The preferred embodiment disclosed provides for the application of therapeutic electrical signals to the body through a percutaneous electrode array or a percutaneous electrode array and a non-invasive electrode pad. The array, or array and pad, efficiently deliver therapeutic electrical energy into the body provided by an electrotherapy generator device. An electrotherapy generator device suitable for the production of such energy is described in U.S. patent application Ser. No. 09/756,999, now U.S. Pat. No. 6,584,358, entitled “Electro-Therapy Method and Apparatus,” filed on Jan. 8, 2001 (and identified by Pennie & Edmonds attorney docket no. 9756-005-999), which is hereby incorporated by reference in its entirety for each of its teachings and embodiments.
The configuration of a percutaneous electrode array is shown in
Preferably, each electrode 120 comprises a rectangular parallelepiped attached at a proximal end to the substrate. Alternatively, each electrode 120 preferably comprises a cylinder or cone. The distal end of either electrode embodiment preferably further comprises one or more of a rounded triangular and pointed tip. The width or diameter W1 of each electrode is preferably between 20 to 250 micrometers.
The total surface area of the electrodes in the array equals the area of each electrode times the number of electrodes in contact with the skin. This area must be large enough to carry the electrical current introduced into the body by the electro-therapy generator device, while limiting the current density through the attached skin area. The surface area of each electrode comprises the area of the distal tip of the electrode plus the surface area along the effective length of the electrode, L1, i.e. the length that is inserted into the skin. Preferably, the total electrode surface area is greater than 0.2 square centimeters.
In an alternate preferred embodiment, the total electrode surface area is less than 0.2 square centimeters, but the substrate has a surface area greater than 14.1 square millimeters. The current conducting area of the substrate in combination with the area of the electrodes limits the current density to the skin.
The effective contact area of the electrodes is equal to the total surface area of the electrodes times a 56% reduction factor that accounts for the electrode element surface area which comes in contact with the body's ionic environment (70% of the electrode's length), and the number of electrodes that are in contact with the skin (80% of the total number of electrodes in the array). The Food and Drug Administration (FDA) currently limits the current density for electro-therapy devices to less than 10 milliamps per square centimeter of contact area. One with skill in the art will recognize that several different configurations can be employed in order to achieve the necessary effective contact area needed to reduce the current density below the FDA limit. One way to increase the area is to increase the length L1 of each electrode 120 in the percutaneous electrode array, i.e., the length in contact with the ionic environment of the body, in order to maximize the area for electrical conduction. The maximum length is determined by observing the structure of the skin in the human body.
The major axes of electrodes 120 are preferably perpendicular to substrate 110, but may be angled between perpendicular and parallel to the substrate. Altering the mechanical properties of substrate 110 and/or electrodes 120 may enhance adhesion of the array to the skin. The electrical contact integrity can be improved or maintained by increasing the tension along the plane of substrate 110 between electrodes 120 and the skin surrounding the region of penetration. For example, substrate 110 may act as a spring. In this example, array 100 would be flexed prior to insertion. When array 100 is released, the tension stored in substrate 110 would force electrodes 120 against the skin.
In an alternative preferred embodiment, array 100 comprises a shape-memory metal, e.g., Nitinol. The transition temperature of the alloy is preferably correlated with skin temperature by formulation and processing of the alloy. An array 100 made from such materials would preferably expand or contract along a designated axis along the surface area of substrate 110. The expansion or contraction would force electrodes 120 laterally against the skin.
Electrodes 120 are preferably composed of material having good electrical conductive properties, such as doped silicon, silicon-metal compounds, nickel/iron alloy, stainless steel, conductive inks, an allotrope of carbon such as glassy carbon derived from high carbon content polymer pyrolysis, conductive polymers, polymer/graphite or polymer/metal composite blends, and other biocompatible metals. The materials also have sufficient shear strength to prevent the fracture of electrodes in the skin. In the preferred embodiment, the array comprises type 316 stainless steel.
As demonstrated above, the dimensions of the percutaneous electrode array are extremely small. The development of such small structures are known in the art as micro electrical mechanical systems, or MEMS. MEMS is a multidisciplinary field encompassing microelectronic fabrication, polymerization techniques, physical chemistry, life sciences and mechanical engineering. This cross-field environment has led to the development of micro and nano-sized structures such as micro-sensors, micro-motors and blood chemistry systems-on-a-chip. The manufacture of some percutaneous electrode array embodiments may draw on knowledge from this field, as discussed below.
In an alternative preferred embodiment, glassy carbon electrodes can be made from any high carbon content polymer, such as pitch and polyacrylonitrile. The material is formed into the micro-eletromechanical structures described above using the LIGA process. LIGA is a micromachining technology in which X-ray radiation is used in the production of high-aspect ratio, precision microstructures. LIGA parts are typically 2D extruded metal shapes, but 3D structures can be created using this process. In the process, a master mold is created from silicon using semiconductor lithographic processing. This mold is used to make replica molds by electroplating thin film silver followed by nickel. The replica mold has a thickness of 0.3 mm or greater depending on the mechanical loads borne by it. Next, polymeric material is heated and softened and rolled into a film. The film is placed against the replica. Pressure is applied to force the polymeric material into the mold. After a short time period, the temperature is reduced and the pressure removed.
Once the piece is formed, it is fired at 400 C. to drive off volatile chemicals and to thermoset the plastic. This is followed by an 800 C. bake in inert atmosphere to form carbonized material. The piece is further baked at about 1100 C. to increase conductivity by forming a graphitic phase. Due to the small size of the electrodes, the relatively low strain properties of the material do not present a breakage problem, even after many insertion cycles.
In an alternative preferred embodiment, conductive inks are sprayed onto the electrode array formed from a polymer such as polymethyl methacrylate, or PMMA. Moderate heating to about 120 C. increases both the conductivity and adhesion of the conductive film.
In another alternative preferred embodiment, indium tin oxide is applied to a PMMA electrode array. A glycol-metal precursor of indium tin oxide is sprayed or spin-coated onto the array and then heated to about 400 C. to form a conductive film coating. Indium tin oxide coatings exhibit superb conductivity properties.
In another alternative preferred embodiment, a polymer blend is used to form the array. In such an array, a large amount of either metal powder or graphite powder or graphite-nanofiber is added to a plastic precursor to render the final material moderately conductive. Aggregation of high concentrations of the conductive material can lead to poor uniformity in the surface conductivity of the final composite device. Thermal processing of the composite, where some of the volatile components of the mixture are driven off, may help to reduce this deleterious effect.
In another alternative preferred embodiment, pure metal is electrodeposited on a master mold defining the electrode structure. Preferably, the metal has a conductivity between 100 and 10000 S/cm.
In an alternate embodiment, an adhesion layer is added to the array to increase the conductivity of the array and adhere the array to the skin.
In another preferred embodiment, a percutaneous electrode array is round with a diameter of approximately 1.5″ and sits centered on top of a conductive hydrogel electrode that is also round and has a diameter of approximately 2.5″. In this embodiment the hydrogel passes through the openings in the base of the array to help provide additional adhesion. The hydrogel perimeter around the periphery of the array also provides additional adhesion.
In another preferred embodiment, the percutaneous electrode array is sterilized using gamma radiation. Other methods may be evident to one with skill in the art.
Suitable materials for use in adhesion layer 330 are a hydrogel or sol-gel construct containing an electrolyte. The minimum height of the hydrogel layer, H1, is limited by the estimated evaporation time and the mechanical modulus of the gel. In a preferred embodiment, the array comprises a 635 um thick conductive gel, e.g. Uni-Patch type RG63B. As the hydrogel is exposed to the air, the water in the gel will evaporate, drying out the array and reducing the adhesive and conductive properties of the gel. The use of such an array would require a higher applied voltage. If the array is flexed or the skin/array mechanical interface is otherwise altered, an instantaneous drop in interfacial impedance can occur, giving rise to an unpleasant feeling in the patient and concentrating the current at points of good contact, raising the possibility of a thermal burn. Adhesion layer 330 is preferably adapted to provide an indication that the array is no longer suitable for use.
In a preferred embodiment, the hydrogel contains materials well known in the art that, when exposed to air after the packaging material containing the electrode is opened, causes the hydrogel to slowly change color as a function of the evaporation rate. For example, the hydrogel may have a normally clear appearance, but would turn into a dark color after exposure to the atmosphere. Alternatively, the normal appearance of the hydrogel may be colored, and after exposure the hydrogel turns clear. Such color changes indicate that the array needs to be replaced or that the integrity of the packaging is compromised and that the array is no longer sterile. In an alternate preferred embodiment, after the hydrogel has come into direct contact with human skin, a chemical reaction would occur which changes the color of the hydrogel without leaving any residue on the skin.
In an alternative preferred embodiment, an adhesion layer of an electrode is monitored to determine if the array has dried out or if the temperature is increasing by measuring the electrical capacitance of the adhesion layer.
Circuits that measure capacitance are well known in the art. An exemplary circuit for measuring the array capacitance is illustrated in
Substrate 410 and capacitive plate 440 are connected to a monitoring circuit comprising low-pass filters 510, 520. Low-pass filters 510, 520 preferably comprise 8-pole switched capacitor filters that pass a stable sinusoidal signal. Low-offset comparators 530, 540, detect the zero crossings of the stable sinusoidal output applied to the reference, a fixed precision resistor, and the array capacitor. Reference low-offset comparator 530 sets flip-flop 550, which starts binary counter 560, and capacitance comparator 540 resets flip-flop 550, which stops binary counter 560. High frequency clock 580 provides a clocking signal to binary counter 560 which increments the counter once it is started. Binary counter 560 counts until the capacitance signal performs its zero crossing. Microcontroller 570 reads the count and then resets binary counter 560. Thus, binary counter 560 measures the time difference between the zero crossings of the reference signal and the current through the capacitor. Microcontroller 570 determines the phase shift between the signals from the count, which is indicative of the capacitance of the array capacitor. This measurement is independent of the amplitude of the two signals. Microcontroller 570 comprises embedded software that uses this information to determine if the change in capacitance represents a fault state. If such a determination is made, it can shut the system down and inform the user of the error condition. The software requires that a specific profile of the change in capacitance be maintained during system operation.
In an alternative preferred embodiment, an electrode comprising an adhesion layer has temperature-sensing element 640 embedded in the adhesion layer to monitor the integrity of the adhesion layer, for reasons stated above in the capacitance embodiment.
Vjunction=kT/q*ln(Ijunction/Ijunction saturation current), where k is Boltzmann's constant (1.38×10−23 J/K), T is the absolute temperature in degrees Kelvin, q is the electron charge (1.601×10−19 coulomb), Ijunction is the constant supplied reference current, and Ijunction saturation current is the saturation current of the semiconductor device (2×10−16 A for silicon).
Amplifier 660 increases the junction voltage to a useful level and analog-to-digital converter 670 transforms the signal into a binary representation. Microcontroller 680 uses the binary representation to determine the array temperature.
The monitoring circuit illustrated in
In a preferred embodiment, the measured temperature parameter is used as an interlock in the electro-therapy generator device to protect the patient from harm. If for some reason the array rises above 40 degrees Celsius, or ramps up in temperature at a higher rate than would normally be expected, a temperature-monitoring portion of the electro-therapy generator device can interrupt its output, thus lessening or eliminating the possibility of a burn or thermal irritation. Such detected conditions are used to inform the operator of potential problems with the integrity of the percutaneous electrode array, or the adhesion or placement of the array, two of the most likely causes of an increase in current density.
In another embodiment, the electro-therapy generating device continuously monitors the impedance of the percutaneous electrode array. The device includes a warning indicator which alerts the operator when the impedance of the percutaneous electrode array is too high, indicating that the array should be checked or replaced. The indicator would provide one or more of a visual indication, for example a blinking light emitting diode (LED) or an error message on an liquid crystal display (LCD), an audio indication such as a beeping sound, and a sensory indication such as a vibration producing device. The warning indicator can also be used to indicate error conditions such as a loose array, unplugged lead wires, weak batteries, missing temperature signal, missing capacitance monitoring signal, or any other defective condition of the array.
In another preferred embodiment, a voltage associated with the patient's use of the electro-therapy apparatus is monitored and the therapeutic signal is controlled in response to the monitored voltage level, as described in U.S. patent application Ser. No. 11/103,776, included by reference herein. In such embodiment the therapeutic signal is controlled so as to maintain a monitored voltage at a selected constant voltage level.
The treatment methods described in U.S. Pat. No. 6,760,627 may be more effectively facilitated by substituting percutaneous electrode arrays for the prior art disposable electrode pads. These treatments are incorporated by reference herein.
In another embodiment, the electro-therapy methods described above is accomplished with the use of a non-invasive electrode pad. In such embodiment, the electro-therapy described above is accomplished with the use of at least one non-invasive electrode pad in addition to at least one percutaneous electrode array. A non-invasive electrode pad may be used in place of a percutaneous electrode array, as described in the above method.
While the invention has been described with reference to preferred embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed as the best mode contemplated for this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
This is a continuation-in-part of U.S. patent application Ser. No. 10/956,105, which is a divisional application of U.S. patent application Ser. No. 10/459,695, filed Jun. 6, 2003, now U.S. Pat. No. 7,013,179, which is a continuation-in-part of U.S. application Ser. No. 09/756,999, filed Jan. 8, 2001, now U.S. Pat. No. 6,584,358, which claims priority to U.S. provisional application No. 60/175,003, filed on Jan. 7, 2000 and also to U.S. provisional application No. 60/183,258, filed on Feb. 17, 2000; in addition, the instant application is a continuation-in-part of U.S. patent application Ser. No. 11/103,775 which is a continuation-in-part of U.S. patent application Ser. No. 09/756,999, etc., each of which is hereby incorporated by reference for each of its teachings and embodiments.
Number | Date | Country | |
---|---|---|---|
60175003 | Jan 2000 | US | |
60183258 | Feb 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10459695 | Jun 2003 | US |
Child | 10956105 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10956105 | Oct 2004 | US |
Child | 11539551 | US | |
Parent | 09756999 | Jan 2001 | US |
Child | 10459695 | US | |
Parent | 11103775 | Apr 2005 | US |
Child | 09756999 | US | |
Parent | 09756999 | Jan 2001 | US |
Child | 11103775 | US |