et al. Mar 2006 B2
7064500 Victor et al. Jun 2006 B2
7068948 Wei et al. Jun 2006 B2
7092588 Kondo Aug 2006 B2
7092603 Glebov et al. Aug 2006 B2
7122978 Nakanishi et al. Oct 2006 B2
7130102 Rabinowitz Oct 2006 B2
7177515 Estes et al. Feb 2007 B2
7194798 Bonhote et al. Mar 2007 B2
7230201 Miley et al. Jun 2007 B1
7253426 Gorrell et al. Aug 2007 B2
7267459 Matheson Sep 2007 B2
7267461 Kan et al. Sep 2007 B2
7309953 Tiberi et al. Dec 2007 B2
7342441 Gorrell et al. Mar 2008 B2
7362972 Yavor et al. Apr 2008 B2
7375631 Moskowitz et al. May 2008 B2
7436177 Gorrell et al. Oct 2008 B2
7442940 Gorrell et al. Oct 2008 B2
7443358 Gorrell et al. Oct 2008 B2
7470920 Gorrell et al. Dec 2008 B2
7473917 Singh Jan 2009 B2
7586097 Gorrell et al. Sep 2009 B2
7586167 Gorrell et al. Sep 2009 B2
20010002315 Schultz et al. May 2001 A1
20010025925 Abe et al. Oct 2001 A1
20020009723 Hefti Jan 2002 A1
20020027481 Fiedziuszko Mar 2002 A1
20020036121 Ball et al. Mar 2002 A1
20020036264 Nakasuji et al. Mar 2002 A1
20020053638 Winkler et al. May 2002 A1
20020068018 Pepper et al. Jun 2002 A1
20020070671 Small Jun 2002 A1
20020071457 Hogan Jun 2002 A1
20020122531 Whitham Sep 2002 A1
20020135665 Gardner Sep 2002 A1
20020139961 Kinoshita et al. Oct 2002 A1
20020158295 Armgarth et al. Oct 2002 A1
20020191650 Madey et al. Dec 2002 A1
20030010979 Pardo Jan 2003 A1
20030012925 Gorrell Jan 2003 A1
20030016421 Small Jan 2003 A1
20030034535 Barenburu et al. Feb 2003 A1
20030103150 Catrysse et al. Jun 2003 A1
20030106998 Colbert et al. Jun 2003 A1
20030155521 Feuerbaum Aug 2003 A1
20030158474 Scherer et al. Aug 2003 A1
20030164947 Vaupel Sep 2003 A1
20030179974 Estes et al. Sep 2003 A1
20030206708 Estes et al. Nov 2003 A1
20030214695 Abramson et al. Nov 2003 A1
20040061053 Taniguchi et al. Apr 2004 A1
20040080285 Victor et al. Apr 2004 A1
20040085159 Kubena et al. May 2004 A1
20040092104 Gunn, III et al. May 2004 A1
20040108471 Luo et al. Jun 2004 A1
20040108473 Melnychuk et al. Jun 2004 A1
20040108823 Amaldi et al. Jun 2004 A1
20040136715 Kondo Jul 2004 A1
20040150991 Ouderkirk et al. Aug 2004 A1
20040171272 Jin et al. Sep 2004 A1
20040180244 Tour et al. Sep 2004 A1
20040184270 Halter Sep 2004 A1
20040213375 Bjorkholm et al. Oct 2004 A1
20040217297 Moses et al. Nov 2004 A1
20040218651 Iwasaki et al. Nov 2004 A1
20040231996 Webb Nov 2004 A1
20040240035 Zhilkov Dec 2004 A1
20040264867 Kondo Dec 2004 A1
20050023145 Cohen et al. Feb 2005 A1
20050045821 Noji et al. Mar 2005 A1
20050045832 Kelly et al. Mar 2005 A1
20050054151 Lowther et al. Mar 2005 A1
20050067286 Ahn et al. Mar 2005 A1
20050082469 Carlo Apr 2005 A1
20050092929 Schneiker May 2005 A1
20050104684 Wojcik May 2005 A1
20050105690 Pau et al. May 2005 A1
20050145882 Taylor et al. Jul 2005 A1
20050152635 Paddon et al. Jul 2005 A1
20050162104 Victor et al. Jul 2005 A1
20050190637 Ichimura et al. Sep 2005 A1
20050194258 Cohen et al. Sep 2005 A1
20050201707 Glebov et al. Sep 2005 A1
20050201717 Matsumura et al. Sep 2005 A1
20050212503 Deibele Sep 2005 A1
20050231138 Nakanishi et al. Oct 2005 A1
20050249451 Baehr-Jones et al. Nov 2005 A1
20050285541 LeChevalier Dec 2005 A1
20060007730 Nakamura et al. Jan 2006 A1
20060018619 Helffrich et al. Jan 2006 A1
20060035173 Davidson et al. Feb 2006 A1
20060045418 Cho et al. Mar 2006 A1
20060050269 Brownell Mar 2006 A1
20060060782 Khursheed Mar 2006 A1
20060062258 Brau et al. Mar 2006 A1
20060131176 Hsu Jun 2006 A1
20060131695 Kuekes et al. Jun 2006 A1
20060159131 Liu et al. Jul 2006 A1
20060164496 Tokutake et al. Jul 2006 A1
20060187794 Harvey et al. Aug 2006 A1
20060208667 Lys et al. Sep 2006 A1
20060216940 Gorrell et al. Sep 2006 A1
20060243925 Barker et al. Nov 2006 A1
20060274922 Ragsdale Dec 2006 A1
20070003781 de Rochemont Jan 2007 A1
20070013765 Hudson et al. Jan 2007 A1
20070075263 Gorrell et al. Apr 2007 A1
20070075264 Gorrell et al. Apr 2007 A1
20070085039 Gorrell et al. Apr 2007 A1
20070086915 LeBoeuf et al. Apr 2007 A1
20070116420 Estes et al. May 2007 A1
20070146704 Schmidt et al. Jun 2007 A1
20070152176 Gorrell et al. Jul 2007 A1
20070154846 Gorrell et al. Jul 2007 A1
20070194357 Oohashi Aug 2007 A1
20070200940 Gruhlke et al. Aug 2007 A1
20070238037 Wuister et al. Oct 2007 A1
20070252983 Tong et al. Nov 2007 A1
20070258492 Gorrell Nov 2007 A1
20070258689 Gorrell et al. Nov 2007 A1
20070258690 Gorrell et al. Nov 2007 A1
20070259641 Gorrell Nov 2007 A1
20070264023 Gorrell et al. Nov 2007 A1
20070264030 Gorrell et al. Nov 2007 A1
20070282030 Anderson et al. Dec 2007 A1
20070284527 Zani et al. Dec 2007 A1
20080069509 Gorrell et al. Mar 2008 A1
Foreign Referenced Citations (14)
Number Date Country
0237559 Dec 1991 EP
2004-32323 Jan 2004 JP
WO 8701873 Mar 1987 WO
WO 9321663 Oct 1993 WO
WO 0072413 Nov 2000 WO
WO 0225785 Mar 2002 WO
WO 02077607 Oct 2002 WO
WO 2004086560 Oct 2004 WO
WO 2005015143 Feb 2005 WO
WO 2005098966 Oct 2005 WO
WO 2006042239 Apr 2006 WO
WO 2007081389 Jul 2007 WO
WO 2007081390 Jul 2007 WO
WO 2007081391 Jul 2007 WO
Related Publications (1)
Number Date Country
20070258126 A1 Nov 2007 US