Electro-polarizable compound and capacitor

Information

  • Patent Grant
  • 10153087
  • Patent Number
    10,153,087
  • Date Filed
    Tuesday, May 24, 2016
    8 years ago
  • Date Issued
    Tuesday, December 11, 2018
    5 years ago
Abstract
An electro-polarizable compound has the following general formula:
Description
FIELD OF THE INVENTION

The present disclosure relates generally to passive components of electrical circuit and more particularly to an electro-polarizable compound and capacitor based on this material and intended for energy storage.


BACKGROUND

A capacitor is a passive electronic component that is used to store energy in the form of an electrostatic field, and comprises a pair of electrodes separated by a dielectric layer. When a potential difference exists between the two electrodes, an electric field is present in the dielectric layer. An ideal capacitor is characterized by a single constant value of capacitance, which is a ratio of the electric charge on each electrode to the potential difference between them. For high voltage applications, much larger capacitors have to be used.


One important characteristic of a dielectric material is its breakdown field. The breakdown field corresponds to the value of electric field strength at which the material suffers a catastrophic failure and conducts electricity between the electrodes. For most capacitor geometries, the electric field in the dielectric can be approximated by the voltage between the two electrodes divided by the spacing between the electrodes, which is usually the thickness of the dielectric layer. Since the thickness is usually constant it is more common to refer to a breakdown voltage, rather than a breakdown field. There are a number of factors that can dramatically reduce the breakdown voltage. In particular, the geometry of the conductive electrodes is important factor affecting breakdown voltage for capacitor applications. In particular, sharp edges or points hugely increase the electric field strength locally and can lead to a local breakdown. Once a local breakdown starts at any point, the breakdown will quickly “trace” through the dielectric layer until it reaches the opposite electrode and causes a short circuit.


Breakdown of the dielectric layer usually occurs as follows. Intensity of an electric field becomes high enough to “pull” electrons from atoms of the dielectric material and makes them conduct an electric current from one electrode to another. Presence of impurities in the dielectric or imperfections of the crystal structure can result in an avalanche breakdown as observed in semiconductor devices.


Another important characteristic of a dielectric material is its dielectric permittivity. Different types of dielectric materials are used for capacitors and include ceramics, polymer film, paper, and electrolytic capacitors of different kinds. The most widely used polymer film materials are polypropylene and polyester. Increasing dielectric permittivity allows for increasing volumetric energy density, which makes it an important technical task.


Second-order nonlinear optical (NLO) effects of organic molecules have been extensively investigated for their advantages over inorganic crystals. Properties studied, for example, include their large optical non-linearity, ultra-fast response speed, high damage thresholds and low absorption loss, etc. Particularly, organic thin films with excellent optical properties have tremendous potential in integrated optics such as optical switching, data manipulation and information processing. Among organic NLO molecules, azo-dye chromophores have been a special interest to many investigators because of their relatively large molecular hyper-polarizability (b) due to delocalization of the p-electronic clouds. They were most frequently either incorporated as a guest in the polymeric matrix (guest-host polymers) or grafted into the polymeric matrix (functionalized polymers) over the past decade.


Hyper-electronic polarization of organic compounds is described in greater detail in Roger D. Hartman and Herbert A. Pohl, “Hyper-electronic Polarization in Macromolecular Solids”, Journal of Polymer Science: Part A-1 Vol. 6, pp. 1135-1152 (1968). Hyper-electronic polarization may be viewed as the electrical polarization external fields due to the pliant interaction with the charge pairs of excitons, in which the charges are molecularly separated and range over molecularly limited domains. In this article four polyacene quinone radical polymers were investigated. These polymers at 100 Hz had dielectric constants of 1800-2400, decreasing to about 58-100 at 100,000 Hz. Essential drawback of the described method of production of material is use of a high pressure (up to 20 kbars) for forming the samples intended for measurement of dielectric constants.


SUMMARY

The present disclosure provides an electro-polarizable compound having the following general formula (I):




embedded image


  • Core1 is an aromatic polycyclic conjugated molecule having two-dimensional flat form and self-assembling by pi-pi stacking in a column-like supramolecule, R1 are electron donor groups connected to the aromatic polycyclic conjugated molecule (Core1) and R1′ are electron acceptor groups connected to the aromatic polycyclic conjugated molecule (Core1), m is number of acceptor groups R1, m′ is a number of donor groups R′, m and m′ are equal to 0, 1, 2, 3, 4, 5 or 6, wherein m and m′ are not both equal to 0, R2 is a substituent comprising one or more ionic groups from a class of ionic compounds that are used in ionic liquids connected to the aromatic polycyclic conjugated molecule (Core1) directly or via a connecting group, p is number of ionic groups R2 which is equal to 0, 1, 2, 3 or 4. The fragment marked NLE containing the Core1 with at least one group R1 and/or R1′ has a nonlinear effect of polarization.

  • Core2 is an electro-conductive oligomer and number n of the electro-conductive oligomers is equal to 0, 2, or 4. R3 is a substituent comprising one or more ionic groups from a class of ionic compounds that are used in ionic liquids connected to the electro-conductive oligomer (Core2) directly or via a connecting group, s is number of the ionic groups R3 which is equal to 0, 1, 2, 3 or 4.

  • R4 is a resistive substituent providing solubility of the organic compound in a solvent and electrically insulating the column-like supramolecules from each other and connected to the aromatic polycyclic conjugated molecule (Core1) and/or to the electro-conductive oligomer (Core2) directly or via a connecting group. The parameter k is a number of substituents R4, which is equal to 0, 1, 2, 3, 4, 5, 6, 7 or 8.



In one aspect, the present disclosure provides a solution comprising an organic solvent and at least one disclosed electro-polarizable compound.


In another aspect, the present disclosure provides a crystal metadielectric layer comprising a mixture of the electro-polarizable compounds as disclosed above. The nonlinearly polarizable fragments comprising an aromatic polycyclic conjugated molecule with at least one group R1 are placed into the resistive dielectric envelope formed by resistive substituents R4 providing solubility of the organic compound in a solvent and electrically insulating the column-like supramolecules from each other.


In still another aspect, the present invention provides a meta-capacitor comprising two metal electrodes positioned parallel to each other and which can be rolled or flat and planar with said metadielectric layer between said electrodes, wherein the metadielectric layer comprises one or more types of the disclosed electro-polarizable. The nonlinearly polarizable fragments comprising an aromatic polycyclic conjugated molecule with at least one group R1, the electro-conductive oligomers and the ionic groups which have electronic and/or ionic type of polarizability are placed into the resistive dielectric envelope formed by resistive substituents providing solubility of the organic compound in a solvent and electrically insulating the column-like supramolecules from each other.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.





BRIEF DESCRIPTION OF THE DRAWING


FIG. 1A schematically shows a capacitor with flat and planar electrodes in accordance with an aspect of the present disclosure.



FIG. 1B schematically shows a capacitor with rolled (circular) electrodes in accordance with another aspect of the present disclosure.





DETAILED DESCRIPTION

While various embodiments of the invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions may occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed.


The present disclosure provides an electro-polarizable compound. Existence of the electrophilic groups (acceptors) and the nucleophilic groups (donors) in the aromatic polycyclic conjugated molecule (Core1) promotes non-uniform distribution of electronic density in the conjugated molecule: surplus of electrons in one place (in a donor zone) and a shortage of electrons in other place (in an acceptor zone). The influence of external electric field onto non-uniform distribution of electronic density along the conjugated molecule leads to the induced polarization Pind. In the general case the induced polarization is nonlinear function of intensity of local electric field Eloc. In the assumption of weak nonlinearity when it is possible to be limited to several members of decomposition of an induced polarization into a series on degrees of intensity of a local electric field, the induced polarization of the environment (of molecule) can be written down in the following form:

Pind=α·Eloc+β·Eloc2+ . . . ,

where α—linear polarizability, β—square polarizability. Though the assumption of a smallness of electric field is not always right, nevertheless parameters α and β can be used for qualitative analysis of polarizability of the disclosed compounds. In the present disclosure the main attention is paid to ways of increase in the induced polarization of the disclosed compounds and therefore onto ways of increase of the linear polarizability α and square polarizability β. Such attention is caused by that the constant dipole and quadrupole electrical moments are mutually neutralized at self-assembly of such conjugated molecules. Analysis shows that linear polarizability depends on the size of the average electronic density in the molecule, and nonlinear polarizability depends on the size of heterogeneity of electronic density. It is also shown that a non-centrosymmetric arrangement of the electron donor and acceptor groups can lead to a strong nonlinear response of the compound's electronic polarization in the presence of an electric field. Influence of chemical structure on linear polarizability α and square polarizability β is shown in Table 1 below.











TABLE 1





chemical structure
α
β



















embedded image


945
0.041







embedded image


1348
0.165







embedded image


1537
862







embedded image


1252
21107







embedded image


1908
40221







embedded image


1431
35189







embedded image


2057
168081







embedded image


3397
582843







embedded image


4604
1002570









An essential feature of the present disclosure is use of rigid no-conjugated limit carbon structures as resistive substituents. Such structures are absolutely determined in distinguishing from the dielectric structures formed by “fat” tails (such as alkyl, aryl, substituted alkyl, substituted aryl, fluorinated alkyl, chlorinated alkyl, branched and complex alkyl) which can be bent (curved) and lead to stochastic distribution of electronic density in the dielectric structure that leads to its electric breakdown. Thus, as resistive substituent R4 is used a non-conjugated compound, such as cyclo-hydrocarbons with rigid/fixed spatial structure like cyclohexane, cyclopentane and flat structures that are built as tiles from cyclo-molecules that do not contain voids/empty space; that have dense packing of SP3 carbon with H and F substitutes. Otherwise use of fat tails leads to formation of friable dielectric structure (film, layer, and envelope). It is possible that in friable structure always there will be a local area (“hole”) in which electronic density is equal to zero and which can be occupied with a free electron (that leads to electric breakdown). It is possible to enter a concept of a molecular hole when one molecule “is taken out” from the ordered structure (from a crystal lattice). In this case the quantum object (a quantum hole, a quantum point) is formed in which there are empty (non-occupied) energy levels. Set of such objects creates a condition for conductivity of electrons and for electric breakdown of dielectric structure. Therefore in the present disclosure the determined structures forming the ordered crystal dielectric layers are disclosed which do not allow electrons to pass through material.


Presence of the electro-conductive oligomers leads to increasing of polarizability of the disclosed electro-polarizable compound because of electronic super conductivity of the electro-conductive oligomers. Ionic groups increase an ionic component of polarization of the disclosed electro-polarizable compound. The nonlinearly polarizable fragments comprising an aromatic polycyclic conjugated molecule with at least one dopant group, the electro-conductive oligomers and the ionic groups are placed into the resistive dielectric envelope formed by resistive substituents providing solubility of the organic compound in a solvent and electrically insulating the column-like supramolecules from each other. The resistive substituents increase the electric strength of these electro-polarizable compounds and breakdown voltage of the dielectric layers made on their basis.


In one embodiment of the present disclosure, the aromatic polycyclic conjugated molecule (Core1) comprises rylene fragments, which may be in conjugation with phenyl amides, naphthalene amides, and/or anthracene amides. In another embodiment of the disclosed electro-polarizable compound, the rylene fragments are selected from structures from 1 to 12 as given in Table 2.









TABLE 2





Examples of the aromatic polycyclic conjugated molecule comprising rylene fragments


















embedded image


1







embedded image


2







embedded image


3







embedded image


4







embedded image


5







embedded image


6







embedded image


7







embedded image


8







embedded image


9







embedded image


10







embedded image


11







embedded image


12









In one embodiment of the present disclosure, the electron donor and acceptor groups (R1) are selected from nucleophilic groups (donors) and electrophilic groups (acceptors) and the set (variety) of groups (R1)m containing of m elements comprises donors (R1′) and/or acceptors (R1). The electrophilic groups (acceptors) are selected from —NO2, —NH3+ and —NR3+ (quaternary nitrogen salts), counterion Cl— or Br—, —CHO (aldehyde), —CRO (keto group), —SO3H (sulfonic acids), —SO3R (sulfonates), —SO2NH2 (sulfonamides), —COOH (carboxylic acid), —COOR (esters, from carboxylic acid side), —COCl (carboxylic acid chlorides), —CONH2 (amides, from carboxylic acid side), —CF3, —CCl3, —CN, —C(CN)2 wherein R is radical selected from the list comprising alkyl (methyl, ethyl, iso-propyl, tert-butyl, neopentyl, cyclohexyl etc.), allyl (—CH2—CH═CH2), benzyl (—CH2C6H5) groups, phenyl (+substituted phenyl) and other aryl (aromatic) groups. The nucleophilic groups (donors) are selected from —O— (phenoxides, like —ONa or —OK), —NH2, —NHR, —NR2, —OH, —OR (ethers), —NHCOR (amides, from amine side), —OCOR (esters, from alcohol side), alkyls, —C6H5, vinyls, wherein R is radical selected from the list comprising alkyl (methyl, ethyl, isopropyl, tert-butyl, neopentyl, cyclohexyl etc.), allyl (—CH2—CH═CH2), benzyl (—CH2C6H5) groups, phenyl (+substituted phenyl) and other aryl (aromatic) groups.


In still another embodiment of the disclosed electro-polarizable compound, at least one connecting group is selected from the list comprising the following structures: 13-23 given in Table 3, where X is hydrogen (H) or an alkyl group.









TABLE 3





Examples of the connecting group




















embedded image


13









embedded image


14









embedded image


15









embedded image


16









embedded image


17









embedded image


19









embedded image


20









embedded image


21









embedded image


22










In one embodiment of the present disclosure, the at least one connecting group is selected from the group of CH2, CF2, SiR2O, CH2CH2O, wherein R is selected from the list comprising H, alkyl, and fluorine. In another embodiment of the present disclosure, the at least one connecting group is selected from structures 24 to 29 as given in Table 4.









TABLE 4





Examples of the connecting group




















embedded image


24









embedded image


25









embedded image


26









embedded image


27









embedded image


28









embedded image


29










In yet another embodiment of the present disclosure, the resistive substituent R4 is selected from the group of alkyl, aryl, substituted alkyl, substituted aryl, fluorinated alkyl, chlorinated alkyl, branched and complex alkyl, branched and complex fluorinated alkyl, branched and complex chlorinated alkyl groups, and any combination thereof, and wherein the alkyl group is selected from methyl, ethyl, propyl, n-butyl, iso-butyl and tert-butyl groups, and the aryl group is selected from phenyl, benzyl and naphthyl groups or siloxane, and/or polyethyleneglycol as linear or branched chains. In still another embodiment of the present disclosure, the resistive substituent R4 is CXQ2X+1, where X≥1 and Q is hydrogen (H), fluorine (F), or chlorine (Cl).


In one embodiment of the electro-polarizable compound, the aromatic polycyclic conjugated molecule (Core1) and the groups (R1) form a non-centrosymmetric molecular structure. In another embodiment of the electro-polarizable compound, the aromatic polycyclic conjugated molecule (Core1), the groups (R1) and the resistive substituents (R4) form a non-centrosymmetric molecular structure.


In one embodiment of the present disclosure, the electro-polarizable compound has the following general formula (II):




embedded image



In general formula II, Core1 is the aromatic polycyclic conjugated molecule, as discussed above, the resistive substituent R4 is a non-conjugated part of disclosed compound, which may be saturated and fused cyclo-hydrocarbons or saturated and fused cyclo-halocarbons with rigid spatial structure including, but not limited to cyclohexane, cyclopentane, polycyclic perflourohexyls, polycyclic perflouropentyls, and structures that are built from tiles of cyclic carbon molecules. Wherein, the tiles of cyclic carbon molecules have dense packing of SP3 carbon saturated with H, F, Cl, Br. And, wherein parameters n=p=s=0. In another embodiment of the electro-polarizable compound, a length of the non-conjugated part is selected such that its resistivity is greater than 1018 ohm·cm. In yet another embodiment of the electro-polarizable compound, the resistive substituent R4 is a polycyclic alkyl group and a polycyclic halo-alkyl, wherein in the polycyclic halo-alkyl group is connected to the apex of Core1 on which the electrophilic group (acceptor) R1 is connected, or the apex of Core1 on which the nucleophilic group (donor) R1′ is connected, but not both. In still another embodiment of the electro-polarizable compound, the resistive substituent R4 is resistive polycyclic substituents selected from the list comprising long C25H34 and C25H35 or C25F34 and C25F35 and located on the apex phenyl rings of Core1. In one embodiment of the present disclosure, the electro-polarizable compound has the following general formula (III):




embedded image



In general formula III, the parameter m is equal to 4, R1′ is donor group, R1 is acceptor group, k is equal to 2. In another embodiment of the electro-polarizable compound, the Core1 is rylene fragment having following structural formula where repetition parameter t is an integer varying from 0 to 5:




embedded image



wherein the set of the electron donor and acceptor groups comprises two donor groups —NH2 and two acceptor groups —NO2 (m is equal to 4) located on rylene phenyl rings and/or apex phenyl ring positions of the Core1, so that the fragment having a nonlinear effect of polarization (NLE) is represented by the following chemical structure (when t=1):




embedded image



wherein the resistive substituent (R4) is an amine structure of the following type:




embedded image



leading to the following structural formula (IV):




embedded image



wherein the resistive substituents are connected via a connecting group.


In another embodiment of the present disclosure, the electro-polarizable compound has the following general formula (V):




embedded image



In general formula V, Core1 is the above-described aromatic polycyclic conjugated molecule, m is equal to 6, R1′ is donor group, R1 is acceptor group, k is equal to 2. In yet another embodiment of the electro-polarizable compound, the Core1 is rylene fragment having following structural formula where repetition parameter t varies from 1 to 5:




embedded image



wherein the set of the electron donor and acceptor groups comprises three donor groups —NH2 and three acceptor groups —NO2 (m is equal to 6) are located on rylene phenyl rings and/or apex phenyl ring positions of the Core1, so that the fragment having a nonlinear effect of polarization (NLE) is represented by following chemical structure (when t=1):




embedded image



wherein the resistive substituent (R4) is an amine structure of the following type:




embedded image



leading to the following structural formula (VI):




embedded image



wherein the resistive substituents are connected via a connecting group.


In one embodiment of the present disclosure, the induced polarization Pind of the electro-polarizable compound may be written in the form of decomposition into a series on degrees of intensity of a local electric field Eloc:

Pind=α·Eloc+β·Eloc2+ . . . ,

where α represents linear polarizability, β represents square polarizability.


In an aspect, the present disclosure provides the organic solvent comprising the disclosed electro-polarizable compound. In one embodiment, the solution comprises a mixture of different electro-polarizable compounds. In another embodiment of the disclosed organic solvent, the mixture of the electro-polarizable compounds comprises the rylene fragments of different length. In still another embodiment, the organic solvent is selected from the list comprising ketones, carboxylic acids, hydrocarbons, cyclic hydrocarbons, chlorohydrocarbons, alcohols, ethers, esters, and any combination thereof. In yet another, the organic solvent is selected from the list comprising acetone, xylene, toluene, ethanol, methylcyclohexane, ethyl acetate, diethyl ether, octane, chloroform, methylene chloride, dichloroethane, trichloroethene, tetrachloroethene, carbon tetrachloride, 1,4-dioxane, tetrahydrofuran, pyridine, triethylamine, nitromethane, acetonitrile, dimethylformamide, dimethyl sulfoxide, and any combination thereof. In yet another embodiment of disclose, the solution is a lyotropic liquid crystal solution.


In another aspect, aspects of the present disclosure provide a crystal metadielectric layer comprising at least one type of the disclosed electro-polarizable compounds. The crystal metadielectric layers are produced from the disclosed organic compound by Cascade Crystallization; a method of thin crystal film (or thin crystal layer) manufacturing known as the Optiva-Process. See U.S. Pat. Nos. 5,739,296 and 6,049,428, and P. Lazarev et al., “X-ray Diffraction by Large Area Organic Crystalline Nano-films”, Molecular Materials, 14 (4), 303-311 (2001), and Bobrov, “Spectral Properties of Thin Crystal Film Polarizers”, Molecular Materials, 14 (3), 191-203 (2001).


Cascade Crystallization process involves a chemical modification step and four steps of ordering during the crystal metadielectric layer formation. The chemical modification step introduces hydrophilic groups on the periphery of the molecule of the disclosed organic compound in order to impart amphiphilic properties to the molecule. Amphiphilic molecules stack together into supramolecules, which is the first step of ordering. At certain concentration, supramolecules are converted into a liquid-crystalline state to form a lyotropic liquid crystal, which is the second step of ordering. The lyotropic liquid crystal is deposited under the action of a shear force (or meniscus force) onto a substrate based on a Mayer Rod shearing technique, so that shear force (or the meniscus) direction determines the crystal axis direction in the resulting solid crystal layer. The external alignment upon the lyotropic liquid crystal can be produced using any other means, for example by applying an external electric field at normal or elevated temperature, with or without additional illumination, magnetic field, or optical field (e.g., coherent photovoltaic effect); the degree of the external alignment should be sufficient to impart necessary orientation to the supramolecules of the lyotropic liquid crystal and form a structure, which serves as a base of the crystal lattice of the dielectric layer. This directional deposition is third step of ordering, representing the global ordering of the crystalline or polycrystalline structure on the substrate surface. The last fourth step of the Cascade Crystallization process is drying/crystallization, which converts the lyotropic liquid crystal into a solid crystal dielectric layer. The term Cascade Crystallization process is used to refer to the chemical modification and four ordering steps as a combination process.


The Cascade Crystallization process is used for production of thin crystalline metadielectric layers. The dielectric layer produced by the Cascade Crystallization process has a global order which means that a direction of the crystallographic axis of the layer over the entire substrate surface is controlled by the deposition process. Molecules of the deposited material are packed into supramolecules with a limited freedom of diffusion or motion. The thin crystalline dielectric layer is characterized by an interplanar spacing of 3.4±0.3 Ångströms (Å) in the direction of one of the optical axes.


In one embodiment of the present disclosure, the crystal metadielectric layer comprises the column-like supramolecules formed by the electro-polarizable compounds comprising the rylene fragments of different length. The variety of the rylene fragment lengths increases the randomness of the stack. In one embodiment according to aspects of the present disclosure, the layer's relative permittivity is greater than or equal to 1000. In one embodiment, the real part of the relative permittivity (∈′) of the crystal metadielectric layer comprises first-order (∈(1)) and second-order (∈(2)) permittivities according to follow formula:








ɛ


=


ɛ

(
1
)


+

2






ɛ

(
2
)





V
0

d




,




where V0 is the DC-voltage which is applied to the crystal metadielectric layer, d is the layer thickness. In another embodiment of the present invention, the layer's resistivity is greater than or equal to 1013 ohm/cm.


The present disclosure provides the metacapacitor comprising two metal electrodes positioned parallel to each other and which can be rolled or flat and planar and metadielectric layer between said electrodes. The layer comprises the electro-polarizable compounds as disclosed above.


The metacapacitor comprises a first electrode 1, a second electrode 2, and a metadielectric layer 3 disposed between said first and second electrodes as shown in FIG. 1A. The electrodes 1 and 2 may be made of a metal, such as copper, zinc, or aluminum or other conductive material such as graphite or carbon nanomaterials and are generally planar in shape.


The electrodes 1, 2 may be flat and planar and positioned parallel to each other. Alternatively, the electrodes may be planar and parallel, but not necessarily flat, they may be coiled, rolled, bent, folded, or otherwise shaped to reduce the overall form factor of the capacitor. It is also possible for the electrodes to be non-flat, non-planar, or non-parallel or some combination of two or more of these. By way of example and not by way of limitation, a spacing d between the electrodes land 2 may range from about 100 nm to about 10 000 μm. The maximum voltage Vbd between the electrodes land 2 is approximately the product of the breakdown field Ebd and the electrode spacing d. If Ebd=0.1 V/nm and the spacing d between the electrodes 1 and 2 is 10,000 microns (100,000 nm), the maximum voltage Vbd would be 100,000 volts.


The electrodes land 2 may have the same shape as each other, the same dimensions, and the same area A. By way of example, and not by way of limitation, the area A of each electrode 1 and 2 may range from about 0.01 m2 to about 1000 m2. By way of example and not by way of limitation for rolled capacitors, electrodes up to, e.g., 1000 m long and 1 m wide.


These ranges are non-limiting. Other ranges of the electrode spacing d and area A are within the scope of the aspects of the present disclosure.


If the spacing d is small compared to the characteristic linear dimensions of electrodes (e.g., length and/or width), the capacitance C of the capacitor may be approximated by the formula:

C=∈∈oA/d,  (V)

where ∈o is the permittivity of free space (8.85×10−12 Coulombs2/(Newton·meter2)) and ∈ is the dielectric constant of the dielectric layer. The energy storage capacity U of the capacitor may be approximated as:

U=½∈∈oAEbd2  (VI)


The energy storage capacity U is determined by the dielectric constant ∈, the area A, and the breakdown field Ebd. By appropriate engineering, a capacitor or capacitor bank may be designed to have any desired energy storage capacity U. By way of example, and not by way of limitation, given the above ranges for the dielectric constant ∈, electrode area A, and breakdown field Ebd a capacitor in accordance with aspects of the present disclosure may have an energy storage capacity U ranging from about 500 Joules to about 2·1016 Joules.


For a dielectric constant ∈ ranging, e.g., from about 100 to about 1,000,000 and constant breakdown field Ebd between, e.g., about 0.1 and 0.5 V/nm, a capacitor of the type described herein may have a specific energy capacity per unit mass ranging from about 10 W·h/kg up to about 100,000 W·h/kg, though implementations are not so limited.


The present disclosure includes metacapacitors that are coiled, e.g., as depicted in FIG. 1B. In this example, a metacapacitor 20 comprises a first electrode 21, a second electrode 22, and a metadielectric material layer 23 of the type described hereinabove disposed between said first and second electrodes. The electrodes 21 and 22 may be made of a metal, such as copper, zinc, or aluminum or other conductive material such as graphite or carbon nanomaterials and are generally planar in shape. In one implementation, the electrodes and metadielectric material layer 23 are in the form of long strips of material that are sandwiched together and wound into a coil along with an insulating material, e.g., a plastic film such as polypropylene or polyester to prevent electrical shorting between the electrodes 21 and 22.


In order that the invention may be more readily understood, reference is made to the following examples, which are intended to be illustrative of the invention, but are not intended to limit its scope.


EXAMPLE 1

This Example describes synthesis of the disclosed organic compound according following structural scheme:




embedded image


Terrylene anhydride 1 (1 equiv.) and 1-bromomethanamine (1 equiv.) were stirred in imidazole at 130° C. overnight. The mixture was dissolved in THF and washed with water 3 times. The organics were combined and dried over MgSO4. The solvent was removed under reduced pressure to give 2.




embedded image


Terrylene imide 2 (1 equiv.) was dissolved in THF and stirred over an ice bath. Lithium aluminum hydride (5 equiv.) dissolved in THF was slowly added. The mixture was allowed to warm to ambient temperature and stirred for 18 h. The mixture was quenched with 2M NaOH, filtered, and dried over MgSO4, and the solvent was removed under reduced pressure to give 3.




embedded image


Terrylene 3 (1 equiv.) and Pd/C (20% wt/wt) were stirred in THF in a three-neck flask with a H2 balloon attached for 18 h. The mixture was filtered through Celite and the solvents were removed under reduced pressure to give 4.




embedded image


Bromo-amine 4 (1 equiv.), Anthracene 5 (1 equiv.), Pd(Ph)4 (10 mol %), K2CO3 (1.5 equiv.) were stirred in toluene at 70° C. for 18 h. The mixture was filtered through Celite and the filtrate was washed with NaHCO3 and brine. The organics were dried over MgSO4, and the solvents were removed under reduced pressure to give 6.




embedded image


Naphthalene anhydride 7 (1 equiv.) and anthracene 6 (1 equiv.) were stirred in imidazole at 130° C. overnight. The mixture was dissolved in THF and washed with water 3 times. The organics were combined and dried over MgSO4. The solvent was removed under reduced pressure to give 8.




embedded image


Amidine 8 (1 equiv.) and Pd/C (20% wt/wt) were stirred in THF in a three-neck flask with a H2 balloon attached for 18 h. The mixture was filtered through Celite and the solvents were removed under reduced pressure to give 9.




embedded image


Amidine 8 (1 equiv.) was dissolved in THF and stirred at −80° C. N-butyllithium (1.2 equiv., 2.5 M in hexanes) was added dropwise. After 1 h, triisopropylborane was added dropwise and allowed to warm to room temperature overnight. The mixture was washed with NaHCO3 and brine and dried over MgSO4. The solvent was removed under reduced pressure to give 10.




embedded image


Bromo-amidine 9 (1 equiv.), Amidine boronic ester 10 (1 equiv.), Pd(Ph)4 (10 mol %), K2CO3 (1.5 equiv.) were stirred in toluene at 70° C. for 18 h. The mixture was filtered through Celite and the filtrate was washed with NaHCO3 and brine. The organics were dried over MgSO4, and the solvents were removed under reduced pressure to give 11.




embedded image


A mixture of 1.48 g (13 mmol) potassium tert-butoxide 2.30 g (15.1 mmol) of diazabicyclo[5.4.0]undec-7-ene (DBU), 2.2 g 36.3 mmol) ethanolamine and 1.0 g of 11 was heated to 140° C. for 11 hours. Afterwards, the same amount of potassium tert-butoxide, DBU and ethanolamine were added and the mixture was kept at 140° C. for 18 hours. The reaction mixture was cooled to room temperature, poured into 250 ml of 1M HCl filtered, washed until neutral pH and then dried to give the final product 12.


EXAMPLE 2

This Example describes synthesis of the disclosed organic compound according following structural scheme:




embedded image


Bromo-amine 4 (1 equiv.), Naphthalene 14 (1 equiv.), Pd(Ph)4 (10 mol %), K2CO3 (1.5 equiv.) were stirred in toluene at 70° C. for 18 h. The mixture was filtered through Celite and the filtrate was washed with NaHCO3 and brine. The organics were dried over MgSO4, and the solvents were removed under reduced pressure to give 15.




embedded image


Naphthalene anhydride 16 (1 equiv.) and naphthalene 15 (1 equiv.) were stirred in imidazole at 130° C. overnight. The mixture was dissolved in THF and washed with water 3 times. The organics were combined and dried over MgSO4. The solvent was removed under reduced pressure to give 17.




embedded image


Amidine 17 (1 equiv.) and Pd/C (20% wt/wt) were stirred in THF in a three-neck flask with a H2 balloon attached for 18 h. The mixture was filtered through Celite and the solvents were removed under reduced pressure to give 18.




embedded image


Amidine 17 (1 equiv.) was dissolved in THF and stirred at −80° C. N-butyllithium (1.2 equiv., 2.5 M in hexanes) was added dropwise. After 1 h, triisopropylborane was added dropwise and allow to warm to room temperature overnight. The mixture was washed with NaHCO3 and brine and dried over MgSO4. The solvent was removed under reduced pressure to give 19.




embedded image


Bromo-amidine 18 (1 equiv.), Amidine boronic ester 19 (1 equiv.), Pd(Ph)4 (10 mol %), K2CO3 (1.5 equiv.) were stirred in toluene at 70° C. for 18 h. The mixture was filtered through Celite and the filtrate was washed with NaHCO3 and brine. The organics were dried over MgSO4, and the solvents were removed under reduced pressure to give 20.




embedded image


A mixture of 1.48 g (13 mmol) potassium tert-butoxide 2.30 g (15.1 mmol) of diazabicyclo[5.4.0]undec-7-ene (DBU), 2.2 g 36.3 mmol) ethanolamine and 1.0 g of 20 was heated to 140° C. for 11 hours. Afterwards, the same amount of potassium tert-butoxide, DBU and ethanolamine were added and the mixture was kept at 140° C. for 18 hours. The reaction mixture was cooled to room temperature, poured into 250 ml of 1M HCl filtered, washed until neutral pH and then dried to give the final product 21.


Aspects of the present disclosure provide compounds characterized by highly nonlinear electric polarizabilitly. Such compounds are useful as high dielectric constant metadielectrics for metacapacitors with extremely high capacitance and extremely high energy storage capacity. While the above is a complete description of the preferred embodiment of the present invention, it is possible to use various alternatives, modifications and equivalents. Therefore, the scope of the present invention should be determined not with reference to the above description but should, instead, be determined with reference to the appended claims, along with their full scope of equivalents. Any feature described herein, whether preferred or not, may be combined with any other feature described herein, whether preferred or not. In the claims that follow, the indefinite article “A”, or “An” refers to a quantity of one or more of the item following the article, except where expressly stated otherwise. As used herein, in a listing of elements in the alternative, the word “or” is used in the logical inclusive sense, e.g., “X or Y” covers X alone, Y alone, or both X and Y together, except where expressly stated otherwise. Two or more elements listed as alternatives may be combined together. The appended claims are not to be interpreted as including means-plus-function limitations, unless such a limitation is explicitly recited in a given claim using the phrase “means for.”

Claims
  • 1. An electro-polarizable compound having the following formula (I):
  • 2. The electro-polarizable compound according to claim 1, wherein the acceptor groups (R1′) are selected from —NO2, —NH3+and —NR3+(quaternary nitrogen salts), counterion Cl— or Br—, —CHO (aldehyde), —CRO (keto group), —SO3H (sulfonic acids), —SO3R (sulfonates), —SO2NH2 (sulfonamides), —COOH (carboxylic acid), —COOR (esters,), —COCl (carboxylic acid chlorides), —CONH2 (amides,), —CF3, —CCl3,—CN, —C(CN)2 wherein R is radical selected from the list consisting of alkyl, allyl (—CH2—CH═CH2), benzyl (—CH2C6H5,) groups, phenyl (+substituted phenyl) and other aryl (aromatic) groups.
  • 3. The electro-polarizable compound according to claim 1, wherein the donor groups (R1) are selected from —O— (phenoxides,), —NH2, —NHR, —NR2, —OH, —OR (ethers), —NHCOR (amides), —OCOR (esters), alkyls, —C6H5, vinyls, wherein R is radical selected from the list consisting of alkyl, allyl (—CH2—CH═CH2), benzyl (—CH2C6H5) groups, phenyl (+substituted phenyl) and other aryl (aromatic) groups.
  • 4. The electro-polarizable compound according to claim 1, wherein the at least one connecting group is selected from the list comprising the following structures: 13-22, where X is hydrogen (H) or an alkyl group:
  • 5. The electro-polarizable compound according to claim 1, wherein the at least one connecting group is selected from the group of CH2, CF2, SiR2O, CH2CH2O, wherein R is selected from the list consisting of H, alkyl, and fluorine.
  • 6. The electro-polarizable compound according to claim 1, wherein the at least one connecting group is selected from structures 24 to 29:
  • 7. The electro-polarizable compound according to claim 1, wherein the resistive substituent R4 is selected from the group of alkyl, aryl, substituted alkyl, substituted aryl, fluorinated alkyl, chlorinated alkyl, branched and complex alkyl, branched and complex fluorinated alkyl, branched and complex chlorinated alkyl groups, and any combination thereof.
  • 8. The electro-polarizable compound of claim 1, wherein the aromatic polycyclic conjugated molecule (Core1) and the groups R1 and R1′ form a non- centrosymmetric molecular structure.
  • 9. The electro-polarizable compound of claim 1, wherein the aromatic polycyclic conjugated molecule (Core1), the groups R1 and R1′ and the resistive substituents (R4) form a non-centrosymmetric molecular structure.
  • 10. The electro-polarizable compound of claim 1 having the following formula (II):
  • 11. The electro-polarizable compound of claim 10, wherein a length of the non-conjugated part of the electro-polarizable compound is selected such that the resistivity of the electro-polarizable compound is greater than 1018 ohm·cm.
  • 12. The electro-polarizable compound of claim 10, wherein a length of the non-conjugated part of the electro-polarizable compound is selected such that the resistivity of the electro-polarizable compound is between 1018 ohm·cm and 1024 ohm·cm.
  • 13. The electro-polarizable compound of claim 10, wherein the resistive substituent R4 is a polycyclic alkyl group and a polycyclic halo-alkyl group, wherein in the polycyclic halo-alkyl group is connected to the apex of Core1 on which the electrophilic group (acceptor) R1 is connected, or the apex of Core1 on which the nucleophilic group (donor) R1′ is connected, but not both.
  • 14. The electro-polarizable compound of claim 10, wherein the resistive substituent R4 is a resistive polycyclic substituent selected from the list consisting of C25H34 and C25H35 or C25F34 and C25F35 and located on the apex phenyl, naphthyl, or anthryl rings of Core1.
  • 15. The electro-polarizable compound of claim 10 having the following formula (III):
  • 16. The electro-polarizable compound according to claim 15, wherein the set of the electron donor and acceptor groups consists of two donor groups —NH2 and two acceptor groups —NO2 (m is equal to 4) located on rylene rings, or on apex phenyl, naphthyl, and/or anthryl ring positions of the Core1, or on both rylene rings positions and apex phenyl, naphthyl, and/or anthryl ring positions and the fragment having a nonlinear effect of polarization (NLE) is represented by following chemical structure:
  • 17. The electro-polarizable compound of claim 10 having a formula (V):
  • 18. A solution comprising an organic solvent and at least one type of electro-polarizable compound according to claim 1.
  • 19. The solution according to claim 18, comprising a mixture of different electro-polarizable compounds.
  • 20. The solution according to claim 18, wherein the mixture of the electro-polarizable compounds comprises rylene fragments of different length.
  • 21. The solution according to claim 18, wherein the organic solvent is selected from the list comprising ketones, carboxylic acids, hydrocarbons, cyclic hydrocarbons, chlorohydrocarbons, alcohols, ethers, esters, and any combination thereof.
  • 22. The solution according to claim 18, wherein the organic solvent is selected from the list comprising acetone, xylene, toluene, ethanol, methylcyclohexane, ethyl acetate, diethyl ether, octane, chloroform, methylene chloride, dichloroethane, trichloroethene, tetrachloroethene, carbon tetrachloride, 1,4-dioxane, tetrahydrofuran, pyridine, triethylamine, nitromethane, acetonitrile, dimethylformamide, dimethyl sulfoxide, and any combination thereof.
  • 23. A solution according to claim 18, wherein the solution is a lyotropic liquid crystal solution.
  • 24. A metadielectric layer comprising a mixture of the electro-polarizable compounds according to claim 1, wherein the nonlinearly polarizable fragments comprising an aromatic polycyclic conjugated molecule with one or more R1 groups, and wherein the one or more R1 and/or R1′ groups form a resistive envelope and solubilize the organic compound in a solvent and electrically insulating the column-like supramolecules from each other.
  • 25. The metadielectric layer according to claim 24, wherein the column-like supramolecules are formed by the electro-polarizable compounds comprising rylene fragments of different length.
  • 26. The metadielectric layer according to claim 24, wherein the metadielectric layer's relative permittivity is greater than or equal to 1000.
  • 27. The metadielectric layer according to claim 24, wherein the layer's resistivity is greater than or equal to 1013 ohm/cm.
  • 28. A meta-capacitor comprising two metal electrodes positioned parallel to each other and which can be rolled or flat and planar with said metadielectric layer between said electrodes, wherein the metadielectric layer comprises one or more types of the electro-polarizable compounds according to claim 1 wherein the nonlinearly polarizable fragments comprising an aromatic polycyclic conjugated molecule with at least one group R1 or R1′, the electro-conductive oligomers and the ionic groups which have electronic and/or ionic type of polarizability are placed into a resistive dielectric envelope formed by resistive substituents R1 and/or R1′ providing solubility of the organic compound in a solvent and electrically insulating the column-like supramolecules from each other.
CLAIM OF PRIORITY

This application is a continuation-in-part of U.S. patent application Ser. No. 15/090,509 filed Apr. 4, 2016, the entire contents of which are incorporated herein by reference.

US Referenced Citations (148)
Number Name Date Kind
3407394 Hartke Oct 1968 A
4549034 Sato et al. Oct 1985 A
4694377 MacDougall et al. Sep 1987 A
4702562 Scheuble et al. Oct 1987 A
4894186 Gordon et al. Jan 1990 A
5141837 Nguyen et al. Aug 1992 A
5187639 Ogawa et al. Feb 1993 A
5248774 Dietz et al. Sep 1993 A
5312896 Bhardwaj et al. May 1994 A
5384521 Coe Jan 1995 A
5395556 Drost et al. Mar 1995 A
5466807 Dietz et al. Nov 1995 A
5514799 Varanasi et al. May 1996 A
5581437 Sebillotte et al. Dec 1996 A
5583359 Ng et al. Dec 1996 A
5679763 Jen et al. Oct 1997 A
5742471 Barbee et al. Apr 1998 A
5840906 Zoltewicz et al. Nov 1998 A
5880951 Inaba Mar 1999 A
6025094 Visco et al. Feb 2000 A
6282081 Takabayashi et al. Aug 2001 B1
6294593 Jeng et al. Sep 2001 B1
6341056 Allman et al. Jan 2002 B1
6391104 Schulz May 2002 B1
6426861 Munshi Jul 2002 B1
6501093 Marks Dec 2002 B1
6617830 Nozu et al. Sep 2003 B2
6798642 Decker et al. Sep 2004 B2
7025900 Sidorenko et al. Apr 2006 B2
7033406 Weir et al. Apr 2006 B2
7211824 Lazarev May 2007 B2
7342755 Horvat et al. Mar 2008 B1
7460352 Jamison et al. Dec 2008 B2
7466536 Weir et al. Dec 2008 B1
7498689 Milani et al. Mar 2009 B2
7579709 Goetz et al. Aug 2009 B2
7625497 Iverson et al. Dec 2009 B2
7750505 Ichikawa Jul 2010 B2
7795431 Pschirer et al. Sep 2010 B2
7808771 Nguyen et al. Oct 2010 B2
7837902 Hsu et al. Nov 2010 B2
7893265 Facchetti et al. Feb 2011 B2
7910736 Koenemann Mar 2011 B2
7947199 Wessling May 2011 B2
7990679 Ehrenberg et al. Aug 2011 B2
8143853 Jestin et al. Mar 2012 B2
8222074 Lazarev Jul 2012 B2
8231809 Pschirer et al. Jul 2012 B2
8236998 Nagata et al. Aug 2012 B2
8344142 Marder et al. Jan 2013 B2
8372527 Morishita et al. Feb 2013 B2
8404844 Kastler et al. Mar 2013 B2
8527126 Yamamoto et al. Sep 2013 B2
8552179 Lazarev Oct 2013 B2
8766566 Baba et al. Jul 2014 B2
8818601 V et al. Aug 2014 B1
8831805 Izumi et al. Sep 2014 B2
8895118 Geivandov et al. Nov 2014 B2
8929054 Felten et al. Jan 2015 B2
8938160 Wang Jan 2015 B2
9056676 Wang Jun 2015 B1
9293260 Schmid et al. Mar 2016 B2
20020027220 Wang et al. Mar 2002 A1
20020048140 Gallay et al. Apr 2002 A1
20030026063 Munshi Feb 2003 A1
20030102502 Togashi Jun 2003 A1
20030103319 Kumar et al. Jun 2003 A1
20030105365 Smith et al. Jun 2003 A1
20030142461 Decker et al. Jul 2003 A1
20030219647 Wariishi Nov 2003 A1
20040173873 Kumar et al. Sep 2004 A1
20040222413 Hsu et al. Nov 2004 A1
20040223291 Naito et al. Nov 2004 A1
20050118083 Tabuchi Jun 2005 A1
20060120014 Nakamura et al. Jun 2006 A1
20060120020 Dowgiallo Jun 2006 A1
20070001258 Aihara Jan 2007 A1
20070108940 Sainomoto et al. May 2007 A1
20070159767 Jamison et al. Jul 2007 A1
20070181973 Hung et al. Aug 2007 A1
20080002329 Pohm et al. Jan 2008 A1
20080150484 Kimball et al. Jun 2008 A1
20080266750 Wu et al. Oct 2008 A1
20080283283 Abe et al. Nov 2008 A1
20090040685 Hiemer et al. Feb 2009 A1
20090184355 Brederlow et al. Jul 2009 A1
20100038629 Lazarev Feb 2010 A1
20100085521 Kasianova et al. Apr 2010 A1
20100172066 Baer et al. Jul 2010 A1
20100178728 Zheng et al. Jul 2010 A1
20100183919 Holme et al. Jul 2010 A1
20100193777 Takahashi et al. Aug 2010 A1
20100214719 Kim et al. Aug 2010 A1
20100233491 Nokel et al. Sep 2010 A1
20100255381 Holme et al. Oct 2010 A1
20100269731 Jespersen et al. Oct 2010 A1
20100309606 Allers et al. Dec 2010 A1
20100309696 Guillot et al. Dec 2010 A1
20100315043 Chau Dec 2010 A1
20110006393 Cui Jan 2011 A1
20110042649 Duvall et al. Feb 2011 A1
20110079733 Langhals et al. Apr 2011 A1
20110079773 Wasielewski et al. Apr 2011 A1
20110110015 Zhang et al. May 2011 A1
20110228442 Zhang et al. Sep 2011 A1
20120008251 Yu et al. Jan 2012 A1
20120033342 Ito et al. Feb 2012 A1
20120053288 Morishita et al. Mar 2012 A1
20120056600 Nevin Mar 2012 A1
20120059307 Harris et al. Mar 2012 A1
20120113380 Geivandov et al. May 2012 A1
20120122274 Lazarev May 2012 A1
20120244330 Sun et al. Sep 2012 A1
20120268862 Song et al. Oct 2012 A1
20120274145 Taddeo Nov 2012 A1
20120302489 Rodrigues et al. Nov 2012 A1
20130056720 Kim et al. Mar 2013 A1
20130187475 Vendik et al. Jul 2013 A1
20130194716 Holme et al. Aug 2013 A1
20130215535 Bellomo Aug 2013 A1
20130224473 Tassell et al. Aug 2013 A1
20130314839 Terashima et al. Nov 2013 A1
20130342967 Lai et al. Dec 2013 A1
20140035100 Cho Feb 2014 A1
20140036410 Okamatsu et al. Feb 2014 A1
20140098458 Almadhoun et al. Apr 2014 A1
20140158340 Dixler et al. Jun 2014 A1
20140169104 Kan et al. Jun 2014 A1
20140185260 Chen et al. Jul 2014 A1
20140268490 Tsai et al. Sep 2014 A1
20140316387 Harris et al. Oct 2014 A1
20140347787 Fathi et al. Nov 2014 A1
20150008671 Rentero et al. Jan 2015 A1
20150008735 Mizoguchi Jan 2015 A1
20150158392 Zhao Jun 2015 A1
20150162131 Felten et al. Jun 2015 A1
20150249401 Eriksen et al. Sep 2015 A1
20150302990 Ghosh et al. Oct 2015 A1
20160001662 Miller et al. Jan 2016 A1
20160020026 Lazarev Jan 2016 A1
20160020027 Lazarev Jan 2016 A1
20160254092 Lazarev et al. Sep 2016 A1
20160314901 Lazarev Oct 2016 A1
20160340368 Lazarev Nov 2016 A1
20160379757 Robinson et al. Dec 2016 A1
20170133167 Keller et al. May 2017 A1
20180137978 Hein et al. May 2018 A1
20180137984 Furuta et al. May 2018 A1
Foreign Referenced Citations (63)
Number Date Country
2074848 Feb 1998 CA
1582506 Feb 2005 CN
100449661 Jan 2009 CN
1748271 Jun 2010 CN
102426918 Apr 2012 CN
103261370 Aug 2013 CN
203118781 Aug 2013 CN
203377785 Jan 2014 CN
103755703 Apr 2014 CN
103986224 Aug 2014 CN
103258656 Aug 2015 CN
10203918 Aug 2003 DE
102010012949 Sep 2011 DE
102011101304 Nov 2012 DE
102012016438 Feb 2014 DE
0493716 Jul 1992 EP
0585999 Mar 1994 EP
0602654 Jun 1994 EP
0729056 Aug 1996 EP
0791849 Aug 1997 EP
0986080 Jan 2004 EP
0865142 May 2008 EP
2062944 May 2009 EP
2108673 Oct 2009 EP
2415543 Feb 2012 EP
1486590 Dec 2013 EP
2759480 Jul 2014 EP
1990682 Jan 2015 EP
547853 Sep 1942 GB
923148 Apr 1963 GB
2084585 Nov 1983 GB
S6386731 Apr 1988 JP
H03253014 Nov 1991 JP
2786298 Aug 1998 JP
2000100484 Apr 2000 JP
2001093778 Apr 2001 JP
2007287829 Nov 2007 JP
2010106225 May 2010 JP
2010160989 Jul 2010 JP
2011029442 Feb 2011 JP
2014139296 Jul 2014 JP
2199450 Feb 2003 RU
2512880 Apr 2014 RU
1990009616 Aug 1990 WO
0139305 May 2001 WO
2002026774 Apr 2002 WO
2007078916 Jul 2007 WO
2008038047 Apr 2008 WO
2009144205 Dec 2009 WO
2009158553 Dec 2009 WO
2011056903 May 2011 WO
2011137137 Nov 2011 WO
2012012672 Jan 2012 WO
2012084536 Jun 2012 WO
2012122312 Sep 2012 WO
2012142460 Oct 2012 WO
2012162500 Nov 2012 WO
2013009772 Jan 2013 WO
2013085467 Jun 2013 WO
2014009686 Jan 2014 WO
2015003725 Jan 2015 WO
2015175522 Nov 2015 WO
2015175558 Nov 2015 WO
Non-Patent Literature Citations (131)
Entry
Deruiter, J. Resonance and Induction Tutorial. Auburn University-Principles of Drug Action 1 Course Material. Spring 2005, p. 1.
Manukian, BK. 216. IR.-spektroskopische Untersuchungen in der Imidazol-Reihe. Helvetica Chimica Acta. 1965, vol. 48, p. 2001.
International Search Report and Written Opinion for International Application No. PCT/US2016/033628, dated Sep. 1, 2016.
International Search Report and Written Opinion for International Application No. PCT/US2016/039395, dated Oct. 11, 2016.
Non-Final Office Action for U.S. Appl. No. 14/752,600, dated Jan. 23, 2017.
Non-Final Office Action for U.S. Appl. No. 14/919,337, dated Jan. 4, 2017.
Notice of Allowance for U.S. Appl. No. 14/710,491, dated Oct. 24, 2016.
Center for Dielectric Studies, Janosik, et al., “Ultra-High Energy Density Capacitors Through Improved Glass Technology”, pp. 1-5 Center for Dielectric Studies Penn State University, dated 2004.
Congressional Research Service, Paul W. Parfomak, “Energy Storage for Power Grids and Electric Transportation: A Technology Assessment”, pp. 87-94; Members and Committees of Congress; Mar. 27, 2012.
Department of Chemistry and Biochemistry, Hardy, et al. “Converting an Electrical Insulator into a Dielectric Capacitor: End-Capping Polystyrene with Oligoaniline”; pp. 799-807, Rensselaer Polytechnic Institute, Troy, New York 12180; Feb. 17, 2013.
Department of Chemistry, Ho et al., “High dielectric constant polyanilinelpoly(acrylic acid) composites prepared by in situ polymerization”, pp. 630-637; National Taiwan University, Taipei, Taiwan, ROC, Apr. 15, 2008.
Hindawi Publishing Corporation, Chávez-Castillo et al, “Third-Order Nonlinear Optical Behavior of Novel Polythiophene Derivatives Functionalized with Disperse Red 19 Chromophore”, pp. 1-11, International Journal of Polymer Science vol. 2015, Article ID 219361, Mar. 12, 2015.
Hindawi Publishing Corporation, González-Espasandín et al., “Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion”, pp. 1-13, Torrej´on de Ardoz, 28850 Madrid, Spain Jan. 30, 2014.
Hindawi Publishing Corporation, Khalil Ahmed et al., “High dielectric constant polyaniline/poly(acrylic acid) composites prepared by in situ polymerization”, pp. 630-637, University of the Punjab, New Campus, Lahore 54590, Oct. 17, 2015.
Institute of Transportation Studies, Burke, et al. “Review of the Present and Future Applications of Supercapacitors in Electric and Hybrid Vehicles”, pp. 2-23 UC Davis ITS; Dec. 2014.
International Search Report and Written Opinion for International Application No. PCT/US2015/058890, dated Feb. 25, 2016.
International Search Report and Written Opinion for International Application No. PCT/US2015/030356, dated Jul. 28, 2015.
International Search Report and Written Opinion for International Application No. PCT/US2015/030415, dated Nov. 4, 2015.
International Union of Pure and Applied Chemistry Polymer Divison Stejskal et al., “Polyaniline: Thin Films and Colloidal Dispersions (IUPAC Technical Report)”, vol. 77, No. 5, pp. 815-826, Russian Academy of Sciences, St. Petersburg 199004, Russia; 2005.
JACS Articles, Kang et. al., “Ultralarge Hyperpolarizability Twisted Π-Electron System Electro-Optic Chromophores: Synthesis, Solid-State and Solution-Phase Structural Characteristics, Electronic Structures, Linear and Nonlinear Optical Properties, and Computational Studies”, pp. 3267-3286; Perugia, Italy Feb. 20, 2007.
Yue Wang, et. al., “Morphological and Dimensional Control via Hierarchical Assembly of Doped Oligoaniline Single Crystals”, J. Am. Chem. Soc. 2012, 134, pp. 9251-9262.
Kontrakt Technology Limited, Alla Sakharova, PhD., “Cryscade Solar Limited: Intellectual Property Portfolio summary”, pp. 1-3, Cryscade Solar Limited; Apr. 9, 2015.
Microelectronics Research and Communications Institute, Founders et al., “High-Voltage Switching Circuit for Nanometer Scale CMOS Technologies”, pp. 1-4, University of Idaho, Moscow, ID 83843 USA, Apr. 30, 2007.
Molecular Diversity Preservation International, Barber, et al. “Polymer Composite and Nanocomposite Dielectric Materials for Pulse Power Energy Storage” pp. 1-32; 29 University of South Carolina, Columbia, SC 29208 Oct. 2009.
Optical Society of America, Kuzyk et al, “Theory of Molecular Nonlinear Optics”, pp. 5, 4-82, Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814, USA, Mar. 26, 2013.
Philosophical Transactions of the Royal Society, SIMON, “Charge storage mechanism in nanoporous carbons and its consequence for electrical double layer capacitors” pp. 3457-3467; Drexel University, Philadelphia, PA 19104, 2010.
R. J. Baker and B. P. Johnson, “stacking power MOSFETs for use in high speed instrumentation”, Department of Electrical Engineering, University of Nevada, Reno, Reno. Nevada 89557-0030; pp. 5799-5801 Aug. 3, 1992.
RSC Publishing, Akl et al., “Molecular materials for switchable nonlinear optics in the solid state, based on ruthenium-nitrosyl complexes”, pp. 3518-3527, Porto Alegre, Brazil; May 24, 2013.
U.S. Appl. No. 14/719,072, to Pavel Ivan Lazarev, filed May 21, 2015.
U.S. Appl. No. 14/752,600, to Matthew R. Robinson, et al., filed Jun. 26, 2015.
U.S. Appl. No. 14/919,337, to Paul T. Furuta, et al., filed Oct. 21, 2015.
U.S. Appl. No. 14/931,757, to Pavel Ivan Lazarev, et al., filed Nov. 3, 2015.
U.S. Appl. No. 15/043,186, to Paul T. Furuta, et al., filed Feb. 12, 2016.
U.S. Appl. No. 15/043,209, to Paul T. Furuta, et al., filed Feb. 12, 2016.
U.S. Appl. No. 15/043,247, to Barry K Sharp, et al., filed Feb. 12, 2016.
U.S. Appl. No. 15/043,315, to Ian S.G. Kelly-Morgan, filed Feb. 12, 2014.
U.S. Appl. No. 15/053,943, to Pavel Ivan Lazarev, et al., filed Mar. 14, 2016.
U.S. Appl. No. 15/090,509, to Pavel Ivan Lazarev, et al., filed Mar. 4, 2016.
U.S. Appl. No. 62/121,328, to Pavel Ivan Lazarev et al., filed Feb. 26, 2015.
U.S. Appl. No. 62/294,949, to Pavel Ivan Lazarev, et al., filed Feb. 12, 2016.
U.S. Appl. No. 62/294,955, to Pavel Ivan Lazarev, et al., filed Feb. 12, 2016.
U.S. Appl. No. 62/294,964, to Pavel Ivan Lazarev, et al., filed Feb. 12, 2016.
U.S. Appl. No. 62/318,134, to Pavel Ivan Lazarev, et al., filed Mar. 4, 2016.
U.S. Appl. No. 15/194,224, to Pavel Ivan Lazarev, et al., filed Jun. 27, 2016.
Caitlin S. Sample et al., Modular synthesis of asymmetric rylene derivatives†, Journal of Material Chemistry C, Jan. 19, 2017, 1052-1056, 5 (5), Royal Society of Chemistry, London U.K.
D C Tiwari, et al: “Temperature dependent studies of electric and dielectric properties of polythiophene based nano composite”, Indian Journal of Pure & Applied Physicsvol. 50, Jan. 2012. pp. 49-56.
Extended European Search Report . 15792494.5, dated Dec. 11, 2017.
Extended European Search Report for Application No. 15792405.1, dated Nov. 10, 2017.
Final Office Action for U.S. Appl. No. 15/043,247, dated Oct. 4, 2017.
Hsing-Yang Tsai et al, “1,6- and 1,7-Regioisomers of Asymmetric and Symmetric Perylene Bisimides: Synthesis, Characterization and Optical Properties” Molecules, 2014, vol. 19, pp. 327-341.
Hsing-Yang Tsai et al, “Synthesis and optical properties of novel asymmetric perylene bisimides”, Journal of Luminescence, vol. 149, pp. 103-111 (2014).
International Search Report and Written Opinion for International Application No. PCT/US2016/019641, dated Jul. 12, 2016.
International Search Report and Written Opinion for International Application No. PCT/US2017/24600, dated Aug. 14, 2017.
Nagabrahmandachari et al. “Synthesis and Spectral Analysis of Tin Tetracarboxylates and Phosphinates” Indian Journal of Chemistry-Section A, 1995, vol. 34A, pp. 658-660.
Non-Final Office Action for U.S. Appl. No. 15/090,509, dated Jun. 22, 2017.
Non-Final Office Action for U.S. Appl. No. 15/194,224, dated Sep. 27, 2017.
Notice of Allowance for U.S. Appl. No. 14/710,480, dated Nov. 24, 2017.
Notice of Allowance for U.S. Appl. No. 14/710,480, dated Oct. 6, 2017.
Notice of Allowance for U.S. Appl. No. 14/752,600, dated Nov. 24, 2017.
Notice of Allowance for U.S. Appl. No. 14/752,600, dated Dec. 4, 2017.
Notice of Allowance for U.S. Appl. No. 14/919,337, dated Nov. 8, 2017.
Notice of Allowance for U.S. Appl. No. 14/931,757, dated Oct. 31, 2017.
Taiwan Office Action for TW Application No. 106104501, dated Oct. 19, 2017.
Deily, Dielectric and Optical Characterization of Polar Polymeric Materials: Chromophore Entrained PMMA Thin Films, Thesis, 2008.
Deruiter, J. Resonance and Induction Tutorial. Auburn University-Principles of Drug Action 1 Course Material. Spring 2005, 19 pages.
Final Office Action for U.S. Appl. No. 14/919,337, dated May 1, 2017.
Henna Ruuska et al., “A Density Functional Study on Dielectric Properties of Acrylic Acid Crafted Polypropylene”, The Journal of Chemical Physics, vol. 134, p. 134904 (2011).
International Search Report and Written Opinion for International Application No. PCT/US2016/57765, dated Jan. 5, 2017.
International Search Report and Written Opinion for International Application No. PCT/US2017/017146, dated May 11, 2017.
International Search Report and Written Opinion for International Application No. PCT/US2017/017150, dated May 18, 2017.
International Search Report and Written Opinion for International Application No. PCT/US2017/24150, dated Jun. 21, 2017.
International Search Report and Written Opinion dated Feb. 25, 2016 for International Application No. PCT/US15/58890, to Pavel Ivan Lazarev, filed Nov. 3, 2015.
International Search Report and Written Opinion dated Jul. 12, 2016 for International Application No. PCT/US2016/019641, to Pavel Ivan Lazarev, filed Feb. 25, 2016.
International Search Report and Written Opinion dated Oct. 20, 2016 International Application No. PCT/US2016/039395, to Matthew R. Robinson, et al., filed Jun. 24, 2016.
International Search Report and Written Opinion dated Sep. 1, 2016 for International Application No. PCT/US2016/033628, to Pavel Ivan Lazarev, filed Sep. 1, 2016.
Non-Final Office Action for U.S. Appl. No. 15/053,943, dated Apr. 19, 2017.
Non-Final Office Action for U.S. Appl. No. 14/710,480, dated May 8, 2017.
Non-Final Office Action for U.S. Appl. No. 15/043,186, dated Jun. 2, 2017.
Non-Final Office Action for U.S. Appl. No. 15/043,247, dated Jun. 22, 2017.
Notice of Allowance for U.S. Appl. No. 14/710,491, dated Jan. 19, 2017.
PUBCHEM Open Chemistry Database, Compound Summary for CID 91001799. Mar. 17, 2015. pp. 1-10.
Roger D. Hartman and Herbert A. Pohl, “Hyper-electronic Polarization in Macromolecular Solids”, Journal of Polymer Science: Part A-1, vol. 6, pp. 1135-1152 (1968).
Handy, Scott T. “Ionic Liquids-Classes and Properties” Published Sep. 2011, Accessed Aug. 28, 2017, InTechweb.org.
International Search Report and Written Opinion for International Application No. PCT/US2017/016862, dated Aug. 14, 2017.
International Search Report and Written Opinion for International Application No. PCT/US2017/24371, dated Aug. 2, 2017.
Isoda, Kyosuke et al. “Truxene-Based Columnar Liquid Crystals: Self-Assembled Structures and Electro-Active Properties.” Chemistry—An Asian Journal (2009), vol. 4, No. 10, pp. 1619-1625.
Johnson, Kieth E. “What's an Ionic Liquid?” The Electrochemical Society Interface, Published Spring 2007, pp. 38-41, Accessed Aug. 28, 2017.
Li, Li-Li et al. “Synthesis and Mesomorphism of Ether-ester Mixed Tail C3-symmetrical Truxene discotic liquid crystals.” Liquid Crystals(2010), vol. 37, No. 5, pp. 499-506.
Liang, Mao et al. “Synthesis and Photovoltaic Performance of Two Triarylamine Organic Dyes Based on Truxene.” Yinyong Huaxue (2011) vol. 28 No. 12, pp. 1387-1392.
Lu, Meng et al. “Organic Dyes Incorporating Bis-hexapropyltruxeneamino Moiety for efficient Dye-sensitized Solar Cells.” Journal of Physical Chemistry C (2011) vol. 115, No. 1, pp. 274-281.
Maddalena, Francesco “Why are Ionic Liquids, Liquids?” http://www.quora.com/why-are-ionic-liquids-liquids?, Published Jan. 26, 2017, Accessed Aug. 28, 2017.
Non-Final Office Action for U.S. Appl. No. 14/719,072, dated Aug. 2, 2017.
Notice of Allowance for U.S. Appl. No. 14/752,600, dated Jul. 27, 2017.
Notice of Allowance for U.S. Appl. No. 14/919,337, dated Jul. 19, 2017.
Notice of Allowance for U.S. Appl. No. 14/931,757, dated Jul. 17, 2017.
Notice of Allowance for U.S. Appl. No. 15/053,943, dated Aug. 14, 2017.
Trevethan, Thomas et al. “Organic Molecules Reconstruct Nanostructures on Ionic Surfaces.” Small (2011), vol. 7, No. 9, pp. 1264-1270.
Warmerdam, T. W. et al. “Discotic Liquid Crystals. Physical Parameters of some 2, 3, 7, 8, 12, 13-hexa(alkanoyloxy) truxenes: Observation of a Reentrant Isotropic Phase in a Pure Disk-like mesogen.” Liquid Crystals (1988), vol. 3, No. 8, pp. 1087-1104.
Non-Final Office Action dated Feb. 14, 2018 for U.S. Appl. No. 15/043,186.
Final Office Action for U.S. Appl. No. 15/043,249, dated Feb. 6, 2018.
Final Office Action for U.S. Appl. No. 15/043,315, dated Jun. 7, 2018.
Final Office Action for U.S. Appl. No. 15/194,224, dated Jan. 30, 2018.
International Search Report and Written Opinion dated Jul. 31, 2017 for International Patent Application PCT/US2017/024589.
International Search Report and Written Opinion dated Feb. 23, 2018 for International Patent Application No. PCT/US17/64252.
International Search Report and Written Opinion dated Jun. 7, 2017 for International Application No. PCT/US2017/24589, to Pavel Ivan Lazarev, filed Jun. 7, 2017.
Non-Final Office Action for U.S. Appl. No. 15/043,247, dated Jun. 7, 2018.
Non-Final Office Action for U.S. Appl. No. 15/043,315, dated Dec. 26, 2017.
Non-Final Office Action for U.S. Appl. No. 15/449,587, dated May 21, 2018.
Non-Final Office Action for U.S. Appl. No. 15/805,016, dated Jun. 4, 2018.
Non-Final/Final Office Action for U.S. Appl. No. 15/043,247, dated Feb. 20, 2018.
Notice of Allowance for U.S. Appl. No. 14/710,480, dated Jan. 11, 2018.
Notice of Allowance for U.S. Appl. No. 14/719,072, dated Nov. 16, 2017.
Notice of Allowance for U.S. Appl. No. 14/919,337, dated Mar. 5, 2018.
Notice of Allowance for U.S. Appl. No. 14/931,757, dated Dec. 29, 2017.
Notice of Allowance for U.S. Appl. No. 14/931,757, dated Feb. 8, 2018.
Notice of Allowance for U.S. Appl. No. 15/090,509, dated Jan. 24, 2018.
Office Action dated May 18, 2018 for Chinese Patent Application for Invention No. 201580025110.
Office Action dated Dec. 13, 2017 for Taiwan Patent Application No. 106104499.
Office Action dated Dec. 13, 2017 for Taiwan Patent Application No. 106104500.
Office Action dated Jan. 25, 2018 for Chinese patent application No. 20158005146.4.
Search Report and Written Opinion dated Feb. 7, 2018 for Singapore Patent Application No. 11201609435W.
Updated Notice of Allowance for U.S. Appl. No. 14/710,480, dated Jan. 17, 2018.
Extended European Search Report dated Aug. 8, 2018 for European Patent Application No. 16756391.5.
Extended European Search Report dated Sep. 24, 2018 for European Patent Application No. 15856609.1.
Extended European Search Report dated Sep. 26, 2018 for European Patent Application No. 16797411.2.
Final Office Action for U.S. Appl. No. 15/043,247, dated Oct. 24, 2018.
Final Office Action for U.S. Appl. No. 15/449,587, dated October 10, 2018.
M. Jurow et al, “Porphyrins as molectular electronic components of functional devices”, Coordination Chemistry Reviews, Elsevier Science, Amsterdam NL, vol. 254, No. 19-20, Oct. 1, 2010, pp. 2297-2310.
Non-Final Office Action for U.S. Appl. No. 15/782,752, dated Sep. 21,2018.
Non-Final Office Action for U.S. Appl. No. 15/801,240, dated Oct. 19, 2018.
Non-Final/Final Office Action for U.S. Appl. No. 15/430,391, dated Jul. 20, 2018.
Related Publications (1)
Number Date Country
20170287638 A1 Oct 2017 US
Continuation in Parts (1)
Number Date Country
Parent 15090509 Apr 2016 US
Child 15163595 US