Electro-switchable polymer film assembly and use thereof

Abstract
The invention relates to an electro-switchable polymer film assembly having a first and a second surface side, comprising at least one pair of electrodes (3, 4) and a polymer matrix (2), wherein structuring particles (5) can be embedded in the polymer matrix and the polymer matrix or the structuring particles consist of an electro-active polymer, wherein furthermore, the first and/or the second surface sides can be transferred from a plane condition into a structured condition by electric switching of the electro-active polymer.
Description

The present invention relates to an electrically switchable polymer film arrangement in which a first and/or second surface side of the polymer film arrangement can be converted actively from a smooth state (state before applying an electrical voltage) into a structured state (state after applying an electrical voltage) by electrical switching of an electroactive polymer. The invention furthermore relates to the use of such electrically switchable polymer film arrangements.


The ability to influence a surface structure actively is of great technical interest for various applications, for example variable haptics, optical properties or influencing the flow behaviour of fluids. By virtue of advantageous and controllably adjustable properties, for example low weight and adjustable mechanical properties, polymers and polymer composites are already used in a multiplicity of commercial applications. Functional polymers are gaining importance to an increasing extent as active components in sensor or actuator applications. In this context, the class of electroactive polymers (EAP) has increasingly been at the focus of research in recent years.


Patent specifications US 2008/0128027 A1 and WO 2008/105861 A2 describe systems and methods for the deformation of surfaces, in order to influence the flow of fluids along them in a controlled way. In this way, for example, turbulence can be avoided or resonant oscillations generated or negated. As actuators, inter alia microelectromechanical systems, piezoelectric transducers, electroactive polymers, magnetic or hydraulic actuators are mentioned. The actuators act perpendicularly to the surface and are controlled by means of a control system.


A flat actuator having a plurality of actuator elements, which are made of shape memory wires and/or piezoelectric elements, is proposed in EP 1 090 835 A1. These flat actuators can be used to deliberately influence a flow along a surface. Despite the small ratio between the actuator length and the achievable excursion, and the disposition of the wires parallel to the surface, a small deformation is achieved which can be amplified by a resilient and anisotropically stiffened flat structure. Surface structuring by grooves or slits in the active direction of the actuator elements is additionally proposed, in order to further increase the deformation by the actuators.


DE 100 26 264 A1 discloses a mobile configuration of vehicle outer skins, a multiplicity of narrowly separated, electrically operable actuators in the form of small cylinders being embedded in the outer skin so that the surfaces of the actuators in the starting state extend flush with the outer skin and generate a pimple structure by switching. This pimple structure is intended to lower the air resistance above a certain speed and reduce wind noise, or alternatively be used to detach ice and snow from the outer skin. To this end, polymers and/or ion-exchange materials are proposed as materials for the actuator elements, which undergo a shape change by electrical processes or by changing the pH, the moisture content or the temperature.


Another possible way to generate surface structuring is described in WO 2005/079187 A2. This consists in using the electrostatic attraction between plate-shaped electrodes. Between the electrodes, there is a dielectric elastomer on which a force is exerted by the mutually attracting electrodes when a voltage is applied. The elastomer is then pressed out between the electrodes, so that the surface has a depression in this region. Outside the electrodes, the displaced polymer is squeezed and pressed out of the surface plane. This process creates depressions and elevations, which can lead to particular surface structuring by a predetermined electrode disposition and interconnection. Three-dimensional and in particular Braille displays, mobile mirrors, influencing the flow on wings, stepper motors and pumps are mentioned as applications.


U.S. Pat. No. 7,397,166 B1 describes a peristaltic pump in which the deformation of actuators made of a polymer-metal composite with an applied voltage is used, and by disposing mutually separated electrodes along the longitudinal direction of a flexible tube, a quantity of liquid can be transported inside the tube by successive switching of the electrodes. The transport of liquid medicaments in the human body is mentioned as an example of an application.


EP 1 843 406 A1 discloses an actuator comprising an electroactive polymer. In this polymer matrix, (ceramic) particles are incorporated. These particles are used to increase the dielectric constant ∈ of the polymer matrix. The actuator disclosed in EP 1 843 406 A1 is capable of adjusting the roughness of a surface. The (ceramic) particles have no physical/mechanical effect, in so far as they influence the roughness of the surface by their individual volume, their size, strength, shape and/or roughness.


Electroactive polymers (EAP) can in principle be subdivided into two main groups. The first group comprises so-called field-activated polymers. Field-activated EAPs are typically polymers, polymer mixtures and polymer composites which are capable of being switched directly by applying an electric field. They require electric fields of up to 200 V·μm−1. One advantage of the field-activated EAP group is that they can generally be switched with speeds in the millisecond range. Field-activated polymers include dielectric elastomers, ferroelectric polymers, piezoelectric polymers and electrostrictive polymers.


The second main group of EAPs comprises so-called ionic electroactive polymers. This group is distinguished in that it is based on an action mechanism which involves diffusion of ions and/or solvated ions and/or solvent molecules. Examples of polymeric materials which are included among ionic EAPs are polymers or polymer composites which contain mobile ions, conductive polymers, ionic gels and polymer composites with carbon nanotubes and/or graphenes.


The basic types and action mechanisms of the various electroactive polymers (EAP) are described inter alia in the articles in MRS Bulletin, March 2008, Volume 33, No. 3 and the literature respectively cited therein.


Ionic EAPs are usually bound to a liquid medium, for example an electrolyte, and are therefore often dependent on the ambient conditions such as temperature and relative humidity. Without further measures, they can dry out over time in air and thus lose their functionality as EAPs. EAP systems which reduce the dependency on ambient conditions are therefore of interest. One possibility consists in using ionic liquids (IL) as an electrolyte solution in a polymer matrix, so that the overall system consisting of the polymer matrix and ionic liquid is a solid body. ILs are organic salts which exist in the molten state at room temperature, have a negligibly low vapour pressure and can therefore prevent drying-out and function loss of ionic EAPs.


Functional polymers and polymer film arrangements are of increasing interest for commercial applications, for example for sensor and actuator systems, as well as for actively influencing surfaces and surface properties.


The invention therefore provides an electrically switchable polymer film arrangement which has a first surface side and a second surface side which are disposed opposite one another. The polymer film arrangement comprises at least one electrode pair consisting of an anode and a cathode and a polymer matrix, and structuring particles may be disposed in the polymer matrix.


The presence of structuring particles may be preferred according to the invention. However, embodiments which do not contain any such structuring particles may also be preferred according to the invention.


The polymer matrix and/or the optionally provided structuring particles consist of an electroactive polymer. By electrically switching the electroactive polymer, the first and/or second surface side can be converted from a smooth state into a structured state.


In other words, by applying an electrical voltage to a polymer film arrangement according to the invention, a structured surface with elevations and depressions can advantageously be generated actively on at least one surface side. This structuring of at least one surface side of the polymer film arrangement is reversible, and can advantageously be induced repeatedly by further electrical switching. According to the invention, the polymer matrix is configured as a polymer film.


The actively influenceable surface side of the polymer film arrangement according to the invention may, for example, be used to generate haptically perceptible signals and employ the actively generatable roughening by the electrical switching in many applications. Another advantage is that optical effects can also be achieved by the electrical switching of a polymer film arrangement according to the invention. For example, the polymer film arrangement may be transparent in the unswitched, smooth state and opaque after applying a voltage.


Equally, according to the invention, the polymer film arrangements in alternative embodiments may contain a field-activated or an ionic electroactive polymer as an electroactive polymer (EAP).


For example, a field-activated polymer may be selected from dielectric elastomers, ferroelectric polymers, electrostrictive polymers and piezoelectric polymers.


As ferroelectric and piezoelectric polymers, according to the invention for example poly(vinylidene fluoride) (PVDF) and copolymers of VDF, for example copolymers of VDF with trifluoroethylene, may be used. The dielectric elastomers may according to the invention be for example silicones, polyurethanes, polyacrylates, rubbers, styrene-ethylene-butylene-styrene (SEBS) or styrene-butadiene rubber.


The ionic electroactive polymer may according to the invention be selected for example from polymers which contain mobile ions, conductive polymers, ionic gels and polymer composites with carbon nanotubes and/or graphenes.


One example of an ionic gel is poly(vinyl alcohol) gel with dimethyl sulfoxide. Conductive polymers which may be used according to the invention are for example polypyrroles, polyanillines and polythiophenes.


Suitable EAP materials and their action mechanisms are known in principle and described, for example, in the article by Y. Bar-Cohen, Q. Zhang, pp. 173-181, MRS Bulletin, March 2008, Volume 33, No. 3, and in the literature respectively cited therein.


The many alternative selection possibilities in relation to the EAP can advantageously make it possible to adjust the basic properties of the switchable polymer arrangement according to the invention and advantageously allow special adaptation to particular applications. According to the invention, good switchabilities and surface structurings of the first and/or second surface side of the polymer film arrangement according to the invention can be achieved.


The polymer film arrangement according to the invention, comprising at least one electrode pair, a polymer matrix and, optionally, structuring particles embedded therein, may in the unswitched smooth state, i.e. without an applied voltage, have a thickness of ≧10 μm and ≦1 mm, preferably a thickness of from ≧50 to ≦500 μm, particularly preferably ≧100 to ≦300 μm. A particularly suitable thickness of the polymer film arrangement may advantageously be selected respectively as a function of the material specifically used for the polymer matrix and for the particles, particularly with regard to the chosen EAP or EAPs, and with regard to the respectively desired application. The diameter of the structuring particles, if present, is from 50 to 90% of the thickness of the polymer film arrangement, preferably from 70 to 80% of the thickness of the polymer film arrangement.


According to the invention, it is advantageously possible to influence the manifestation of the structuring by a wide variety of parameters. Examples which may be mentioned for such parameters are the strength of the applied electric field, the dimensioning, shape and structuring of the electrodes, size and volume fraction of the particles and thickness of the polymer matrix.


In another configuration of the electrically switchable polymer film arrangement according to the invention, the electrodes, i.e. the anode and the cathode, may be disposed on mutually opposite surfaces of the polymer matrix, one surface side of the polymer film arrangement being configured as a flexible cover electrode and the respective other surface side being configured as a rigid base electrode. In other words, the polymer arrangement in this configuration is provided as a layer arrangement consisting of a flatly configured base electrode at the bottom, a polymer matrix film applied thereon with structuring particles disposed in it, and a flat flexible cover electrode applied on this polymer matrix. The thicknesses of the base electrode and the cover electrode are in this case, independently of one another, from 10 nm to 100 μm, preferably from 100 nm to 10 μm.


A cover electrode in the sense of the invention refers to an electrode which is disposed on the surface side of the polymer film arrangement which can be converted into a structured state by switching the electroactive polymer. On the other hand, according to the invention a base electrode is intended to mean an electrode which is disposed on a surface side of the polymer film arrangement which is not structured by the electrical switching. Both electrodes with positive and negative poling may at the same time be base electrodes in the polymer film arrangement according to the invention.


The terms top, bottom, below and above in the description of the invention refer only to the position of the constituents relative to one another, and are sometimes to be used interchangeably.


According to the invention, a flexible cover electrode is intended to mean that this electrode is configured so that it can adopt and replicate the shape changes and structuring which result from switching the electroactive polymer, in particular on the surface of the polymer matrix. In this way, when a suitable voltage is applied, the cover electrode then forms an outwardly directed, structured surface side of the polymer film arrangement.


The electrodes, both the cover electrode and the base electrode, may be conductive materials known to the person skilled in the art. According to the invention, for example, metals, metal alloys, conductive oligomers or polymers, for example polythiophenes, polyanilines, polypyrroles, conductive oxides, for example mixed oxides such as ITO, or polymers filled with conductive fillers may be envisaged for this. As fillers for polymers filled with conductive fillers, for example metals, conductive carbon-based materials, for example carbon black, carbon nanotubes (CNTs), or again conductive oligomers or polymers may be envisaged. The filler content of the polymers lies above the percolation threshold, so that the conductive fillers form continuous electrically conductive paths.


The electrodes may be produced by means of methods known per se, for example by metallisation of the surfaces, by sputtering, evaporation coating, chemical vapour deposition (CVD), vapour deposition (PVD), printing, doctor blading, spin coating, adhesive bonding or pressing on a conductive layer in prefabricated form, or by a spray electrode made of a conductive plastic.


In another embodiment of the polymer film arrangement according to the invention, the electrodes may be disposed on mutually opposite surfaces of the polymer matrix, the electrodes being disposed in a structured fashion on one or both surface sides of the polymer film arrangement. The polymer matrix is disposed as a polymer film between the electrodes in this configuration of the polymer film arrangement as well, a structured electrode in the sense of the invention being intended to mean that one of the electrodes or both form a regular or irregular pattern on the respective surface side of the polymer film arrangement. The electrodes may, for example, be configured as strips or in grid form. In this case, the electrodes may alternatively be applied on the surface of the polymer matrix or at least partially incorporated into the polymer matrix. The electrodes may also be fully incorporated into the polymer matrix. The electrodes may then lie flush with the surface of the polymer matrix respectively disposed between them, and form with it a smooth surface side of the polymer film arrangement, at least in the unswitched state.


In another configuration of the polymer film arrangement according to the invention, the electrodes may be disposed in a structured fashion as base electrodes on the first or second surface side. In this variant according to the invention, the anode and cathode lie on the same surface side of the polymer film arrangement. The other surface side, facing away from the electrodes, is formed by the polymer matrix in this configuration. In this configuration as well, the electrodes may alternatively be applied on the surface of the polymer matrix or at least partially incorporated into the polymer matrix. The electrodes may also be fully incorporated into the polymer matrix. The electrodes may then lie flush with the surface of the polymer matrix respectively disposed between them, and form with it a smooth surface side of the polymer film arrangement, at least in the unswitched state. This smooth surface side, which is thus formed together from electrode surfaces and the polymer matrix surfaces, may for example be applied on a substrate.


In the context of the invention, for this embodiment as well, structured disposition of the base electrodes is intended to mean that the anodes and cathodes form a regular or irregular pattern on one of the two surface sides of the polymer film arrangement. For example, with common application on one surface side, the anodes and cathodes may be disposed alternately. One possible way of achieving this straightforwardly is to use so-called comb electrodes, which can be disposed interdigitated and interengaging. Advantageously, the individual electrodes poled in the same way can thereby be switched together.


If the electrodes are disposed in a structured fashion as base electrodes on one surface side of the polymer film arrangement, according to another embodiment the polymer matrix may consist of an ionic electroactive polymer without any structuring particles being disposed in the polymer matrix. In this embodiment, the polymer matrix preferably consists of an elastomer which contains mobile ions. In other words, the polymer film of the electrically switchable polymer film arrangement in this embodiment according to the invention is formed from an ion-containing polymer composite in which at least one type of ion, anions or cations, is freely mobile. The ions may, for example, be introduced into the elastomer matrix in the form of an ionic liquid. If a voltage is applied, the freely mobile ions migrate to the corresponding electrodes. Depending on whether only one or both types of ions (anions, cations) are mobile in the polymer matrix, as a result of ion diffusion with an applied electric field the regions around one of the two electrode types (anode, cathode) will then swell up and can thus replicate the electrode structure on the surface side. The regions between the electrodes become depleted of ions, which can result in a volume contraction which further increases the difference from the elevations around the corresponding electrodes. A structured surface side of the polymer film arrangement can thus be formed in a simple way. The thickness of the base electrodes is in this case from 10 nm to 900 μm, preferably from 100 nm to 500 μm, particularly preferably from 1 μm to 200 μm.


According to another embodiment of the invention, the polymer matrix consists of an electroactive polymer and the structuring particles are electrically nonconductive hard material particles, ceramic hard material particles being excluded. Particularly preferably, the electrically nonconductive hard material particles may be made of glass or an electrically nonconductive polymeric material. Hard material particles in the sense of the invention are intended to mean particles which retain their shape and dimensions during the electrical switching. Glass and electrically nonconductive polymeric materials such as for example polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polymethyl methacrylate (PMMA), polycarbonate (PC) or polyurethane (PU) are particularly preferred, because they are very inexpensive. During electrical switching of the polymer film arrangement, the size, shape and distribution of the particles can thus be transferred onto the surface side having the flexible cover electrode. For example, in a combined embodiment having a flatly configured rigid base electrode and a flatly configured flexible cover electrode, and disposed between them an electroactive polymer matrix made of a dielectric elastomer, when applying a voltage the polymer matrix can be pressed together while the particles retain their shape. The shape and distribution of the particles can then be replicated by elevations on the surface side having the cover electrode. The thicknesses of the base electrode and the cover electrode are in this case, independently of one another, from 10 nm to 100 μm, preferably from 100 nm to 10 μm.


According to an alternative embodiment of the invention, the structuring particles consist of an electroactive polymer and the polymer matrix is formed from an elastomer. The switchable structuring particles are particles which can undergo a reversible shape and/or the volume change during electrical switching. Owing to this property, the particles can transfer their shape and distribution for example onto the elastic polymer matrix and optionally onto a flexible cover electrode, so that a structured surface side can be formed. This has the advantage that the actual polymer film only has to be adapted in respect of its stiffness so that, during electrical switching of the polymer film arrangement, it can adopt the shape change of the structuring particles. For the polymer matrix, therefore, already known coating systems may advantageously be envisaged which are already adapted to possible specific technical applications in respect of their other properties, such as gloss, abrasion strength, long-term stability or processability etc.


If alternatively the concept according to the invention with base electrodes disposed in a structured fashion is used, the switchable particles made of electroactive polymer may swell or change their shape in the vicinity of one electrode type, while the oppositely poled electrodes remain unchanged or shrink. The size and diameter of the particles is expediently adapted to the thickness of the polymer matrix so that the shape and/or volume change of the particles due to the electrical switching is transferred onto the surface side lying opposite the base electrodes, so that the resulting elevations reflect the electrode structuring and the distribution of the particles. The thickness of the base electrodes is in this case from 10 nm to 900 μm, preferably from 100 nm to 500 μm, particularly preferably from 1 μm to 200 μm.


In the embodiments according to the invention in which structuring particles made of electroactive polymers are used, i.e. switchable particles, these may touch one of the electrodes. In this case, in other words, there may thus be electrical contact of the individual particles with an electrode, which may possibly allow exchange of electrons. An electrode may in this case be in contact with a plurality of particles.


The electrically switchable polymer film arrangement according to the invention may be produced with the described variants as a self-supporting polymer film arrangement.


According to the invention, in another preferred configuration, the first or second surface side of the electrically switchable polymer film arrangement may be applied on a substrate, in which case the respective other surface side may be structured by the electrical switching of the electroactive polymer. The substrate may advantageously serve as a carrier and support body for the polymer film arrangement. Furthermore, the substrate may also be an article on which the polymer film arrangement according to the invention is applied as a surface coating.


The invention provides an electrically switchable polymer film arrangement, which has a first surface side and a second surface side which are disposed opposite one another, comprising at least one electrode pair consisting of an anode and a cathode and a polymer matrix, characterised in that structuring particles are optionally disposed in the polymer matrix, and the polymer matrix and/or the optionally provided structuring particles consist of an electroactive polymer, the first and/or second surface side being converted from a smooth state into a structured state by electrical switching of the electroactive polymer.


The invention furthermore provides an electrically switchable polymer film arrangement, which has a first surface side and a second surface side which are disposed opposite one another, comprising at least one electrode pair consisting of an anode and a cathode and a polymer matrix in which structuring particles are disposed, characterised in that the structuring particles are electrically nonconductive hard material particles and the polymer matrix consists of an electroactive polymer, or the structuring particles consist of an electroactive polymer, the first and/or second surface side being converted from a smooth state into a structured state by electrical switching of the electroactive polymer.


The invention furthermore provides an electrically switchable polymer film arrangement, which has a first surface side and a second surface side which are disposed opposite one another, comprising at least one electrode pair consisting of an anode and a cathode and a polymer matrix which consists of an electroactive polymer, the first and/or second surface side being converted from a smooth state into a structured state by electrical switching of the electroactive polymer, characterised in that the anode and cathode are configured as base electrodes and are disposed in a structured fashion on the first or second surface side.


The invention furthermore comprises the use of a polymer film arrangement according to the invention. In particular, the invention provides an electrically switchable surface coating comprising an electrically switchable polymer film according to the invention in the variants and embodiments described above. This surface coating may be applied for example on articles, for example car bodywork or a ship's hull. The surface coating according to the invention may advantageously be influenced actively by the electrical switchability of the polymer film arrangement. This active influence may take place statically or at different frequencies.


The invention also comprises the use of such an electrically switchable surface coating for the generation of haptic, acoustic and/or optical signals. This may for example involve variable haptics, for example switching between a smooth surface and a rough surface. This effect may for example be used for self-cleaning of surfaces, deicing of surfaces and anti-fouling ship hull surfaces. Optical properties may also be influenced by switching the polymer film arrangement according to the invention, so that for example it is possible to switch between a transparent surface and an opaque surface.


Furthermore, these haptic and optical effects may also be used for man-machine interfaces, for example context-driven menu management.


According to the invention, it is furthermore possible to influence the flow behaviour of fluids. For example, the invention may thus be used to avoid turbulence or reduce flow resistance.


Advantageously, the invention can therefore be implemented in a multiplicity of different applications.





The invention will be explained below by way of example in connection with the figures, without being restricted to these preferred embodiments.



FIG. 1
a and FIG. 1b show a schematic sectional view of an electrically switchable polymer film arrangement according to the invention, having a switchable electroactive polymer matrix and hard material particles disposed therein,



FIG. 2
a and FIG. 2b show a schematic sectional view of an electrically switchable polymer film arrangement according to the invention, having switchable structuring particles in an elastomer matrix,



FIGS. 3
a and 3b show a schematic sectional view of an electrically switchable polymer film arrangement according to the invention, having switchable structuring particles in an elastomer matrix and electrodes applied in a structured fashion,



FIG. 4
a and FIG. 4b show a schematic sectional view of an electrically switchable polymer film arrangement according to the invention, having electrodes applied in a structured fashion and freely mobile anions and cations in an elastomer matrix.





The embodiments shown, which are denoted by “a”, respectively show the polymer film arrangement before applying an electrical voltage, and the figures denoted by “b” respectively show the corresponding polymer film arrangement after applying an electrical voltage. FIGS. 1a and 1b show an electrically switchable polymer film arrangement 1 according to the invention having a switchable polymer matrix 2, which is embedded between flat electrodes 3 and 4. The polymer matrix 2 may for example consist of a dielectric elastomer, for example silicone elastomers, polyurethane elastomers, polyacrylate elastomers or rubber. Electrically nonconductive hard material particles 5 may furthermore be disposed as structuring particles in the polymer matrix 2. Merely for the sake of clarity, only three particles 5 are shown in each case. These particles 5 may consist for example of glass, silicon carbide, ceramic or a hard electrically nonconductive polymer. In the embodiment shown, the electrode 3 is configured as a flexible cover electrode 3. The electrode 4 is configured as a base electrode and disposed on a substrate 6. As shown by FIG. 1a, the particles 5 are dimensioned so that the polymer matrix 2 and the cover electrode 4 have a smooth surface without an applied electric field. In other words, the polymer film arrangement 1 has a first smooth surface side. When a voltage is applied, as shown in FIG. 1b, the dielectric elastomer is then pressed together between the electrodes 3, 4 while the hard particles 5 maintain their shape. According to the invention, the particles 5 are furthermore dimensioned and adapted to the thickness of the polymer matrix 2 so that haptically and/or optically perceptible structuring with elevations 7 and depressions 8 can be formed on the first surface side when a voltage is applied to the polymer film arrangement 1. In the sense of the invention, perceptible structuring is intended to mean that it is at least detectable. Detection may be carried out for example by optical methods, for example diffraction or refraction. The dimension and shape of the surface structure may advantageously be influenced and variably adjusted through the size, shape and distribution of the hard particles 5, through the selection of the polymeric material for the polymer matrix 2 and the applied electric field.



FIG. 2
a and FIG. 2b show a schematic sectional view of an electrically switchable polymer film arrangement 1 according to the invention having switchable particles 5 in an elastic polymer matrix 2. In the embodiment shown, the electrode 3 is configured as a flexible cover electrode 3. The electrode 4 is configured as a base electrode and disposed on a substrate 6. The particles 5 may for example consist of ionic EAPs or field-activated EAPs, which undergo a shape and/or volume change when an electrical voltage is applied to the electrodes 3, 4. The particles 5 may touch one of the electrodes 3, 4 in the polymer arrangement 1. The particles 5 are in this case configured in their dimensions so that, when a voltage is applied, their shape and distribution over the polymer matrix 2 is replicated by the flexible cover electrode 3 and a surface structure with elevations 7 and depressions 8 can thereby be generated. One advantage of this preferred configuration is that the polymer film 2 only has to be adjusted in respect of its stiffness so that it can adopt the shape change of the switchable particles 5 and impart it to the flexible cover electrode 3. For this polymer matrix 2, therefore, already known coating systems may be envisaged which are already adapted to specific technical applications in respect of their other properties, such as gloss, abrasion strength, long-term stability and processability. In another embodiment, the elastomer matrix 2 may also contain mobile ions, anions and/or cations, in addition to the particles 5. These mobile ions may diffuse from the polymer matrix 2 into the particles 5, or diffuse out of them, during the switching process so that a shape and/or volume change of the particles 5 can be achieved.



FIGS. 3
a and 3b show a schematic sectional view of an electrically switchable polymer film arrangement 1 according to the invention having switchable structuring particles 5 in an elastic matrix 2 and base electrodes 3, 4 disposed in a structured fashion. The electrodes 3, 4 are disposed alternately. They may be configured as interdigitated comb electrodes which, advantageously, may respectively be poled together. In this representation, the electrodes 3, 4 are incorporated into the polymer matrix 2 and lie flush with it on one surface side. This surface side is disposed on a substrate 6. The switchable particles 5 may preferably consist of an ionic EAP. The particles 5 may touch one of the electrodes 3, 4 in the polymer arrangement 1. For the sake of clarity, only one particle 5 is represented per electrode 3, 4. The particles 5 can swell on one electrode 3 during the switching process, while the particles 5 on the oppositely poled electrode remained almost unchanged or shrink. The size of the particles 5 is expediently adapted to the thickness of the polymer matrix 2 so that the shape and/or volume change of the particles 5 due to the electrical switching is transferred onto the surface side lying opposite the electrodes 3, 4. The resulting elevations 7 and depressions 8 can advantageously reflect the electrode structuring and the distribution of the particles 5. In another embodiment, the elastomer matrix 2 may also contain mobile ions, anions and/or cations, in addition to the particles 5. These mobile ions may diffuse from the polymer matrix 2 into the particles 5 of them, or diffuse out of them, during the switching process so that a shape and/or volume change of the particles 5 can be achieved.



FIGS. 4
a and 4b show a schematic sectional view of an electrically switchable polymer film arrangement 1 according to the invention having base electrodes 3, 4 disposed in a structured fashion and freely mobile anions 9 and cations 10 in an elastomer matrix 2. The polymer matrix 2 is applied with one surface side on a substrate 6. The polymer film, comprising the polymer matrix 2 and ions 9, 10, of the electrically switchable polymer film arrangement 1 may in this embodiment according to the invention be formed from an ion-containing polymer composite, in which at least one type of ion is freely mobile. If a voltage is applied, the freely mobile ions migrate to the corresponding electrodes. Depending on whether only one type of ion or, as shown in FIGS. 4a and 4b, anions 9 and cations 10 are mobile in the polymer matrix 2, as a result of ion diffusion with an applied electric field the regions around one of the two electrodes 3, 4 will then swell up and can thus replicate the electrode structure on the surface side. The regions between the electrodes 3, 4 become depleted of ions, which can result in a volume contraction and therefore depressions 8 on the surface side, which further increases the difference from the elevations 7 around the corresponding electrodes 3, 4. A structured surface side can thus be formed in a simple way. Such a configuration of the invention may, for example, be produced by mixing an ionic liquid into a polyurethane (PUR) matrix material as the polymer film. The invention will be explained further by the examples given below, without being restricted to them.


EXAMPLES
Example 1
Production of an Electrically Switchable Polymer Film Arrangement Having Structured Base Electrodes

A polyurethane (PUR) formulation consisting of 82-99 wt. % of Desmodur® E15 (Bayer MaterialScience AG) as an isocyanate and 1 wt. % of triethanolamine (TEA) as a crosslinker was used. In order to increase the mixability with ionic liquids, 0-17 wt. % of polyethylene glycol (PEG 600) were added, the constituents adding up to 100 wt. %. This reaction formulation was stirred manually with 1-butyl-3-methylimidazolium bis(trifluormethylsulfonyl)-imide as an ionic liquid (IL) in a mixing ratio of 1:1 and doctor bladed onto comb electrodes, which were already disposed on a substrate. The electrodes consisted of interdigitated copper conductor tracks with regular electrode spacings of 0.25 mm-4 mm, which were applied on an epoxy substrate (FR4). The height of the electrically conductive Cu electrodes above the epoxy substrate being used was 70 μm. The reactive polymer mixture was cured at a temperature of up to 60° C. This resulted in a transparent, homogeneous film with a smooth surface and a thickness of 150 μm. The current-voltage characteristic of the samples with a size of about 10 cm×10 cm was studied at a voltage of 2 V. When applying the voltage of 2 V, a pronounced current peak was registered; the current subsequently decreased to a constant residual current. When switching off the voltage, a large current initially flowed in the opposite direction, and then returned asymptotically to 0 A. So that no electrolysis, and therefore no chemical reaction process, took place, the applied voltage was kept below the electrochemical potentials of the ions of the ionic liquid and the polyurethane matrix. The voltage-induced migration of the ions into the PUR matrix took place on a time scale of seconds and was reversibly switchable. The switching of the surface structure of the polymer film arrangement according to the invention by the ion migration inside the PUR film could be observed with the aid of the displacement of a laser beam reflected from the surface side of the polymer film arrangement according to the invention.


Example 2

In a further experiment a 2K polyurethane, which is available under the designation “ISO-PUR A 776” from ISO-Elektra GmbH as a “self-healing gel”, was used as the polymer matrix. This was mixed similarly as in Example 1 in a weight ratio of 1:1 with methyl ethyl imidazolium-octyl sulfate as an ionic liquid. The mixture was applied as described in Example 1 as a film onto a substrate having interdigitated base electrodes disposed thereon, and was switched by an electric field. The displacement of a laser beam reflected from the surface side of the polymer film arrangement according to the invention, when applying a voltage of 2 V to this very soft PUR-IL composite, was changed more greatly than with the PUR formulation described in Example 1. From this, it could be deduced that the surface structure of an electrically switchable polymer film arrangement according to the invention changes more strongly in comparison.


In summary, the invention provides electrically switchable polymer film arrangements with which the structure of surfaces and surface coatings can be actively switched and influenced.


Owing to the variable adjustability of the properties of the electrically switchable polymer film arrangements according to the invention, they can advantageously be adapted to a wide variety of requirements of special applications.

Claims
  • 1. A device comprising: an electrically switchable polymer film arrangement comprising a first surface side and a second surface side which are disposed opposite one another, the electrically switchable polymer film arrangement comprising: at least one electrode pair comprising an anode and a cathode;a polymer matrix; andstructuring particles disposed in the polymer matrix,wherein the polymer matrix and/or the structuring particles comprise an electroactive polymer, the first and/or second surface side being converted from a smooth state into a structured state by electrical switching of the electroactive polymer andwherein the structured state comprises elevations and depressions in the first and/or second surface side that reflect an electrode structuring and wherein the elevations or depressions reflect a distribution of the structuring particles.
  • 2. The device according to claim 1, wherein the electroactive polymer is a field-activated polymer or an ionic electroactive polymer.
  • 3. The device according to claim 1, wherein the electrically switchable polymer film arrangement has a thickness of ≧10 μm and ≦1 mm in the smooth state.
  • 4. The device according to claim 1, wherein a diameter of the structuring particles is from 50 to 90% of the thickness of the polymer film arrangement.
  • 5. The device according to claim 1, wherein the anode and cathode are disposed on mutually opposite surfaces of the polymer matrix, one surface side of the polymer film arrangement is configured as a flexible cover electrode and the respective other surface side is configured as a rigid base electrode.
  • 6. The device according to claim 1, wherein the anodes and the cathodes are disposed on mutually opposite surfaces of the polymer matrix, and the electrodes are disposed in a structured fashion on one or both surface sides of the polymer film arrangement.
  • 7. The device according to claim 1, wherein the polymer matrix comprises an electroactive polymer and the structuring particles comprise electrically nonconductive hard material particles, excluding ceramic hard material particles.
  • 8. The device according to claim 1, wherein the structuring particles comprise a glass or an electrically nonconductive polymeric material selected from at least one of the group consisting of polyethylene, polypropylene, polyvinyl chloride, polymethyl methacrylate, polycarbonate and polyurethane.
  • 9. The device according to claim 6, wherein the polymer matrix comprises an ionic electroactive polymer and no structuring particles are disposed in the polymer matrix.
  • 10. The device according to claim 1, wherein the structuring particles consist of an electroactive polymer and the polymer matrix is formed from an elastomer.
  • 11. The device according to claim 1, wherein the first or second surface side is applied on a substrate, the respective other surface side being converted into a structured state by electrical switching of the electroactive polymer.
  • 12. An electrically switchable surface coating comprising the electrically switchable polymer film arrangement according to claim 1.
  • 13. A device comprising: an electrically switchable polymer film arrangement comprising a first surface side and a second surface side which are disposed opposite one another, the electrically switchable polymer film arrangement comprising: at least one electrode pair comprising an anode and a cathode;a polymer matrix; andstructuring particles disposed in the polymer matrix,wherein the polymer matrix and/or the structuring particles comprise an electroactive polymer, the first and/or second surface side being converted from a smooth state into a structured state by electrical switching of the electroactive polymer, andwherein the structured state comprises elevations in the first and/or second surface side, wherein the elevations reflect a distribution of the structuring particles.
  • 14. A device comprising: an electrically switchable polymer film arrangement comprising a first surface side and a second surface side which are disposed opposite one another, the electrically switchable polymer film arrangement comprising: at least one electrode pair comprising an anode and a cathode;a polymer matrix; andfreely mobile anions and cations disposed in the polymer matrix,wherein the first and/or second surface side being converted from a smooth state into a structured state by electrical switching of the electroactive polymer,wherein the structured state comprises elevations in the first and/or second surface side that reflect an electrode structuring by ion diffusion in the region of at least one of the electrodes, andwherein the structured state comprises depressions in the first and/or second surface side that reflect replicate an electrode structuring by ion depletion in the region between the at least one electrode pair.
Priority Claims (1)
Number Date Country Kind
090052804 Apr 2009 EP regional
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP2010/002001 3/30/2010 WO 00 2/7/2012
Publishing Document Publishing Date Country Kind
WO2010/115549 10/14/2010 WO A
US Referenced Citations (678)
Number Name Date Kind
2430013 Hansell Nov 1947 A
2967914 Pye Jan 1961 A
3050034 Benton Aug 1962 A
3056932 Wood Oct 1962 A
3303750 Powell Feb 1967 A
3304773 Rogallo Feb 1967 A
3400281 Malik Sep 1968 A
3403234 Barnes, Jr. et al. Sep 1968 A
3463942 Mellon Aug 1969 A
3509714 Walton May 1970 A
3539841 Riff Nov 1970 A
3558936 Horan Jan 1971 A
3606241 Bornholdt Sep 1971 A
3783480 Booe Jan 1974 A
3798473 Murayama et al. Mar 1974 A
3801839 Yo Apr 1974 A
3816774 Ohnuki et al. Jun 1974 A
3821967 Sturman et al. Jul 1974 A
3832580 Yamamuro et al. Aug 1974 A
3851363 Booe Dec 1974 A
3903733 Murayama et al. Sep 1975 A
3935485 Yoshida et al. Jan 1976 A
3940637 Ohigashi et al. Feb 1976 A
3943614 Yoshikawa et al. Mar 1976 A
3947644 Uchikawa Mar 1976 A
3965757 Barrus Jun 1976 A
4011474 O'Neill Mar 1977 A
4028566 Franssen et al. Jun 1977 A
4051395 Taylor Sep 1977 A
4056742 Tibbetts Nov 1977 A
4088915 Kodama May 1978 A
4089927 Taylor May 1978 A
4127749 Atoji et al. Nov 1978 A
4140936 Bullock Feb 1979 A
4155950 Berezuk et al. May 1979 A
4158787 Forward Jun 1979 A
4170742 Itagaki et al. Oct 1979 A
4190336 Frank et al. Feb 1980 A
4216403 Krempl et al. Aug 1980 A
4227347 Tam Oct 1980 A
4234813 Iguchi et al. Nov 1980 A
4236416 Barcita Dec 1980 A
4240535 Pierce et al. Dec 1980 A
4245815 Willis Jan 1981 A
4257594 Conrey et al. Mar 1981 A
4266339 Kalt May 1981 A
4283461 Wooden et al. Aug 1981 A
4283649 Heinouchi Aug 1981 A
4284921 Lemonon et al. Aug 1981 A
4290983 Sasaki et al. Sep 1981 A
4297394 Wooden et al. Oct 1981 A
4315433 Edelman et al. Feb 1982 A
4322877 Taylor Apr 1982 A
4326762 Hockenbrock et al. Apr 1982 A
4330730 Kurz et al. May 1982 A
4342936 Marcus et al. Aug 1982 A
4344743 Bessman et al. Aug 1982 A
4346505 Lemonon et al. Aug 1982 A
4363991 Edelman Dec 1982 A
4376302 Miller Mar 1983 A
4384394 Lemonon et al. May 1983 A
4387318 Kolm et al. Jun 1983 A
4400634 Micheron Aug 1983 A
4401911 Ravinet et al. Aug 1983 A
4404490 Taylor et al. Sep 1983 A
4413202 Krempl et al. Nov 1983 A
4433359 Hamabe et al. Feb 1984 A
4434452 Hamabe et al. Feb 1984 A
4435667 Kolm et al. Mar 1984 A
4442372 Roberts Apr 1984 A
4469920 Murphy Sep 1984 A
4469978 Hamada et al. Sep 1984 A
4472255 Millington et al. Sep 1984 A
4473806 Johnston Sep 1984 A
4500377 Broussoux et al. Feb 1985 A
4518555 Ravinet et al. May 1985 A
4566135 Schmidt Jan 1986 A
4588998 Yamamuro et al. May 1986 A
4592383 Rikuta Jun 1986 A
4595338 Kolm et al. Jun 1986 A
4598338 Van Devender et al. Jul 1986 A
4605167 Maehara Aug 1986 A
4626730 Hubbard, Jr. Dec 1986 A
4638207 Radice Jan 1987 A
4654554 Kishi Mar 1987 A
4668449 Soni et al. May 1987 A
4678955 Toda Jul 1987 A
4686440 Hatamura et al. Aug 1987 A
4689614 Strachan Aug 1987 A
4704556 Kay Nov 1987 A
4715396 Fox Dec 1987 A
4733121 Hebert Mar 1988 A
4748366 Taylor May 1988 A
4762733 Thiel et al. Aug 1988 A
4783888 Fujii et al. Nov 1988 A
4784479 Ikemori Nov 1988 A
4785837 Hansen et al. Nov 1988 A
4786837 Kalnin et al. Nov 1988 A
4787411 Moldenhauer Nov 1988 A
4793588 Laverty, Jr. Dec 1988 A
4803671 Rochling et al. Feb 1989 A
4814661 Ratzlaff et al. Mar 1989 A
4820236 Berliner et al. Apr 1989 A
4824107 French Apr 1989 A
4825116 Itoh et al. Apr 1989 A
4833659 Geil et al. May 1989 A
4835747 Billet May 1989 A
4839872 Gragnolati et al. Jun 1989 A
4843275 Radice Jun 1989 A
4849668 Crawley et al. Jul 1989 A
4868447 Lee et al. Sep 1989 A
4869282 Sittler et al. Sep 1989 A
4870868 Gastgeb et al. Oct 1989 A
4877957 Okada et al. Oct 1989 A
4877988 McGinniss et al. Oct 1989 A
4879698 Langberg Nov 1989 A
4885783 Whitehead et al. Dec 1989 A
4885830 Ohtaka Dec 1989 A
4904222 Gastgeb et al. Feb 1990 A
4906886 Breimesser et al. Mar 1990 A
4911057 Fishman Mar 1990 A
4911995 Belanger et al. Mar 1990 A
4958100 Crawley et al. Sep 1990 A
4961956 Simopoulos et al. Oct 1990 A
4969197 Takaya Nov 1990 A
4971287 Shaw Nov 1990 A
4980597 Iwao Dec 1990 A
4989951 Miyano et al. Feb 1991 A
5024872 Wilson et al. Jun 1991 A
RE33651 Blonder et al. Jul 1991 E
5030874 Saito et al. Jul 1991 A
5065067 Todd et al. Nov 1991 A
5076538 Mohr et al. Dec 1991 A
5085401 Botting et al. Feb 1992 A
5090246 Colla et al. Feb 1992 A
5090794 Hatano et al. Feb 1992 A
5100100 Benson et al. Mar 1992 A
5119840 Shibata Jun 1992 A
5132582 Hayashi et al. Jul 1992 A
5142510 Rodda Aug 1992 A
5148735 Veletovac Sep 1992 A
5149514 Sanjurjo Sep 1992 A
5153820 MacFarlane et al. Oct 1992 A
5153859 Chatigny et al. Oct 1992 A
5156885 Budd Oct 1992 A
5170089 Fulton Dec 1992 A
5171734 Sanjurjo et al. Dec 1992 A
5172024 Broussoux et al. Dec 1992 A
5188447 Chiang et al. Feb 1993 A
5199641 Hohm et al. Apr 1993 A
5206557 Bobbio Apr 1993 A
5229979 Scheinbeim et al. Jul 1993 A
5232196 Hutchings et al. Aug 1993 A
5240004 Walinsky et al. Aug 1993 A
5244707 Shores Sep 1993 A
5250784 Muller et al. Oct 1993 A
5254296 Perlman Oct 1993 A
5258201 Munn et al. Nov 1993 A
5281885 Watanabe et al. Jan 1994 A
5288551 Sato et al. Feb 1994 A
5291335 Ogino Mar 1994 A
5302318 Dutta et al. Apr 1994 A
5305178 Binder et al. Apr 1994 A
5321332 Toda Jun 1994 A
5350966 Culp Sep 1994 A
5352574 Guiseppi-Elie Oct 1994 A
5356500 Scheinbeim et al. Oct 1994 A
5361240 Pearce Nov 1994 A
5368704 Madou et al. Nov 1994 A
5369995 Scheinbeim et al. Dec 1994 A
5377258 Bro Dec 1994 A
5380396 Shikida et al. Jan 1995 A
5410210 Sato et al. Apr 1995 A
5417235 Wise et al. May 1995 A
5424596 Mendenhall et al. Jun 1995 A
5428523 McDonnal Jun 1995 A
5430565 Yamanouchi et al. Jul 1995 A
5438553 Wilson et al. Aug 1995 A
5440194 Beurrier Aug 1995 A
5452878 Gravesen et al. Sep 1995 A
5481152 Buschulte Jan 1996 A
5488872 McCormick Feb 1996 A
5493372 Mashtare et al. Feb 1996 A
5495137 Park et al. Feb 1996 A
5499127 Tsubota et al. Mar 1996 A
5500635 Mott Mar 1996 A
5504388 Kimura et al. Apr 1996 A
5509888 Miller Apr 1996 A
5515341 Toda et al. May 1996 A
5548177 Carroll Aug 1996 A
5559387 Beurrier Sep 1996 A
5563466 Rennex et al. Oct 1996 A
5571148 Loeb et al. Nov 1996 A
5578889 Epstein Nov 1996 A
5589725 Haertling Dec 1996 A
5591986 Niigaki et al. Jan 1997 A
5593462 Gueguen et al. Jan 1997 A
5632841 Hellbaum et al. May 1997 A
5636072 Shibata et al. Jun 1997 A
5636100 Zheng et al. Jun 1997 A
5642015 Whitehead et al. Jun 1997 A
5647245 Takei Jul 1997 A
5668703 Rossi et al. Sep 1997 A
5678571 Brown Oct 1997 A
5682075 Bolleman et al. Oct 1997 A
5684637 Floyd Nov 1997 A
5696663 Unami et al. Dec 1997 A
5703295 Ishida et al. Dec 1997 A
5717563 MacDougall et al. Feb 1998 A
5722418 Bro Mar 1998 A
5744908 Kyushima Apr 1998 A
5751090 Henderson May 1998 A
5755909 Gailus May 1998 A
5761782 Sager Jun 1998 A
5766934 Guiseppi-Elie Jun 1998 A
5777540 Dedert et al. Jul 1998 A
5788468 Dewa et al. Aug 1998 A
5800421 Lemelson Sep 1998 A
5801475 Kimura Sep 1998 A
5814921 Carroll Sep 1998 A
5828157 Miki et al. Oct 1998 A
5831371 Bishop Nov 1998 A
5835453 Wynne et al. Nov 1998 A
5847690 Boie et al. Dec 1998 A
5857694 Lazarus et al. Jan 1999 A
5876675 Kennedy Mar 1999 A
5883466 Suyama et al. Mar 1999 A
5889354 Sager Mar 1999 A
5892314 Sager et al. Apr 1999 A
5896287 Mihara et al. Apr 1999 A
5897097 Biegelsen et al. Apr 1999 A
5900572 Aaroe May 1999 A
5902836 Bennett et al. May 1999 A
5910107 Iliff Jun 1999 A
5912499 Diem et al. Jun 1999 A
5913310 Brown Jun 1999 A
5914901 Pascucci Jun 1999 A
5915377 Coffee Jun 1999 A
5918502 Bishop Jul 1999 A
5928262 Harber Jul 1999 A
5928547 Shea et al. Jul 1999 A
5933170 Takeuchi et al. Aug 1999 A
5971355 Biegelsen et al. Oct 1999 A
5977685 Kurita et al. Nov 1999 A
5984760 Marine Nov 1999 A
5988902 Holehan Nov 1999 A
6012961 Sharpe, III et al. Jan 2000 A
6037707 Gailus et al. Mar 2000 A
6048276 Vandergrift Apr 2000 A
6048622 Hagood, IV et al. Apr 2000 A
6055859 Kozuka et al. May 2000 A
6059546 Brenan et al. May 2000 A
6060811 Fox et al. May 2000 A
6069420 Mizzi et al. May 2000 A
6074178 Bishop et al. Jun 2000 A
6075504 Stoller Jun 2000 A
6078126 Rollins et al. Jun 2000 A
6084321 Hunter et al. Jul 2000 A
6089701 Hashizume et al. Jul 2000 A
6093078 Cook Jul 2000 A
6093995 Lazarus et al. Jul 2000 A
6094988 Aindow Aug 2000 A
6097821 Yokoyama et al. Aug 2000 A
6108275 Hughes et al. Aug 2000 A
6111743 Lavene Aug 2000 A
6117396 Demers Sep 2000 A
6130510 Kurihara et al. Oct 2000 A
6133398 Bhat et al. Oct 2000 A
6140131 Sunakawa et al. Oct 2000 A
6140740 Porat et al. Oct 2000 A
6140746 Miyashita et al. Oct 2000 A
6148842 Kappel et al. Nov 2000 A
6156842 Hoenig et al. Dec 2000 A
6157528 Anthony Dec 2000 A
6161966 Chang et al. Dec 2000 A
6165126 Merzenich et al. Dec 2000 A
6168133 Heinz et al. Jan 2001 B1
6181351 Merrill et al. Jan 2001 B1
6184044 Sone et al. Feb 2001 B1
6184608 Cabuz et al. Feb 2001 B1
6184609 Johansson et al. Feb 2001 B1
6184844 Filipovic et al. Feb 2001 B1
6190805 Takeuchi et al. Feb 2001 B1
6194815 Carroll Feb 2001 B1
6196935 Spangler et al. Mar 2001 B1
6198203 Hotomi Mar 2001 B1
6198204 Pottenger Mar 2001 B1
6201398 Takada Mar 2001 B1
6210827 Dopp et al. Apr 2001 B1
6228533 Ohashi et al. May 2001 B1
6232702 Newnham et al. May 2001 B1
6239535 Toda et al. May 2001 B1
6239536 Lakin May 2001 B1
6240814 Boyd et al. Jun 2001 B1
6248262 Kubotera et al. Jun 2001 B1
6249076 Madden et al. Jun 2001 B1
6252221 Kaneko et al. Jun 2001 B1
6252334 Nye et al. Jun 2001 B1
6252336 Hall Jun 2001 B1
6255758 Cabuz et al. Jul 2001 B1
6262516 Fukuda et al. Jul 2001 B1
6268219 McBride et al. Jul 2001 B1
6282074 Anthony Aug 2001 B1
6284435 Cao Sep 2001 B1
6286961 Ogawa Sep 2001 B1
6291155 Raguse et al. Sep 2001 B1
6291928 Lazarus et al. Sep 2001 B1
6294859 Jaenker Sep 2001 B1
6297579 Martin et al. Oct 2001 B1
6311950 Kappel et al. Nov 2001 B1
6316084 Claus et al. Nov 2001 B1
6321428 Toda et al. Nov 2001 B1
6330463 Hedrich Dec 2001 B1
6333595 Horikawa et al. Dec 2001 B1
6334673 Kitahara et al. Jan 2002 B1
6336880 Agner Jan 2002 B1
6339527 Farooq et al. Jan 2002 B1
6343129 Pelrine et al. Jan 2002 B1
6345840 Meyer et al. Feb 2002 B1
6349141 Corsaro Feb 2002 B1
6355185 Kubota Mar 2002 B1
6358021 Cabuz Mar 2002 B1
6359370 Chang Mar 2002 B1
6366193 Duggal et al. Apr 2002 B2
6369954 Berge et al. Apr 2002 B1
6375857 Ng et al. Apr 2002 B1
6376971 Pelrine et al. Apr 2002 B1
6377383 Whitehead et al. Apr 2002 B1
6379393 Mavroidis et al. Apr 2002 B1
6379809 Simpson et al. Apr 2002 B1
6385021 Takeda et al. May 2002 B1
6385429 Weber et al. May 2002 B1
6388043 Langer et al. May 2002 B1
6388553 Shea et al. May 2002 B1
6388856 Anthony May 2002 B1
6400065 Toda et al. Jun 2002 B1
6404107 Lazarus et al. Jun 2002 B1
6411009 Jaenker Jun 2002 B2
6411013 Horning Jun 2002 B1
6424079 Carroll Jul 2002 B1
6429573 Koopmann et al. Aug 2002 B2
6429576 Simes Aug 2002 B1
6433689 Hovind et al. Aug 2002 B1
6434245 Zimmermann Aug 2002 B1
6435840 Sharma et al. Aug 2002 B1
6436531 Kollaja et al. Aug 2002 B1
6437489 Shinke et al. Aug 2002 B1
6457697 Kolze Oct 2002 B1
6459088 Yasuda et al. Oct 2002 B1
6471185 Lewin et al. Oct 2002 B2
6475931 Bower et al. Nov 2002 B2
6486589 Dujari et al. Nov 2002 B1
6492762 Pant et al. Dec 2002 B1
6495945 Yamaguchi et al. Dec 2002 B2
6499509 Berger et al. Dec 2002 B2
6502803 Mattes Jan 2003 B1
6504286 Porat et al. Jan 2003 B1
6509802 Kasperkovitz Jan 2003 B2
6514237 Maseda Feb 2003 B1
6522516 Anthony Feb 2003 B2
6523560 Williams et al. Feb 2003 B1
6528928 Burns et al. Mar 2003 B1
6530266 Adderton et al. Mar 2003 B1
6532145 Carlen et al. Mar 2003 B1
6543110 Pelrine et al. Apr 2003 B1
6545384 Pelrine et al. Apr 2003 B1
6562513 Takeuchi et al. May 2003 B1
6583533 Pelrine et al. Jun 2003 B2
6586859 Kombluh et al. Jul 2003 B2
6590267 Goodwin-Johansson et al. Jul 2003 B1
6593155 Mohler et al. Jul 2003 B2
6613816 Mahdi et al. Sep 2003 B2
6617759 Zumeris et al. Sep 2003 B1
6617765 Lagier et al. Sep 2003 B1
6619799 Blum et al. Sep 2003 B1
6628040 Pelrine et al. Sep 2003 B2
6631068 Lobo Oct 2003 B1
6637276 Adderton et al. Oct 2003 B2
6640402 Vooren et al. Nov 2003 B1
6644027 Kelly Nov 2003 B1
6646077 Lyons Nov 2003 B1
6650455 Miles Nov 2003 B2
6652938 Nishikawa et al. Nov 2003 B1
6654004 Hoggarth Nov 2003 B2
6664718 Pelrine et al. Dec 2003 B2
6668109 Nahum et al. Dec 2003 B2
6673533 Wohlstadter et al. Jan 2004 B1
6680825 Murphy et al. Jan 2004 B1
6682500 Soltanpour et al. Jan 2004 B2
6690101 Magnussen et al. Feb 2004 B2
6700314 Cuhat et al. Mar 2004 B2
6701296 Kramer et al. Mar 2004 B1
6707236 Pelrine et al. Mar 2004 B2
6720710 Wenzel et al. Apr 2004 B1
6733130 Blum et al. May 2004 B2
6743273 Chung et al. Jun 2004 B2
6762050 Fukushima et al. Jul 2004 B2
6768246 Pelrine et al. Jul 2004 B2
6781284 Pelrine et al. Aug 2004 B1
6784227 Simon et al. Aug 2004 B2
6791205 Woodbridge Sep 2004 B2
6800155 Senecal et al. Oct 2004 B2
6804068 Sasaki et al. Oct 2004 B2
6806621 Heim et al. Oct 2004 B2
6806806 Anthony Oct 2004 B2
6806808 Watters et al. Oct 2004 B1
6809462 Pelrine et al. Oct 2004 B2
6809928 Gwin et al. Oct 2004 B2
6812624 Pei et al. Nov 2004 B1
6824689 Wang et al. Nov 2004 B2
6847153 Balizer Jan 2005 B1
6847155 Schwartz et al. Jan 2005 B2
6856305 Nagano Feb 2005 B2
6864592 Kelly Mar 2005 B1
6866242 Hirota Mar 2005 B2
6867533 Su et al. Mar 2005 B1
6869275 Dante et al. Mar 2005 B2
6876135 Pelrine et al. Apr 2005 B2
6879318 Chan et al. Apr 2005 B1
6882086 Kornbluh et al. Apr 2005 B2
6891317 Pei et al. May 2005 B2
6902048 Chung Jun 2005 B1
6911764 Pelrine et al. Jun 2005 B2
6935287 Shinogle Aug 2005 B2
6938945 Wald et al. Sep 2005 B2
6940211 Pelrine et al. Sep 2005 B2
6940212 Mueller Sep 2005 B2
6940221 Matsukiyo et al. Sep 2005 B2
6944931 Shcheglov et al. Sep 2005 B2
6952313 Schrader Oct 2005 B2
6967430 Johansson Nov 2005 B2
6994314 Garnier et al. Feb 2006 B2
6997870 Couvillon, Jr. Feb 2006 B2
7008838 Hosking et al. Mar 2006 B1
7011378 Maluf et al. Mar 2006 B2
7011760 Wang et al. Mar 2006 B2
7029056 Browne et al. Apr 2006 B2
7034432 Pelrine et al. Apr 2006 B1
7037270 Seward May 2006 B2
7038357 Goldenberg et al. May 2006 B2
7049732 Pei et al. May 2006 B2
7052594 Pelrine et al. May 2006 B2
7062055 Pelrine et al. Jun 2006 B2
7063268 Chrysler et al. Jun 2006 B2
7063377 Brei et al. Jun 2006 B2
7064472 Pelrine et al. Jun 2006 B2
7071596 Krill Jul 2006 B2
7075162 Unger Jul 2006 B2
7075213 Krill Jul 2006 B2
7092238 Saito et al. Aug 2006 B2
7099141 Kaufman et al. Aug 2006 B1
7104146 Benslimane et al. Sep 2006 B2
7109643 Hirai et al. Sep 2006 B2
7113318 Onuki et al. Sep 2006 B2
7113848 Hanson Sep 2006 B2
7115092 Park et al. Oct 2006 B2
7140180 Gerber et al. Nov 2006 B2
7141888 Sabol et al. Nov 2006 B2
7142368 Kim et al. Nov 2006 B2
7142369 Wu et al. Nov 2006 B2
7144616 Unger et al. Dec 2006 B1
7148789 Sadler et al. Dec 2006 B2
7164212 Leijon et al. Jan 2007 B2
7166952 Topliss et al. Jan 2007 B2
7166953 Heim et al. Jan 2007 B2
7170665 Kaneko et al. Jan 2007 B2
7190016 Cahalen et al. Mar 2007 B2
7193350 Blackburn et al. Mar 2007 B1
7195393 Potter Mar 2007 B2
7195950 Taussig Mar 2007 B2
7196688 Schena Mar 2007 B2
7199302 Raisanen Apr 2007 B2
7199501 Pei et al. Apr 2007 B2
7205704 Audren et al. Apr 2007 B2
7205978 Poupyrev et al. Apr 2007 B2
7209280 Goossens Apr 2007 B2
7211937 Kornbluh et al. May 2007 B2
7220785 Saito May 2007 B2
7224106 Pei et al. May 2007 B2
7233097 Rosenthal et al. Jun 2007 B2
7235152 Bell et al. Jun 2007 B2
7237524 Pelrine et al. Jul 2007 B2
7242106 Kelly Jul 2007 B2
7245440 Peseux Jul 2007 B2
7256943 Kobrin et al. Aug 2007 B1
7259495 Asai et al. Aug 2007 B2
7259503 Pei et al. Aug 2007 B2
7276090 Shahinpoor et al. Oct 2007 B2
7291512 Unger Nov 2007 B2
7298054 Hirsch Nov 2007 B2
7298559 Kato et al. Nov 2007 B2
7298603 Mizuno et al. Nov 2007 B2
7301261 Ifuku et al. Nov 2007 B2
7310874 Higuchi et al. Dec 2007 B2
7312917 Jacob Dec 2007 B2
7320457 Heim et al. Jan 2008 B2
7321185 Schultz Jan 2008 B2
7323790 Taylor et al. Jan 2008 B2
7332688 Browne et al. Feb 2008 B2
7339285 Negron Crespo Mar 2008 B2
7339572 Schena Mar 2008 B2
7342573 Ryynanen Mar 2008 B2
7355293 Bernhoff et al. Apr 2008 B2
7359124 Fang et al. Apr 2008 B1
7362031 Maita et al. Apr 2008 B2
7362032 Pelrine et al. Apr 2008 B2
7362889 Dubowsky et al. Apr 2008 B2
7368862 Pelrine et al. May 2008 B2
7371596 Warner, Jr. et al. May 2008 B2
7373454 Noe May 2008 B1
7378783 Pelrine et al. May 2008 B2
7392876 Browne et al. Jul 2008 B2
7394182 Pelrine et al. Jul 2008 B2
7394282 Sinha et al. Jul 2008 B2
7394641 Won et al. Jul 2008 B2
7397166 Morgan et al. Jul 2008 B1
7401846 Browne et al. Jul 2008 B2
7411332 Kornbluh et al. Aug 2008 B2
7426340 Seo Sep 2008 B2
7429074 McKnight et al. Sep 2008 B2
7429495 Wan Sep 2008 B2
7436099 Pei et al. Oct 2008 B2
7436646 Delince et al. Oct 2008 B2
7442421 Li et al. Oct 2008 B2
7442760 Roberts et al. Oct 2008 B2
7444072 Seo Oct 2008 B2
7446926 Sampsell Nov 2008 B2
7449821 Dausch Nov 2008 B2
7454820 Nakamura Nov 2008 B2
7456549 Heim et al. Nov 2008 B2
7468575 Pelrine et al. Dec 2008 B2
7481120 Gravesen et al. Jan 2009 B2
7492076 Heim et al. Feb 2009 B2
7498729 Ogino Mar 2009 B2
7499223 Berge et al. Mar 2009 B2
7511706 Schena Mar 2009 B2
7513624 Yavid et al. Apr 2009 B2
7515350 Berge et al. Apr 2009 B2
7518284 Benslimane et al. Apr 2009 B2
7521840 Heim Apr 2009 B2
7521847 Heim Apr 2009 B2
7537197 Heim et al. May 2009 B2
7548015 Benslimane et al. Jun 2009 B2
7548232 Shahoian et al. Jun 2009 B2
7573064 Benslimane et al. Aug 2009 B2
7585122 Eromaki et al. Sep 2009 B2
7586242 Yokoyama et al. Sep 2009 B2
7595580 Heim Sep 2009 B2
7608989 Heydt et al. Oct 2009 B2
7626319 Heim Dec 2009 B2
7646544 Batchko et al. Jan 2010 B2
7648118 Ukpai et al. Jan 2010 B2
7659918 Turner Feb 2010 B2
7679267 Heim Mar 2010 B2
7679839 Polyakov et al. Mar 2010 B2
7690622 Ito et al. Apr 2010 B2
7702227 Ito et al. Apr 2010 B2
7703740 Franklin Apr 2010 B1
7703742 Heim et al. Apr 2010 B2
7703839 McKnight et al. Apr 2010 B2
7705521 Pelrine et al. Apr 2010 B2
7714701 Altan et al. May 2010 B2
7732999 Clausen et al. Jun 2010 B2
7733575 Heim et al. Jun 2010 B2
7750532 Heim Jul 2010 B2
7750617 Omi Jul 2010 B2
7761981 Rosenthal et al. Jul 2010 B2
7785656 Pei et al. Aug 2010 B2
7787646 Pelrine et al. Aug 2010 B2
7813047 Wang et al. Oct 2010 B2
7824580 Boll et al. Nov 2010 B2
7886993 Bachmaier et al. Feb 2011 B2
7893965 Heim et al. Feb 2011 B2
7898159 Heydt et al. Mar 2011 B2
7911115 Pelrine et al. Mar 2011 B2
7911761 Biggs et al. Mar 2011 B2
7915789 Smith Mar 2011 B2
7915790 Heim et al. Mar 2011 B2
7921541 Pei et al. Apr 2011 B2
7923064 Pelrine et al. Apr 2011 B2
7923902 Heim Apr 2011 B2
7923982 Sumita Apr 2011 B2
7940476 Polyakov et al. May 2011 B2
7952261 Lipton et al. May 2011 B2
7971850 Heim et al. Jul 2011 B2
7980671 Nystrom et al. Jul 2011 B2
7986466 Lee et al. Jul 2011 B2
7990022 Heim Aug 2011 B2
8004339 Barrow Aug 2011 B2
8026023 Hamada Sep 2011 B2
8042264 Rosenthal et al. Oct 2011 B2
8049333 Alden et al. Nov 2011 B2
8054566 Heim et al. Nov 2011 B2
8058861 Pelrine et al. Nov 2011 B2
8072121 Heim et al. Dec 2011 B2
8093783 Rosenthal et al. Jan 2012 B2
8127437 Lipton et al. Mar 2012 B2
8133932 Kijlstra et al. Mar 2012 B2
8164835 Heim et al. Apr 2012 B2
8172998 Bennett et al. May 2012 B2
8183739 Heim May 2012 B2
8221944 Shirasaki et al. Jul 2012 B2
8222799 Polyakov et al. Jul 2012 B2
8237324 Pei et al. Aug 2012 B2
8248750 Biggs et al. Aug 2012 B2
8258238 Boersma et al. Sep 2012 B2
8283839 Heim Oct 2012 B2
8294600 Peterson et al. Oct 2012 B2
8310444 Peterson et al. Nov 2012 B2
8316526 Pei et al. Nov 2012 B2
8319403 Lipton et al. Nov 2012 B2
8419822 Li Apr 2013 B2
8421316 Tryson et al. Apr 2013 B2
8508109 Pelrine et al. Aug 2013 B2
8545987 Strader et al. Oct 2013 B2
8585007 Schapeler et al. Nov 2013 B2
8594839 Hanson Nov 2013 B2
8679575 Biggs et al. Mar 2014 B2
8679621 Blaiszik et al. Mar 2014 B2
8779650 Jenninger et al. Jul 2014 B2
8842355 Lipton et al. Sep 2014 B2
8975888 Pelrine et al. Mar 2015 B2
8981621 Pelrine et al. Mar 2015 B2
RE45464 Kornbluh et al. Apr 2015 E
20010007449 Kobachi et al. Jul 2001 A1
20020083858 MacDiarmid et al. Jul 2002 A1
20040014860 Meier et al. Jan 2004 A1
20040046739 Gettemy Mar 2004 A1
20040124738 Pelrine et al. Jul 2004 A1
20050002113 Berge Jan 2005 A1
20050046312 Miyoshi Mar 2005 A1
20050085693 Belson et al. Apr 2005 A1
20050113892 Sproul May 2005 A1
20050140922 Bekerman et al. Jun 2005 A1
20050157893 Pelrine et al. Jul 2005 A1
20050200984 Browne et al. Sep 2005 A1
20060057377 Harrison et al. Mar 2006 A1
20060079619 Wang et al. Apr 2006 A1
20060122954 Podlasek et al. Jun 2006 A1
20060138371 Garnier Jun 2006 A1
20060197741 Biggadike Sep 2006 A1
20060238069 Maruyama et al. Oct 2006 A1
20060258912 Belson et al. Nov 2006 A1
20070080435 Lin Apr 2007 A1
20070122132 Misawa et al. May 2007 A1
20070152982 Kim et al. Jul 2007 A1
20070170910 Chang et al. Jul 2007 A1
20070173602 Brinkman et al. Jul 2007 A1
20070189667 Wakita et al. Aug 2007 A1
20070200457 Heim et al. Aug 2007 A1
20070219285 Kropp et al. Sep 2007 A1
20070230222 Drabing et al. Oct 2007 A1
20080062589 Drabing Mar 2008 A1
20080128027 Hyde et al. Jun 2008 A1
20080143696 Goulthorpe Jun 2008 A1
20080152921 Kropp Jun 2008 A1
20080303782 Grant et al. Dec 2008 A1
20090184606 Rosenthal et al. Jul 2009 A1
20090250021 Zarrabi et al. Oct 2009 A1
20090297829 Pyles et al. Dec 2009 A1
20100236843 Englund Sep 2010 A1
20110021917 Morita Jan 2011 A1
20110128239 Polyakov et al. Jun 2011 A1
20110155307 Pelrine et al. Jun 2011 A1
20110256383 Cochet et al. Oct 2011 A1
20110285247 Lipton et al. Nov 2011 A1
20140014715 Moran et al. Jan 2014 A1
20140176753 Hillis et al. Jun 2014 A1
20140290834 Egron et al. Oct 2014 A1
20140319971 Yoo et al. Oct 2014 A1
20140322522 Yoo Oct 2014 A1
20140352879 Yoo et al. Dec 2014 A1
20150009009 Zarrabi et al. Jan 2015 A1
20150034237 Biggs et al. Feb 2015 A1
20150043095 Lipton et al. Feb 2015 A1
20150070740 Zarrabi et al. Mar 2015 A1
20150084483 Yoo et al. Mar 2015 A1
20150096666 Yoo et al. Apr 2015 A1
Foreign Referenced Citations (157)
Number Date Country
2329804 Nov 1999 CA
2330384 Nov 1999 CA
2535833 Feb 1977 DE
4408618 Sep 1995 DE
19636909 Mar 1998 DE
19952062 May 2000 DE
10161349 Jul 2003 DE
10335019 Feb 2005 DE
0196839 Oct 1986 EP
0295907 Dec 1988 EP
0522882 Jan 1993 EP
0833182 Apr 1998 EP
0980103 Feb 2000 EP
1050955 Nov 2000 EP
1090835 Apr 2001 EP
1481467 Dec 2004 EP
1512215 Mar 2005 EP
1528609 May 2005 EP
1602135 Dec 2005 EP
1698876 Sep 2006 EP
1751843 Feb 2007 EP
1843406 Oct 2007 EP
1976036 Oct 2008 EP
2119747 Nov 2009 EP
2511314 Oct 2012 EP
2745476 Sep 1997 FR
2338513 Dec 1999 GB
2470006 Nov 2010 GB
S5181120 Jul 1976 JP
S52120840 Oct 1977 JP
S5445593 Apr 1979 JP
S5542474 Mar 1980 JP
S5565569 May 1980 JP
S5661679 May 1981 JP
S56101788 Aug 1981 JP
S59126689 Jul 1984 JP
S6199499 May 1986 JP
S61239799 Oct 1986 JP
S6397100 Apr 1988 JP
H02162214 Jun 1990 JP
02222019 Sep 1990 JP
03173022 Jul 1991 JP
H04353279 Dec 1992 JP
H05202707 Aug 1993 JP
H05244782 Sep 1993 JP
H07111785 Apr 1995 JP
H07240544 Sep 1995 JP
H09275688 Oct 1997 JP
H10137655 May 1998 JP
H10207616 Aug 1998 JP
H10321482 Dec 1998 JP
H112764 Jan 1999 JP
11134109 May 1999 JP
H11133210 May 1999 JP
2000-081504 Mar 2000 JP
2001-130774 May 2001 JP
2001-136598 May 2001 JP
2001-286162 Oct 2001 JP
2003-040041 Feb 2003 JP
3501216 Mar 2004 JP
2004-516966 Jun 2004 JP
2004-221742 Aug 2004 JP
2004-296154 Oct 2004 JP
2004-353279 Dec 2004 JP
2005-202707 Jul 2005 JP
2005-522162 Jul 2005 JP
3709723 Aug 2005 JP
2005-527178 Sep 2005 JP
2006-048302 Feb 2006 JP
2006-509052 Mar 2006 JP
2006-178434 Jul 2006 JP
2006-520180 Aug 2006 JP
2006-244490 Sep 2006 JP
2007-206362 Aug 2007 JP
2007-287670 Nov 2007 JP
2008-262955 Oct 2008 JP
2009-249313 Oct 2009 JP
2010-273524 Dec 2010 JP
5415442 Feb 2014 JP
2004-0097921 Dec 2004 KR
10-0607839 Aug 2006 KR
10-0650190 Nov 2006 KR
2008-0100757 Nov 2008 KR
2010-0121801 Nov 2010 KR
20110122244 Nov 2011 KR
WO 8707218 Dec 1987 WO
WO 8902658 Mar 1989 WO
WO 9418433 Aug 1994 WO
WO 9508905 Mar 1995 WO
WO 9626364 Aug 1996 WO
WO 9715876 May 1997 WO
WO 9819208 May 1998 WO
WO 9835529 Aug 1998 WO
WO 9845677 Oct 1998 WO
WO 9917929 Apr 1999 WO
WO 9923749 May 1999 WO
WO 9937921 Jul 1999 WO
WO 0101025 Jan 2001 WO
WO 0106575 Jan 2001 WO
WO 0106579 Jan 2001 WO
WO 0158973 Aug 2001 WO
WO 0159852 Aug 2001 WO
WO 0191100 Nov 2001 WO
WO 0227660 Apr 2002 WO
WO 0237660 Apr 2002 WO
WO 0237892 May 2002 WO
WO 02071505 Sep 2002 WO
WO 03056274 Jul 2003 WO
WO 03056287 Jul 2003 WO
WO 03081762 Oct 2003 WO
WO 03107523 Dec 2003 WO
WO 2004009363 Jan 2004 WO
WO 2004027970 Apr 2004 WO
WO 2004053782 Jun 2004 WO
WO 2004074797 Sep 2004 WO
WO 2004079832 Sep 2004 WO
WO 2004086289 Oct 2004 WO
WO 2004093763 Nov 2004 WO
WO 2005027161 Mar 2005 WO
WO 2005053002 Jun 2005 WO
2005079187 Sep 2005 WO
WO 2005079353 Sep 2005 WO
WO 2005081676 Sep 2005 WO
WO 2005086249 Sep 2005 WO
WO 2006040532 Apr 2006 WO
WO 2006102273 Sep 2006 WO
WO 2006121818 Nov 2006 WO
WO 2006123317 Nov 2006 WO
WO 2007029275 Mar 2007 WO
WO 2007072411 Jun 2007 WO
WO 2008052559 May 2008 WO
2008105861 Sep 2008 WO
WO 2008150817 Dec 2008 WO
WO 2009006318 Jan 2009 WO
WO 2009076477 Jun 2009 WO
WO 2009112988 Sep 2009 WO
WO 2010104953 Sep 2010 WO
WO 2011118315 Sep 2011 WO
WO 2012044419 Apr 2012 WO
WO 2012099854 Jul 2012 WO
WO 2012118916 Sep 2012 WO
WO 2012129357 Sep 2012 WO
WO 2012148644 Nov 2012 WO
WO 2013055733 Apr 2013 WO
WO 2013103470 Jul 2013 WO
WO 2013142552 Sep 2013 WO
WO 2013155377 Oct 2013 WO
WO 2013192143 Dec 2013 WO
WO 2014028819 Feb 2014 WO
WO 2014028822 Feb 2014 WO
WO 2014028825 Feb 2014 WO
WO 2014062776 Apr 2014 WO
WO 2014066576 May 2014 WO
WO 2014074554 May 2014 WO
WO 2014089388 Jun 2014 WO
WO 2014187976 Nov 2014 WO
WO 2015051291 Apr 2015 WO
Non-Patent Literature Citations (182)
Entry
Akle, Barbar J. et al, “Ionic Electroactive Hybrid Transducers”, Smart Structures and Materials 2005: Electroactive Polymer Actuators and Devices (EAPAD), Proceedings of SPIE, Bellingham, WA, vol. 5759, pp. 153-164.
Chen, Zheng et al, “Quasi-static Positioning of Ionic Polymer-Metal Composite (IPMC) Actuators”, Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Monterey, California, Jul. 24-28, 2005, pp. 60-65.
Huang, Cheng et al, “Colossal Dielectric and Electromechanical Responses in Self-assembled Polymeric Nanocomposites”, Applied Physics Letters 87, 182901 (2005), pp. 182901-1 through 182901-3.
U.S. Appl. No. 14/440,991, filed May 6, 2015.
U.S. Appl. No. 14/437,741, filed Apr. 22, 2015.
U.S. Appl. No. 14/421,448, filed Feb. 13, 2015.
U.S. Appl. No. 14/421,450, filed Feb. 13, 2015.
U.S. Appl. No. 14/421,452, filed Feb. 13, 2015.
U.S. Appl. No. 14/435,761, filed Apr. 15, 2015.
U.S. Appl. No. 14/649,743, filed Jun. 4, 2015.
Ajluni, Cheryl, “Pressure Sensors Strive to Stay on Top, New Silicon Micromachining Techniques and Designs Promise Higher Performance,” Electronic Design—Advanced Technology Series, Oct. 3, 1994, pp. 67-74.
Anderson, R.A., “Mechanical Stress in a Delectric Solid From a Uniform Electric Field,” The American Physical Society, 1986, pp. 1302-1307.
Aramaki, S., S. Kaneko, K. Arai, Y. Takahashi, H. Adachi, and K. Yanagisawa. 1995. “Tube Type Micro Manipulator Using Shape Memory Alloy (SMA),” Proceedings of the IEEE Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, pp. 115-120.
Ashley, S., “Artificial Muscles”, Scientific American 2003, pp. 53-59.
Ashley, S., “Smart Skis and Other Adaptive Structures,” Mechanical Engineering, Nov. 1995, pp. 77-81.
Bar-Cohen, Yoseph, JPL, WorldWide ElectroActive Polymers, EAP (Artifical Muscles) Newsletter, vol. 1, No. 1, Jun. 1999.
Bar-Cohen, Yoseph, JPL, WorldWide ElectroActive Polymers, EAP (Artifical Muscles) Newsletter, vol. 1, No. 2, Dec. 1999.
Bar-Cohen, Yoseph, JPL, WorldWide ElectroActive Polymers, EAP (Artifical Muscles) Newsletter, vol. 2, No. 1, Jul. 2000.
Bar-Cohen, Yoseph, JPL, WorldWide ElectroActive Polymers, EAP (Artifical Muscles) Newsletter, vol. 2, No. 2, Dec. 2000.
Bar-Cohen, Yoseph, JPL, WorldWide ElectroActive Polymers, EAP (Artifical Muscles) Newsletter, vol. 3, No. 1, Jun. 2001.
Bar-Cohen, Yoseph, JPL, WorldWide ElectroActive Polymer Actuators Webhub webpages 1-7, http://ndeaa.jpl.nasa.gov/nasa-nde/lommas/eap/EAP-web.htm, downloaded Jul. 23, 2001 (7 pages).
Baughman, R., L. Shacklette, R. Elsenbaumer, E. Plichta, and C. Becht “Conducting Polymer Electromechanical Actuators,” Conjugated Polymeric Materials: Opportunities in Electronics, Optoelectronics and Molecular Electronics, eds. J.L. Bredas and R.R. Chance, Kluwer Academic Publishers, The Netherlands, pp. 559-582, 1990.
Baughman, R.H., L.W. Shacklette, R.L. Elsenbaumer, E.J. Plichta, and C. Becht “Micro electromechanical actuators based on conducting polymers,” in Molecular Electronics, Materials and Methods, P.I. Lazarev (ed.), Kluwer Academic Publishers, pp. 267-289 (1991).
Beckett, J., “New Robotics Tap the Mind, Help the Heart, SRI shows of latest technologies,” San Francisco Chronicle, Aug. 27, 1998.
Begley, M. et al., “The Electro-Mechanical Response to Highly Compliant Substrates and Thin Stiff Films with Periodic Cracks,” International Journal of Solids and Structures, 42:5259-5273, 2005.
Benslimane, M and P. Gravesen, “Mechanical Properties of Dielectric Elastomer Actuators with Smart Metallic Compliant Electrodes,” Proceedings of SPIE, International Society for Optical Engineering, vol. 4695, Jan. 1, 2002, pp. 150-157.
Bharti, V., Y. Ye, T.-B. Xu and Q.M. Zhang, “Correlation Between Large Electrostrictive Strain and Relaxor Behavior with Structural Changes Induced in P(VDF-TrFE) Copolymer by Electron Irradiation,” Mat. Res. Soc. Symp. Proc. vol. 541, pp. 653-659 (1999).
Bharti, V., Z.-Y.Cheng S. Gross, T.-B. Xu and Q.M. Zhang, “High Electrostrictive Strain Under High Mechanical Stress in Electron-Irradiated Poly(vinylidene fluoride-trifluoroethylene) Copolymer,” Applied Physics Letters, vol. 75, No. 17, pp. 2653-2655 (Oct. 25, 1999).
Bharti, V., H.S. Xu, G. Shanthi and Q.M. Zhang, “Polarization and Structural Properties of High Energy Electron Irradiated Poly(vinylidene fluoride-trifluoroethylene) Copolymer Films,” to be published in J. Appl. Phys. (2000).
Bharti, V.,X.-Z. Zhao, Q.M. Zhang, T. Rornotowski, F. Tito, and R. Ting, “Ultrahigh Field Induced Strain and Polarization Response in Electron Irradiated Poly(Vinylidene Fluoride-Trifluoroethylene) Copolymer,”Mat. Res. Innovat. vol. 2, pp. 57-63 (1998).
Bobbio, S., M. Kellam, B. Dudley, S. Goodwin Johansson, S. Jones, J. Jacobson, F. Tranjan, and T. DuBois, “Integrated Force Arrays,” in Proc. IEEE Micro Electro Mechanical Systems Workshop, Fort Lauderdale, Florida, Feb. 7-10, 1993, pp. 146-154.
Bohon, K. And S. Krause, “An Electrorheological Fluid and Siloxane Gel Based Electromechanical Actuator: Working Toward an Artificial Muscle,” to be published in J. Polymer Sci., Part B. Polymer Phys. (2000).
Boyle, W. et al., “Departure from Paschen's Law of Breakdown in Gases,” The Physical Review, Second Series, 97(2): 255-259, Jan. 15, 1955.
Brock, D.L., “Review of Artifical Muscle based on Contractile Polymers,” MIT Artificial Intelligence Laboratory, A.I. Memo No. 1330, Nov. 1991.
Caldwell, D., G. Medrano-Cerda, and M. Goodwin, “Characteristics and Adaptive Control of Pneumatic Muscle Actuators for a Robotic Elbow,” Proc. IEEE Int. Conference on Robotics and Automation, San Diego, California (May 8-13, 1994).
Calvert, P. And Z. Liu, “Electrically Stimulated Bilayer Hydrogels as Muscles,” Proceedings of the SPIE International Symposium on Smart Structures and Materials: Electro-Active Plymer Actuators and Devices, Mar. 1-2, 1999, Newport Beach, California, USA, pp. 236-241.
Chen et al., “Active control of low-frequency sound radiation from vibrating panel using planar sound sources,” Journal of Vibration and Acoustics, vol. 124, pp. 2-9, Jan. 2002.
Cheng, Z.-Y., H.S. Xu, J. Su, Q. M. Zhjang, P.-C. Wang and a.G. MacDiarmid, “High Performance of All-Polymer Electrostrictive Systems,” Proceedings of the SPIE Ineternational Symposium on Smart Structures and Materials: Electro-Active Polymer Actuators and Devices, Mar. 1-2, 1999, Newport Beach, California, USA, pp. 140-148.
Cheng, Z.-Y., T.-B. Xu, V. Bharti, S. Wang, and Q.M. Zhang, “Transverse Strain Responses in the Electrostrictive Poly(Vinylidene Fluoride-Trifluorethylene) Copolymer,” Appl. Phs. Lett. vol. 74, No. 13, pp. 1901-1903, Mar. 29, 1999.
Chiarelli, P., A. Della Santa, D. DeRossi, and A. Mazzoldi, “Actuation Properties of Electrochemically Driven Polypyrrole Free-Standing Films,” Journal of Intelligent Material Systems and Structures, vol. 6, pp. 32-37, Jan. 1995.
De Rossi, D., and P. Chiarelli, “Biomimetic Macromolecular Actuators,” Macro-Ion Characterization, American Chemical Society Symposium Series, vol. 548, Ch. 40, pp. 517-530 (1994).
Delille, R. et al., “Novel Compliant Electrodes Based on Platinum Salt Reduction,″ Smart Structures and Materials 2006: Electroactive Polymer Actuators and Devices (EAPAD), edited by Yoseph Bar-Cohen,” Proceedings of SPIE, 6168 (6168Q), 2006.
Dowling, K., Beyond Faraday-NonTraditional Actuation, available on the World Wide Web at http://www.frc.ri.cmu.edu/˜nivek/OTH/beyond-faraday/beyondfaraday.html, 9 pages, 1994.
Egawa, S. And T. Higuchi, “Multi-Layered Electrostatic Film Actuator,” Proc. IEEE Micro Electra Mechanical Systems, Napa Valley, California, pp. 166-171 (Feb. 11-14, 1990).
Elhami, K. B. Gauthier-Manuel, “Electrostriction of the Copolymer of Vinylidene-Fluoride and Trifluoroethylene,” J. Appl. Phys. vol. 77 (8), 3987-3990, Apr. 15, 1995.
Flynn, Anita M., L.S. Tavrow, S.F. Bart, R.A. Brooks, D.J. Ehrlich, Kr.R. Udayakumar, and L.E. Cross. 1992. “Piezoelectric Micromotors for Microrobots,” IEEE Journal of Microelectromechanical Systems, vol. 1, No. 1, pp. 44-51 (Mar. 1992); also published as MIT Al Laboratory Memo 1269, Massachusetts Institute of Technology (Feb. 1991).
Ford, V. And J. Kievet, “Technical Support Package on Traveling-Wave Rotary Actuators”, NASA Tech Brief, vol. 21, No. 10, Item #145, from JPL New Technology Report NPO-19261, Oct. 1997.
Full, R.J. And K. Meijer, “Artificial Muscles Versus Natural Actuators from Frogs to Flies,” Proceedings of the 7th SPIE Symposium on Smart Structures and Materials-Electroactive Polymers and Devices (EAPAD) Conference, Mar. 6-8, 2000, Newport Beach, California, USA, pp. 2-9.
Furuhata, T., T. Hirano, and H. Fujita, “Array-Driven Ultrasonic Microactuators,” Solid State Sensors and Actuators, 1991, Digest of Tech. Papers, Transducers, pp. 1056-1059.
Furukawa, T. And N. Seo, “Electrostriction as the Origin of Piezoelectricity in Ferroelectric Polymers,” Japanese J. Applied Physics, vol. 29, No. 4, pp. 675-680 (Apr. 1990).
Ghaffarian, S.R., et al., “Electrode Structures in High Strain Actuator Technology,” Journal of Optoelectronics and Advanced Materials, Nov. 2007, 9(11), pp. 3585-3591.
Gilbertson, R.G. And J.D. Busch. “Survey of MicroActuator Technologies for Future Spacecraft Missions,” presented a the conference entitled “Practical Robotic Interstellar Flight: Are We Ready?” New York University and the United Nations, New York. (Aug. 29 and Sep. 1, 1994); also published on the World Wide Web at http://nonothinc.com/nanosci/microtech/mems/ten-actuators/gilbertson.html.
Goldberg, Lee, “Adaptive-Filtering Developments Extend Noise-Cancellation Applications,” Electronic Design, Feb. 6, 1995, pp. 34 and 36.
Greene, M. J.A. Willett, and R. Kornbluh, “Robotic Systems,” in ONR Report 32198-2, Ocean Engineering and Marine Systems 1997 Program (Dec. 1997).
Greenland, P. Allegro Microsystems Inc., and B. Carsten, Bruce Carsten Associates, “Stacked Flyback Converters Allow Lower Voltage MOSFETs for High AC Line Voltage Operation,” Feature PCIM Article, PCIM, Mar. 2000.
Hansen, G., “High Aspect Ratio Sub-Micron and Nano-Scale Metal Filaments,” SAMPE Journal, 41(2): 24-33, 2005.
Heydt, R., R. Pelrine, J. Joseph, J. Eckerle, and R. Kornbluh, “Acoustical Performance of an Electrostrictive Polymer Film Loudspeaker,” Journal of the Acoustical Society of America, vol. 107(2), pp. 833-839 (Feb. 2000).
Heydt, R., R. Kornbluh, R. Pelrine, and B. Mason, “Design and Performance of an Electrostrictive Polymer Film Acoustic Actuator,” Journal of Sound and Vibration (1998) 215(2), 297-311.
Hirano, M., K. Yanagisawa, H. Kuwano, and S. Nakano, “Microvalve with Ultra-Low Leakage,” Tenth Annual International Workshop on Micro Electromechanical Systems, Nagoya, Japan, IEEE Proceedings (Jan. 26-30, 1997), pp. 323-326.
Hirose, S., Biologically Inspired Robots: Snake-like Locomotors and Manipulators, “Development of the ACM as a Manipulator,” Oxford University Press, New York, 1993, pp. 170-172.
http://www.neurosupplies.com/pdf—files/transducers.pdf, printed from web Jul. 25, 2001.
Hunter, I., S. Lafontaine, J. Hollerbach, and P. Hunter, “Fast Reversible NiTi Fibers for Use in MicroRobotics,” Proc. 1991 IEEE Micro Electro Mechanical Systems-MEMS '91, Nara, Japan, pp. 166-170.
Hunter, I.W. And S. Lafontaine, “A Comparison of Muscle with Artificial Actuators,” Technical Digest of the IEEE Solid-State Sensor and Actuator Workshop, Hilton Head, South Carolina, Jun. 22-25, 1992, pp. 178-185.
Jacobsen, S., R. Price, J. Wood, T. Rytting and M. Rafaelof, “A Design Overview of an Eccentric-Motion Electrostatic Microactuator (the Wobble Motor)”, Sensors and Actuators, 20 (1989) pp. 1-16.
Joseph, J., R. Pelrine, J. Eckerle, J. Bashkin, and P. Mulgaonkar, “Micro Electrical Composite Sensor”, SRI International, printed from web Jul. 25, 2001.
Kaneto, K., M. Kaneko, Y. Min, and A.G. MacDiarmid, “Artifical Muscle: Electromechanical Actuators Using Polyaniline Films,” Synthetic Metals 71, pp. 2211-2212, 1995.
Kawamura, S., K. Minani, and M. Esashi, “Fundamental Research of Distributed Electrostatic Micro Actuator,” Technical Digest of the 11th Sensor Symposium, pp. 27-30 (1992).
Khuri-Yakub et al., “Silicon micromachined ultrasonic transducers,” Japan Journal of Applied Physics, vol. 39 (2000), pp. 2883-2887, Par 1, No. 5B, May 2000.
Kinsler et al., Fundamentals of Acoustics, Third Edition, John Wiley and Sons, 1982.
Kondoh, Y., and T. Ono. 1991. “Bimorph Type Actuators using Lead Zinc Niobate-based Ceramics,” Japanese Journal of Applied Physics, vol. 30, No. 9B, pp. 2260-2263, Sep. 1991.
Kornbluh, R., R. Pelrine, R. Heydt, and Q. Pei, “Acoustic Actuators Based on the Field-Activated Deformation of Dielectric Elastomers,” (2000).
Kornbluh, R., G. Andeen, and J. Eckerle, “Artificial Muscle: The Next Generation of Robotic Actuators,” presented at the Fourth World Conference on Robotics Research, SME Paper M591331, Pittsburgh, PA, Sep. 17-19, 1991.
Kornbluh, R., R. Pelrine, J. Joseph, “Elastonneric Dielectric Artificial Muscle Actuators for Small Robots,” Proceedings of the Third IASTED International Conference on Robotics and Manufacturing, Jun. 14-16, 1995, Cancun, Mexico.
Kornbluh, R. et al., “Electroactive polymers: An emerging technology for MEMS,” (invited) in MEMS/MOEMS Components and Their Applications, eds. S. Janson, W. Siegfried, and A. Henning, Proc. SPIE, 5344:13-27, 2004.
Kornbluh, R. et al., “Electroelastomers: Applications of dielectric elastomer transducers for actuation, generation and smart structures,” Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies, ed., A. McGowan, Proc. SPIE, 4698:254-270, 2002.
Kornbluh et al., “Electrostrictive Polymer Artificial Muscle Actuators,” May 1998, Proc. Of the 1998 IEEE Conf. On Robotics & Automation, 2147-2154.
Kornbluh, R., R. Pelrine, Jose Joseph, Richard Heydt, Qibing Pei, Seiki Chiba, 1999. “High-Field Electrostriction of Elastomeric Polymer Dielectrics for Actuation”, Proceedings of the SPIE International Symposium on Smart Structures and Materials: Electro-Active Polymer Actuators and Devices, Mar. 1-2, 1999, Newport Beach, California, USA. pp. 149-161.
Kornbluh, R. D and R. E. Pelrine., “Dexterous Multiarticulated Manipulator with Electrostrictive Polymer Artificial Muscle,” ITAD-7247-QR-96-175, SRI Project No. 7247, Prepared for Office of Naval Research, Nov. 1996.
Kornbluh et al., “Medical Applications of New Electroactive Polymer Artificial Muscles,” SRI International, Menlo Park, CA, JSPP, v. 16, 2004.
Kornbluh, R., “Presentation to Colin Corporation”, Jan. 1997.
Kornbluh, R. “Presentation to Medtronic”, Jan. 2000.
Kornbluh, Roy D., Robotic Systems, Ocean Engineering and Marine Systems, 2000 Program, Jan. 2001, Office of Naval Research Public Release, ONR-32100-1.
Kornbluh, Roy D., Robotic Systems, Ocean Engineering and Marine Systems, 1999 Program, Feb. 2000, Office of Naval Research Public Release, ONR-32100-2.
Kornbluh, Roy D., Robotic Systems, Ocean Engineering and Marine Systems, 1998 Program, Feb. 1999, Office of Naval Research Public Release, ONR-32199-4.
Kornbluh, Roy D., Robotic Systems, Ocean Engineering and Marine Systems, 1997 Program, Dec. 1997, Office of Naval Research Public Release, ONR-32198-2.
Kornbluh, R. et al., “Shape control of large lightweight mirrors with dielectric elastomer actuation,” Actuation Smart Structures and Materials 2003: Electroactive Polymer Actuators and Devices, ed. Y. Bar-Cohen, Proc. SPIE, 5051, 2003.
Kornbluh, R., R. Pelrine, Q. Pei, S. Oh, and J. Joseph, 2000. “Ultrahigh Strain Response of Field-Actuated Elastomeric Polymers,” Proceedings of the 7th SPIE Symposium on Smart Structures and Materials-Electroactive Polymers and Devices (EAPAD) Conference, Mar. 6-8, 2000, Newport Beach, California, USA, pp. 51-64.
Kornbluh, R., Pe!rine, R. Joseph, J., Pei, Q. And Chiba., “Ultra-High Strain Response of Elastomeric Polymer Dielectrics”, Proc. Materials Res. Soc., Fall meeting, Boston, MA, pp. 1-12, Dec. 1999.
Kornbluh, R., Pelrine, R., Eckerie, J., Joseph, J., “Electrostrictive Polymer Artificial Muscle Actuators,” IEEE International Conference on Robotic and Automation, Leuven, Belgium, 1998.
Kornbluh, R., “Use of Artificial Muscle Butterfly for Chronicle Newpaper Photograph,” Aug. 1998.
Ktech's PVDF Sensors, http://www.ktech.com/pvdf.htm, Jun. 6, 2001, pp. 1-5.
Kymissis et al., “Parasitic Power Harvesting in Shoes,” XP-010312825—Abstract, Physics and Media Group, MIT Media Laboratory E15-410, Cambridge, MA, Oct. 19, 1998, pp. 132-139.
Lacour, S. et al., “Mechanisms of Reversible Stretchability of Thin Metal Films on Elastomeric Substrates, ”Applied Physics Letters 88, 204103, 2006.
Lacour, S. et al., “Stretchable Interconnects for Elastic Electronic Surfaces,” Proceedings of the IEEE on Flexible Electronics Technology, 93(8): 1459-1467, 2005.
Lakes, R.S., “Extreme damping in compliant composites with a negative stiffness phase” or “Extreme Damping in Composite Materials with Negative Stiffness Inclusions”, Nature, 410, 565-567, Mar. (2001).
Lakes, R.S., “Extreme damping in compliant composites with a negative stiffness phase”, Philosophical Magazine Letters, 81, 95-100 (2001).
Lakes, R.S., “Extreme damping in compliant composites with a negative stiffness phase” or “Extreme Damping in Composite Materials with a Negative Stiffness Phase”, Physical Review Letters, 86, 2897-2900, Mar. 26 (2001).
Lang, J, M. Schlect, and R. Howe, “Electric Micromotors: Electromechanical Characteristics,” Proc. IEEE Micro Robots and Teleoperators Workshop, Hyannis, Massachusetts (Nov. 9-11, 1987).
Lawless, W. And R. Arenz, “Miniature Solid-state Gas Compressor,” Rev. Sci Instrum., 58(8), pp. 1487-1493, Aug. 1987.
Liu, C., Y. Bar-Cohen, and S. Leary, “Electro-statically stricted polymers (ESSP),” Proceedings of the SPIE International Symposium on Smart Structures and Materials: Electro-Active Polymer Actuators and Devices, Mar. 1-2, 1999, Newport Beach, California, USA, pp. 186-190.
Liu, C. & Y. Bar-Cohen, “Scaling Laws of Microactuators and Potential Aplications of Elecroactive Polymers in MEMS”, SPIE, Conference on Electroactive Polymer Actuators and Devices, Newport Beach, CA Mar. 1999.
Liu, Y., T. Zeng, Y.X. Wang, H. Yu, and R. Claus, “Self-Assembled Flexible Electrodes on Electroactive Polymer Actuators,” Proceedings of the SPIE International Symposium on Smart Structures and Materials: Electro-Active Polymer Actuators and Devices, Mar. 1-2, 1999, Newport Beach, California, USA., pp. 284-288.
Madden et al., “Conducting polymer actuators as engineering materials,” SPIE: Smart Materials and Structures, ed. Yoseph Bar-Cohen, Bellingham, WA, pp. 176-190, Pub 2002.
Madden, J.D. et al., “Fast contracting polypyrrole actuators”, Jan. 6, 2000, Elsevier Science S.A., pp. 185-192.
Martin, J. And R. Anderson, 1999. “Electrostriction in Field-Structured Composites: Basis for a Fast Artificial Muscle?”, The Journal of Chemical Physics, vol. 111, No. 9, pp. 4273-4280, Sep. 1, 1999.
Measurements Specialties, Inc.-Piezo Home, http://www.msiusa.com/piezo/index.htm, Jun. 6, 2001.
Möller, S. et al., A Polymer/semiconductor write-once read-many-times memory, Nature, vol. 26, Nov. 13, 2003, pp. 166-169, Nature Publishing Group.
Nguyen, T.B., C.K. DeBolt, S.V. Shastri and A. Mann, “Advanced Robotic Search,” in ONR Ocean, Atmosphere, and Space Fiscal Year 1999 Annual Reports (Dec. 1999).
Nguyen, T., J. A. Willett and Kornbluh, R., “Robotic systems,” in ONR Ocean, Atmosphere, and Space Fiscal Year 1998 Annual Reports (Dec. 1998).
Nguyen, T., Green, M., and Kornbluh, R., “Robotic Systems,” in ONR Ocean, Atmosphere, and Space Fiscal Year 1999 Annual Reports (Dec. 1999).
Nihon Kohden Corporation, Operators Manual, available Oct. 1, 2001.
NXT plc, Huntingdon, UK (www.nxtsound.com) Sep. 17, 2008.
Ohara, K., M. Hennecke, and J. Fuhrmann, “Electrostriction of polymethylmethacrylates,” Colloid & Polymer Sci. vol. 280, 164-168 (1982).
Olsson, A., G. Stemme, and E. Stemme, “The First Valve-less Diffuser Gas Pump,” Tenth Annual International Workshop on Micro Electromechanical Systems, Nagoya, Japan, IEEE Proceedings (Jan. 26-30, 1997), pp. 108-113.
Olsson, A., O. Larsson, J. Holm, L. Lundbladh, O. Ohinan, and G. Stemme. 1997. “Valve-less Diffuser Micropumps Fabricated using Thermoplastic Replication,” Proc. IEEE Micro Electro Mechanical Systems, Nagoya, Japan, pp. 305-310 (Jan. 26-30, 1997).
Osterbacka, R. et al., “Two-Dimensional Electronic Excitations in Self-Assembled Conjugated Polymer Nanocrystals,” Science, vol. 287:839-842, Feb. 4 2000.
Otero, T.F., J. Rodriguez, and C. Santamaria, “Smart Muscle Under Electrochemical Control of Molecular Movement in Polypyrrole Films,” Materials Research Society Symposium Proceedings, vol. 330, pp. 333-338, 1994.
Otero, T.F., J. Rodriguez, E. Angulo and C. Santamaria, “Artificial Muscles from Bilayer Structures,” Synthetic Metals, vol. 55-57, pp. 3713-3717 (1993).
Park, S.E., and T. Shrout., “Ultrahigh Strain and Piezoelectric Behavior in Relaxor Based Ferroelectric Single Crystals,” J. Appl. Phys., vol. 82, No. 4, pp. 1804-1811, Aug. 15, 1997.
Pei, Q., 0. Inganäs, and I. Lundström, “Bending Bilayer Strips Built From Polyaniline for Artificial Electrochemical Muscles,” Smart Materials and Structures, vol. 2, pp. 1-6., Jan. 22, 1993.
Pei, Qibing “Description of Conference Demonstration” Mar. 2001.
Pei et al., “Electrochemical Applications of the Bending Beam Method. 1. Mass Transport and vol. Changes in Polypyrrole During Redox,” J. Phys. Chem., 1992, 96, pp. 10507-10514.
Pei, Q. et al., “Multifunctional Electroelastomer Roll Actuators and Their Application for Biomimetic Walking Robots,” Smart Structures and Materials 2003. Electroactive Polymer Actuators and Devices, San Diego, CA, USA, Mar. 3-6, 2003, vol. 5051, 2003, pp. 281-290, XP002291729, Proceedings of the SPIE, ISSN: 0277-786X, the whole document.
Pei, Q. et al., “Multifunctional Electroelastomer Rolls,” Mat. Res. Soc. Symp. Proc., vol. 698, Nov. 26-30, 2001, Boston, MA, pp. 165-170.
Pei, Q., Pelrine, R., Kornbluh, R., Jonasdottir, S., Shastri, V., Full, R., “Multifunctional Electroelastomers: Electroactive Polymers Combining Structural, Actuating, and Sensing Functions,” ITAD-433-PA-00-123, University of California at Berkeley, Berkeley, CA, available at www.sri.com-publications, Jan. 17, 2001.
Pei, Q. et al., “Recent Progress on Electroelastomer Artificial Muscles and Their Application for Biomimetic Robots”, SPIE, Pub. Jun. 2004, 11 pages.
Pelrine, R. et al., “Applications of dielectric elastomer actuators,” (invited paper) in Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices, ed., Y. Bar Cohen, Proc. SPIE, 4329:335-349, 2001.
Pelrine, R., R. Kornbluh, and J. Joseph, “Electrostriction of Polymer Dielectrics with Compliant Electrodes as a Means of Actuation,” Sensors and Actuators A: Physical, vol. 64, No. 1, 1998, pp. 77-85.
Pelrine, R., R. Kornbluh, J. Joseph and S. Chiba, “Electrostriction of Polymer Films for Microactuators,” Proc. IEEE Tenth Annual International Workshop on Micro Electro Mechanical Systems, Nagoya, Japan, Jan. 26-30, 1997, pp. 238-243.
Pelrine, R., R. Kornbluh, and J. Joseph, FY 1992 Final Report on Artifical Muscle for Small Robots, ITAD-3393-FR-93-063, SRI International, Menlo Park, California, Mar. 1993.
Pelrine, R., R. Kornbluh, and J. Joseph, FY 1993 Final Report on Artifical Muscle for Small Robots, ITAD-4570-FR-94-076, SRI International, Menlo Park, California, 1994.
Pelrine, R., R. Kornbluh, and J. Joseph, FY 1994 Final Report on Artifical Muscle for Small Robots, ITAD-5782-FR-95-050, SRI International, Menlo Park, California, 1995.
Pelrine, R., R. Kornbluh, and J. Joseph, FY 1995 Final Report on Artifical Muscle for Small Robots, ITAD-7071-FR-96-047, SRI International, Menlo Park, California, 1996.
Pelrine, R., R. Kornbluh, and J. Joseph, FY 1996 Final Report on Artifical Muscle for Small Robots, ITAD-7228-FR-97-058, SRI International, Menlo Park, California, 1997.
Pelrine, R., R. Kornbluh, and J. Joseph, FY 1997 Final Report on Artifical Muscle for Small Robots, ITAD-1612-FR-98-041, SRI International, Menlo Park, California, 1998.
Pelrine, R., R. Kornbluh, and J. Joseph, FY 1998 Final Report on Artifical Muscle for Small Robots, ITAD-3482-FR-99-36, SRI International, Menlo Park, California, 1999.
Pelrine, R., R. Kornbluh, and J. Joseph, FY 1999 Final Report on Artifical Muscle for Small Robots, ITAD-10162-FR-00-27, SRI International, Menlo Park, California, 2000.
Pelrine, R., R. Kornbluh, Q. Pei, and J. Joseph, “High Speed Electrically Actuated Elastomers with Over 100% Strain,” Science, vol. 287, No. 5454, pp. 1-21, 2000.
Pelrine, R., R. Kornbluh, Q. Pei, and J. Joseph. “High-Speed Electrically Actuated Elastomers, with Strain Greater Than 100%”, Science, Reprint Series, Feb. 4, 2000, vol. 287, pp. 836-839.
Pelrine, R., R. Kornbluh, and G. Kofod, “High Strain Actuator Materials Based on Dielectric Elastomers,” submitted to Advanced Materials (May 2000).
Pelrine, R., Roy Kornbluh, Jose Joseph, Qibing Pei, Seiki Chiba “Recent Progress in Artificial Muscle Micro Actuators,” SRI Interational, Tokyo, 1999 MITI/NEEDOIMNIC, 1999.
Pelrine, R., R. Kornbluh, J. Joseph and S. Chiba, “Review of Artificial Muscle Approaches,” invited paper, in Proc. Third International Symposium on Micro Machine and Human Science, Nagoya, Japan, Oct. 14-16, 1992.
Pelrine, R. And Kornbluh, R., and. 1995. “Dexterous Multiarticulated Manipulator with Electrostrictive Polymer Artificial Muscle Actuator,” EMU 95-023, SRI International, Menlo Park, California, Apr. 28, 1995.
Piezoflex(TM) PVDF Polymer Sensors, http://www.airmar.com/piezo/pvdf.htm. Jun. 6, 2001.
PowerLab ADInstruments, MLT001 High-Sensitivity Force Transducers, AD Instruments Transducers Series, printed from web Jul. 25, 2001.
Puers et al, “A Capacitive Pressure Sensor with Low Impedance Output and Active Suppression of Parasitic Effects,” Sensors and Actuators, A21-A23 (1990) 108-114.
Puers, Robert, “Capacitive sensors: when and how to use them,” Sensors and Actuators A, 37-38 (1993) 93-105.
Reed, C. et al., “The Fundamentals of Aging Hv Polymer-Film Capacitors,” IEEE Transactions on Dielectrics and Electrical Insulation, 1(5): 904-922, 1994.
Sakarya, S., “Micronnachining Techniques for Fabrication of Integrated Light Modulting Devices”, Netherlands 2003, pp. 1-133.
Scheinbeim, J., B. Newman, Z. Ma, and J. Lee, “Electrostrictive Response of Elastomeric Polymers,” ACS Polymer Preprints, 33(2), pp. 385-386, 1992.
Schlaberg, H. I., and J. S. Duffy, “Piezoelectric Polymer Composite Arrays for Ultrasonic Medical Imaging Applications,” Sensors and Actuators, A 44, pp. 111-117, Feb. 22, 1994.
Shahinpoor, M., “Micro-electro-mechanics of Ionic Polymer Gels as Electrically Controllable Artificial Muscles,” J. Intelligent Material Systems and Structures, vol. 6, pp. 307-314, May 1995.
Shkel, Y. And D. Klingenberg, “Material Parameters for Electrostriction,” J. Applied Physics, vol. 80(8), pp. 4566-4572, Oct. 15, 1996.
Smela, E., 0. Inganas, and I. Lundstrom, “Controlled Folding of Micrometer-size Structures,” Science, vol. 268, pp. 1735-1738 (Jun. 23, 1995).
Smela, E., O. Inganas, Q. Pei and I. Lundstrom, “Electrochemical Muscles: Micromachinging Fingers and Corkscrews,” Advanced Materials, vol. 5, No. 9, pp. 630-632, Sep. 1993.
Smith, S. et al., A low switching voltage organic-on-inorganic heterojunction memory element utilizing a conductive polymer fuse on a doped silicon substrate, Applied Physics Letters, vol. 84, No. 24, May 28, 2004, pp. 5019-5021.
Sommer-Larsen, P. and A. Ladegaard Larsen, “Materials for Dielectric Elastomer Actuators,” SPIE, vol. 5385, Mar. 1, 2004, pp. 68-77.
Su, J., Q.M. Zhang, C.H. Kim, R.Y. Ting and R. Capps, “Effects of Transitional Phenomena on the Electric Field induced Strain-electrostrictive Response of a Segmented Polyurethane elastomer,” pp. 1363-1370, Jan. 20, 1997.
Su, J, Z. Ounaies, J.S. Harrison, Y. Bara-Cohen and S. Leary, “Electromechanically Active Polymer Blends for Actuation,” Proceedings of 7th SPIE Symposium on Smart Structures and Materials-Electroactive Polymers and Devices (EAPAD) Conference, Mar. 6-8, 2000, Newport Beach, CA, USA, pp. 65-72.
Suzuki et al., “Sound radiation from convex and concave domes in infinite baffle,” Journal of the Acoustical Society of America, vol. 69(2), Jan. 1981.
Sokolova, M. et al., “Influence of a Bias Voltage on the Characteristics of Surface Discharges in Dry Air,” Plasma Processes and Polymers, 2: 162-169, 2005.
Standard Test Methods for Rubber Deterioration—Cracking in an Ozone Controlled Environment, ASTM International, D 1149-07.
Technology, http://www.micromuscle.com/html/technology.html, Jun. 6, 2001.
“The Rubbery Ruler”, http://www.ph.unimelb.edu.au, printed from web Jul. 25, 2001.
Tobushi, H., S. Hayashi, and S. Kojima, “Mechanical Properties of Shape Memory Polymer of Polyurethane Series,” in JSME International Journal, Series I, vol. 35, No. 3, 1992.
Todorov et al, “WWWeb Application for Ferropiezoelectric Ceramic Parameters Calculation”, Proceedings 24th International Conference on Microelectronics, vol. 1, May 2004, pp. 507-510.
Treloar, L.R.G., “Mechanics of Rubber Elasticity,” J Polymer Science, Polymer Symposium, No. 48, pp. 107-123, 1974.
Uchino, K. 1986. “Electrostrictive Actuators: Materials and Applicaions,” Ceramic Bulletin, 65(4), pp. 647-652, 1986.
Unger et al. (2000), “Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography,” Science 288:113-116, no month.
Wade, Jr., W.L., R.J. Mannone and M. Binder, “Increased Dielectric Breakdown Strengths of Melt-Extruded Polyporphlene Films,” Polymer vol. 34, No. 5, pp. 1093-1094 (1993).
Wax, S.G. and R.R. Sands, “Electroactive Polymer Actuators and Devices,” Proceedings of the SPIE International Symposium on Smart Structures and Materials: Electro-Active Polymer Actuators and Devices, Mar. 1-2, 1999, Newport Beach, CA, USA, pp. 2-10.
Whitesides et al. (2001), “Flexible Methods for Microfluidics,” Physics Today 52(6):42-47, no month.
Winters, J., “Muscle as an Actuator for Intelligent Robots,” Robotics Research: Trans. Robotics International of SME, Scottsdale, AZ (Aug. 18-21, 1986).
Woodard, Improvements of ModalMax High-Fidelity Peizoelectric Audio Device (LAR-16321-1), NASA Tech Briefs, May 2005, p. 36.
Xia, Younan et al., “Triangular Nanoplates of Silver: Synthesis, Characterization, and Use as Sacrificial Templates for Generating Triangular Nanorings of Gold,” Adv. Mater., 2003, 15, No. 9, pp. 695-699.
Yam, P., “Plastics Get Wired,” Scientific American, vol. 273, pp. 82-87, Jul. 1995.
Yoshio, O., “Ablation Characteristics of Silicone Insulation,” Journal of Polymer Science: Part A: Polymer Chemistry, 36: 233-239, 1998.
Yuan, W. et al. “New Electrode Materials for Dielectric Elastomer Actuators, ” Proc. SPIE, 6524 (65240N), 2007.
Zhang, Q.M., V. Bharti, Z.Y. Cheng, T.B. Xu, S. Wang, T.S. Ramotowski, F. Tito, and R. Ting, “Electromechanical Behavior of Electroactive P(VDF-TrFE) Copolymers,” Proceedings of the SPIE International Symposium on Smart Structures and Materials: Electro-Active Polymer Actuators and Devices, Mar. 1-2, 1999, Newport Beach, CA, USA, pp. 134-139.
Zhang, Q.M., Z.Y. Cheng, V. Bharti, T.B. Xu, H. Xu, T. Mai and S.J. Gross, “Piezoelectric and Electrostrictive Polymeric Actuator Materials,” Proceedings of the 7th SPIE Symposium on Smart Structures and Materials: Electroactive Polymers and Devices (EAPAD) Conference, Mar. 6-8, 2000, Newport Beach, CA, USA, pp. 34-50.
Zhang, Q., V. Bharti and X. Zhao, “Giant Electrostriction and Relaxor Ferroelectric Behavior in Electron-irradiated Poly(vinylidene fluoride-trifluoroethylene) Copolymer,” Science, vol. 280, pp. 2101-2104 (Jun. 26, 1998).
Zhenyi, M., J.I. Scheinbeim, J.W. Lee, and B.A. Newman. 1994. “High Field Electrostrictive Response of Polymers,” Journal of Polymer Sciences, Part B-Polymer Physics, vol. 32, pp. 2721- 2731, 1994.
Related Publications (1)
Number Date Country
20120128960 A1 May 2012 US