This application claims the benefit of Korean Patent Application No. 2003-63386 filed Sep. 9, 2003, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein by reference.
1. Field of the Invention
The present invention relates to an electro-photographic image forming apparatus such as a laser printer, a facsimile, a copier, etc., and more particularly, to an electro-photographic image forming apparatus preventing toner from scattering when printing.
2. Description of the Related Art
In the case of non-contact development as described above, since the alternating current (AC) voltage superposed with the direct current (DC) is applied to the developing roller 5 when developing (an image area of the VDO-data chart of a control-timing diagram in
Therefore, it is an aspect of the present invention to provide an electro-photographic image forming apparatus preventing toner blowing in a developing area from scattering out of the developing area and a control method for the same.
It is another aspect of the present invention to provide an electro-photographic image forming apparatus which periodically cleans the scattered toner attached on a scattering preventive member and a control method for the same.
Additional aspects and/or advantages of the invention will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the invention.
To achieve the aforementioned aspects and/or other features of the present invention, there is provided an electro-photographic image forming apparatus preventing toner from scattering, which has a photosensitive medium, and a developing roller being opposite to the photosensitive medium and transporting the toner to the photosensitive medium. The electro-photographic image forming apparatus includes: a scattering preventive member being disposed downstream of the developing roller at a predetermined distance from the photosensitive medium, and being applied with voltage and a controller controlling the voltage that is applied to the scattering preventive member so as to transport the toner attached on the scattering preventive member to the photosensitive medium.
In an alternative aspect, a gap between the scattering preventive member and the photosensitive medium is equal to or larger than a gap between the developing roller and the photosensitive medium.
In another aspect the controller controls the voltage applied to the scattering preventive member periodically when a non-image area of the photosensitive medium faces the scattering preventive member so as to transport the toner attached on the scattering preventive member to the photosensitive medium.
In another aspect the controller controls a size of a cleaning voltage, which is applied to the scattering preventive member when the toner attached on the scattering preventive member is transported to the photosensitive medium, so that the cleaning voltage is different from a size of a scattering preventive voltage which is applied to the scattering preventive member when the toner is transported from the developing roller to the photosensitive medium. In this aspect, the size of the cleaning voltage is greater than the size of the scattering preventive voltage.
In another aspect, the controller forms an electrostatic latent image with a predetermined size on the non-image area of the photosensitive medium, and applies the cleaning voltage to the scattering preventive member when the electrostatic latent image faces the scattering preventive member so as to transport the toner attached on the scattering preventive member to the photosensitive medium.
In another aspect the voltage is applied to the scattering preventive member by an electrical power source which applies the voltage to the developing roller or a separate electrical power source. In this aspect, the electrical power source may be an alternating current (AC) superposed with a direct current (DC) or a direct current (DC).
As another aspect of the present invention, there is provided a control method for an electro-photographic image forming apparatus, including a scattering toner attaching operation of attaching toner, which scatters between a developing roller and a photosensitive medium, to a scattering preventive member disposed downstream of the developing roller; a toner cleaning operation of transporting the toner attached on the scattering preventive member to a non-image area of the photosensitive medium; and a toner collecting operation of collecting the toner attached on the non-image area of the photosensitive medium into a used toner container.
In another aspect, the toner cleaning includes forming an electrostatic latent image at the non-image area of the photosensitive medium; applying a cleaning voltage to the scattering preventive member when the electrostatic latent image faces the scattering preventive member; and applying a scattering preventive voltage to the scattering preventive member when the electrostatic latent image passes by the scattering preventive member.
In another aspect, the toner cleaning step is executed after a predetermined amount of printing occurs, or just before stopping a main motor of the electro-photographic image forming apparatus after a printing operation completes.
These and/or other aspects and advantages of the invention will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which:
Reference will now be made in detail to the embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The embodiments are described below to explain the present invention by referring to the figures.
An electro-photographic image forming apparatus preventing toner scattering according to the present invention includes a developing part and some functions of a controller as compared with the conventional electro-photographic image forming apparatus.
Referring to
An electrostatic latent image is formed on a surface of the photosensitive medium 1 by a laser beam 4 emitted from a laser-scanning unit (not shown). The developing roller 40 is disposed opposite of the photosensitive medium 1 at a predetermined distance (GAP1), and transports toner to a space where a surface of the photosensitive medium 1 and a surface of the developing roller 40 face each other (hereinafter, referred to as a “developing area”). It is beneficial that the gap (GAP1) between the developing roller 40 and the photosensitive medium 1 ranges from 150 to 300 μm. The developing roller 40 is disposed at a toner hopper, which holds toner, and is contacted with a toner supply roller 6 disposed inside the toner hopper, thereby forming a predetermined nip. The developing roller 40 is an elastic roller that is generally made of NBR rubber material. A surface roughness of the developing roller 40 ranges from 3 to 9 μm, and an electrical resistance thereof ranges from 1×105 to 5×106. Voltage applied to the developing roller 40 is the alternating current (AC) voltage superposed with the direct current (DC) voltage component. One example of the electrical power source, which applies the voltage to the developing roller 40, is the alternating current (AC) voltage being Vpp=1.8 kV, f=2.0 kHz, Duty (−)=35%, and the direct current (DC) voltage being Vdc=−500V. Additionally, another example of the electrical power source may use only the direct current (DC) electrical power source for applying the voltage to the developing roller 40.
The toner supply roller 6 comprises a shaft made, for example, of stainless steel and an elastic member such as urethane foam or silicone foam to cover the shaft. Voltage is applied to the toner supply roller 6 while a developing bias is applied to the developing roller 40. The direct current (DC) component of the voltage applied to the toner supply roller 6 is Vdc=−700V, and the alternating current (AC) component thereof is the same size as the developing bias. The voltage applied to the toner supply roller 6 transports the toner from the toner supply roller 6 to the developing roller 40.
A regulating member 7 is disposed between the photosensitive medium 1 and the toner supply roller 6 so as to regulate the toner transported by the developing roller 40 in a predetermined thickness. The regulating member 7, which is made of metal, for example, a stainless steel plate, is contacted with the developing roller 40 with pressure ranging from 10 to 50 g/cm, and the same voltage that is applied to the developing roller 40 is applied to the regulating member 7.
The toner is non-magnetic toner and shattered toner which thermoplastic resin such as polyester mixed with pigment that is shattered and distributed. A mean diameter of the toner is 8.0 μm. It is understood that the present invention may utilize other types of non-magnetic toners.
The scattering preventive member 50 is disposed a predetermined distance (GAP2) apart from the photosensitive medium 1 in a downstream of the airflow generated by rotation of the developing roller 40 and the photosensitive medium 1, that is, in a downstream side of the developing roller 40. The gap (GAP2) between the scattering preventive member 50 and the photosensitive medium 1 is larger than the gap (GAP1) between the developing roller 40 and the photosensitive medium 1. It is beneficial to keep the gap (GAP 2) as narrow as possible. The scattering preventive member 50 is shaped into a curved surface corresponding to the surface of the photosensitive medium 1 to allow the toner scattered from the developing area to be easily attached to a surface thereof. The scattering preventive member 50 is made of a conductive material such as stainless steel. An electrical power source 51 applying voltage to the scattering preventive member 50 is different from the electrical power source 41 applying voltage to the developing roller 40. At this time, the voltage applied to the scattering preventive member 50 is an alternating current (AC) voltage superposed with a direct current (DC) voltage component or only a direct current (DC) voltage.
The controller 60 controls the voltages applied to the scattering preventive member 50 and the developing roller 40 in accordance with a main motor (not shown) and the developing roller 40 driving as shown in the control-timing diagram of
|Vb|<|Vc|
here, Vb is the scattering preventive voltage and Vc is the cleaning voltage.
The operation of the embodiment of the present invention comprising the same structure as described above is explained hereafter.
As shown in
After a large number of printing operations, a significant amount of minus toner is stuck to the scattering preventive member 50. Thus, when a large electrostatic latent image such as an all black image is developed, minus toner stuck to the scattering preventive member 50 moves toward the electrostatic latent image portion and scatters onto the electrostatic latent image and the image background. In other words, because contaminating on the image occurs after significant build up of minus toner on the scattering preventive members, an operation cleaning up the minus toner attached to the scattering preventive member 50 needs to be periodically performed.
The controller 60 controls the voltage applied to the scattering preventive member 50, thereby performing the cleaning operation. The controller 60 controls the voltage applied to the scattering preventive member 50 according to a predetermined condition to cause the toner stuck to the scattering preventive member 50 to transport to the non-image area of the photosensitive medium 1.
One example of the cleaning operation performed by the controller 60 is described referring to a control-timing diagram shown in
The toner, which is transported from the scattering preventive member 50 to the surface of the photosensitive medium 1 during the cleaning operation, is removed from the surface of the photosensitive medium 1 and is collected into the used toner container 16 by a cleaner 15 shown in
In another embodiment of the present invention, the electrical power source 41 applying the developing bias to the developing roller 40 applies the voltage to the scattering preventive member 50. In other words, as shown in
Hereinafter, as another aspect of the present invention, a control method of the electro-photographic image forming apparatus is described referring to FIGS. 9 to 11.
In a printing operation, the controller 60 applies the same voltage as the developing bias applied to the developing roller 40 to the scattering preventive member 50. The toner scattered out of the developing area while the toner is transported from the developing roller 40 to the photosensitive medium 1 for developing the image area adheres to the scattering preventive member 50 disposed at the downstream side of the developing roller 40 (a scattering toner attaching operation) (S10).
Subsequently, the controller 60 causes the toner stuck to the scattering preventive member 50 to transport to the non-image area of the photosensitive medium 1, thereby cleaning the scattering preventive member 50 (a toner cleaning operation) (S20). At this time, the controller 60 cleans the scattering preventive member 50 according to a predetermined condition for the toner cleaning operation to begin. The predetermined condition that the controller 60 causes the toner cleaning operation to start may be after the electro-photographic image forming apparatus performs a predetermined amount of printing (for example, printing of two sheets of paper) or just before the main motor is stopped with the completion of the printing operation.
As the photosensitive medium 1 rotates, the toner stuck to the non-image area of the photosensitive medium 1 in the toner cleaning operation is removed from the surface of the photosensitive medium 1 and is collected into the used toner container 16 by the cleaner 15 (a toner collecting operation) (S30).
Here, a process that the controller 60 performs the toner cleaning operation (S20) is explained in detail as below. The controller 60 controls the laser-scanning unit, thereby forming an electrostatic latent image in a non-image area of the photosensitive medium 1 (S21). At this time, the controller 60 forms a predetermined size of the electrostatic latent image as an all black image to allow the toner attached to the scattering preventive member 50 to attach as much as possible to the surface of the photosensitive medium 1. Then, the controller 60 applies the cleaning voltage to the scattering preventive member 50 when the electrostatic latent image faces the scattering preventive member 50 as the photosensitive medium 1 rotates (S22). At this time, the controller 60 controls the voltage so that the size of the cleaning voltage applied to the scattering preventive member 50 is larger than the size of the voltage applied to the scattering preventive member 50 during a printing operation, that is, the scattering preventive voltage. When the electrostatic latent image passes by the scattering preventive member 50 as the photosensitive medium 1 rotates, the controller 60 applies the scattering preventive voltage to the scattering preventive member 50 (S23).
Therefore, the electro-photographic image forming apparatus according to the present invention prevents the toner blowing in the developing area during a printing operation from scattering inside thereof because the controller controls the electro-photographic image forming apparatus as described above.
Although a few embodiments of the present invention have been shown and described, it would be appreciated by those skilled in the art that changes may be made in this embodiment without departing from the principles and spirit of the invention, the scope of which is defined in the claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2003-63386 | Sep 2003 | KR | national |