Electro-therapy method

Information

  • Patent Application
  • 20080033492
  • Publication Number
    20080033492
  • Date Filed
    October 06, 2006
    18 years ago
  • Date Published
    February 07, 2008
    17 years ago
Abstract
A method of introducing therapeutic electrical energy to the body tissues in a treatment site beneath the epidermis of a patient is disclosed. The method requires an electro-therapy apparatus with a signal generator and at least one percutaneous electrode array. The percutaneous electrode array is placed on a portion of the patient's body above the treatment site, and a therapeutic signal is passed through the array. The method may also include the use of a non-invasive electrode pad in addition to the array as part of the electro-therapy apparatus. The method may also include monitoring and controlling the voltage associated with the patient's use of the electro-therapy apparatus.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side view of a percutaneous electrode array;



FIG. 2 is a cross-sectional view of human skin;



FIG. 3 is a side view of a percutaneous electrode array comprising an adhesion layer;



FIG. 3A is an exemplary embodiment of a percutaneous electrode array comprising a substrate with voids and an adhesion layer;



FIG. 3B is a top view of a percutaneous electrode array for use with an adhesion layer;



FIG. 3C is a mechanical drawing illustrating an exemplary embodiment of a percutaneous electrode array substrate and electrodes;



FIG. 4 is a side view of an electrode substrate and an adhesion layer having an integrated capacitive element;



FIG. 5 is an exemplary circuit for measuring the capacitance of the capacitive element;



FIG. 6 is a side view of an electrode comprising an integrated thermal-sensing element;



FIG. 6A is a circuit diagram of an exemplary circuit that measures the temperature of an integrated thermistor;



FIG. 6B is a circuit diagram of an exemplary circuit that measures the temperature of an integrated semiconductor junction;



FIG. 6C is a circuit diagram of an exemplary circuit that measures the temperature of a thermocouple.





DETAILED DESCRIPTION OF THE INVENTION

The preferred embodiment disclosed provides for the application of therapeutic electrical signals to the body through a percutaneous electrode array or a percutaneous electrode array and a non-invasive electrode pad. The array, or array and pad, efficiently deliver therapeutic electrical energy into the body provided by an electrotherapy generator device. An electrotherapy generator device suitable for the production of such energy is described in U.S. patent application Ser. No. 09/756,999, now U.S. Pat. No. 6,584,358, entitled “Electro-Therapy Method and Apparatus,” filed on Jan. 8, 2001 (and identified by Pennie & Edmonds attorney docket no. 9756-005-999), which is hereby incorporated by reference in its entirety for each of its teachings and embodiments.


The configuration of a percutaneous electrode array is shown in FIG. 1. As shown in FIG. 1, the array comprises a substrate 110 and a plurality of electrodes 120. Electrodes 120 are attached to a top side of substrate 110. An electrical connection to the array is made on the bottom side of substrate 110 and preferably the entire bottom surface of the array is protected with an insulating material, for example a woven plastic or fabric cover.


Preferably, each electrode 120 comprises a rectangular parallelepiped attached at a proximal end to the substrate. Alternatively, each electrode 120 preferably comprises a cylinder or cone. The distal end of either electrode embodiment preferably further comprises one or more of a rounded triangular and pointed tip. The width or diameter W1 of each electrode is preferably between 20 to 250 micrometers.


The total surface area of the electrodes in the array equals the area of each electrode times the number of electrodes in contact with the skin. This area must be large enough to carry the electrical current introduced into the body by the electro-therapy generator device, while limiting the current density through the attached skin area. The surface area of each electrode comprises the area of the distal tip of the electrode plus the surface area along the effective length of the electrode, L1, i.e. the length that is inserted into the skin. Preferably, the total electrode surface area is greater than 0.2 square centimeters.


In an alternate preferred embodiment, the total electrode surface area is less than 0.2 square centimeters, but the substrate has a surface area greater than 14.1 square millimeters. The current conducting area of the substrate in combination with the area of the electrodes limits the current density to the skin.


The effective contact area of the electrodes is equal to the total surface area of the electrodes times a 56% reduction factor that accounts for the electrode element surface area which comes in contact with the body's ionic environment (70% of the electrode's length), and the number of electrodes that are in contact with the skin (80% of the total number of electrodes in the array). The Food and Drug Administration (FDA) currently limits the current density for electro-therapy devices to less than 10 milliamps per square centimeter of contact area. One with skill in the art will recognize that several different configurations can be employed in order to achieve the necessary effective contact area needed to reduce the current density below the FDA limit. One way to increase the area is to increase the length L1 of each electrode 120 in the percutaneous electrode array, i.e., the length in contact with the ionic environment of the body, in order to maximize the area for electrical conduction. The maximum length is determined by observing the structure of the skin in the human body.



FIG. 2 illustrates a typical cross section of skin. The top layer of skin disclosed in FIG. 2, the stratum corneum, is comprised mostly of dead skin cells. Other layers beneath the stratum corneum include the stratum lucidum, stratum granulosum, stratum spinosum and the stratum basale. These five layers are collectively known as the epidermis. The epidermis covers the germinating skin layers, known as the dermis, which also contains nerves, arteries, veins, or lymphatic vessels. Depending on the location of the skin and its condition, the thickness of the epidermis is approximately 120 to 500 um. The effective length of electrodes 120 is preferably between 120 and 800 um, and more preferably between 721 and 751 um. The effective length of the electrodes is preferably adapted to the location where the array is attached and to the condition of the skin within that region of body. The electrode length is tailored to match these variables, enabling the electrode array to successfully transit to a point just past the epidermis. This region is mostly devoid of pain receptors, making the insertion of the percutaneous electrode array virtually painless. The elastic properties of the skin helps seal holes left behind by electrodes 120 after the array has been removed. Furthermore, the small diameter of each electrode 120, about the diameter of a typical human hair, will limit the amount of fluid that could flow through the hole created by the electrode.


The major axes of electrodes 120 are preferably perpendicular to substrate 110, but may be angled between perpendicular and parallel to the substrate. Altering the mechanical properties of substrate 110 and/or electrodes 120 may enhance adhesion of the array to the skin. The electrical contact integrity can be improved or maintained by increasing the tension along the plane of substrate 110 between electrodes 120 and the skin surrounding the region of penetration. For example, substrate 110 may act as a spring. In this example, array 100 would be flexed prior to insertion. When array 100 is released, the tension stored in substrate 110 would force electrodes 120 against the skin.


In an alternative preferred embodiment, array 100 comprises a shape-memory metal, e.g., Nitinol. The transition temperature of the alloy is preferably correlated with skin temperature by formulation and processing of the alloy. An array 100 made from such materials would preferably expand or contract along a designated axis along the surface area of substrate 110. The expansion or contraction would force electrodes 120 laterally against the skin.


Electrodes 120 are preferably composed of material having good electrical conductive properties, such as doped silicon, silicon-metal compounds, nickel/iron alloy, stainless steel, conductive inks, an allotrope of carbon such as glassy carbon derived from high carbon content polymer pyrolysis, conductive polymers, polymer/graphite or polymer/metal composite blends, and other biocompatible metals. The materials also have sufficient shear strength to prevent the fracture of electrodes in the skin. In the preferred embodiment, the array comprises type 316 stainless steel.


As demonstrated above, the dimensions of the percutaneous electrode array are extremely small. The development of such small structures are known in the art as micro electrical mechanical systems, or MEMS. MEMS is a multidisciplinary field encompassing microelectronic fabrication, polymerization techniques, physical chemistry, life sciences and mechanical engineering. This cross-field environment has led to the development of micro and nano-sized structures such as micro-sensors, micro-motors and blood chemistry systems-on-a-chip. The manufacture of some percutaneous electrode array embodiments may draw on knowledge from this field, as discussed below.


In an alternative preferred embodiment, glassy carbon electrodes can be made from any high carbon content polymer, such as pitch and polyacrylonitrile. The material is formed into the micro-eletromechanical structures described above using the LIGA process. LIGA is a micromachining technology in which X-ray radiation is used in the production of high-aspect ratio, precision microstructures. LIGA parts are typically 2D extruded metal shapes, but 3D structures can be created using this process. In the process, a master mold is created from silicon using semiconductor lithographic processing. This mold is used to make replica molds by electroplating thin film silver followed by nickel. The replica mold has a thickness of 0.3 mm or greater depending on the mechanical loads borne by it. Next, polymeric material is heated and softened and rolled into a film. The film is placed against the replica. Pressure is applied to force the polymeric material into the mold. After a short time period, the temperature is reduced and the pressure removed.


Once the piece is formed, it is fired at 400 C. to drive off volatile chemicals and to thermoset the plastic. This is followed by an 800 C. bake in inert atmosphere to form carbonized material. The piece is further baked at about 1100 C. to increase conductivity by forming a graphitic phase. Due to the small size of the electrodes, the relatively low strain properties of the material do not present a breakage problem, even after many insertion cycles.


In an alternative preferred embodiment, conductive inks are sprayed onto the electrode array formed from a polymer such as polymethyl methacrylate, or PMMA. Moderate heating to about 120 C. increases both the conductivity and adhesion of the conductive film.


In another alternative preferred embodiment, indium tin oxide is applied to a PMMA electrode array. A glycol-metal precursor of indium tin oxide is sprayed or spin-coated onto the array and then heated to about 400 C. to form a conductive film coating. Indium tin oxide coatings exhibit superb conductivity properties.


In another alternative preferred embodiment, a polymer blend is used to form the array. In such an array, a large amount of either metal powder or graphite powder or graphite-nanofiber is added to a plastic precursor to render the final material moderately conductive. Aggregation of high concentrations of the conductive material can lead to poor uniformity in the surface conductivity of the final composite device. Thermal processing of the composite, where some of the volatile components of the mixture are driven off, may help to reduce this deleterious effect.


In another alternative preferred embodiment, pure metal is electrodeposited on a master mold defining the electrode structure. Preferably, the metal has a conductivity between 100 and 10000 S/cm.


In an alternate embodiment, an adhesion layer is added to the array to increase the conductivity of the array and adhere the array to the skin. FIG. 3 illustrates a percutaneous electrode arrays that includes an adhesion layer. Array 300 comprises a substrate 310, a plurality of electrodes 320, and an adhesion layer 330. In a preferred method of manufacture, adhesion layer 330 is added to percutaneous electrode array 300 by depositing material to form the layer on the surface of substrate 310 between electrodes 320, or by piercing a sheet of layer material with array 300.


In another preferred embodiment, a percutaneous electrode array is round with a diameter of approximately 1.5″ and sits centered on top of a conductive hydrogel electrode that is also round and has a diameter of approximately 2.5″. In this embodiment the hydrogel passes through the openings in the base of the array to help provide additional adhesion. The hydrogel perimeter around the periphery of the array also provides additional adhesion.


In another preferred embodiment, the percutaneous electrode array is sterilized using gamma radiation. Other methods may be evident to one with skill in the art.



FIGS. 3A-3C illustrate a preferred embodiment of a percutaneous electrode array that includes an adhesion layer. More specifically, array 300 illustrated in FIG. 3A comprises a substrate 310, a plurality of electrodes 320, an adhesion layer 330, and a plurality of voids 340 in substrate 310. Adhesion layer 330 is mounted to a rear side of substrate 310 and protrudes through voids 340 in substrate 310. Adhesion layer 330 secures the electrode to the patient, and preferably aids in the conduction of the electrical signal into the body. Substrate 310 provides support for adhesion layer 330.



FIG. 3B depicts a top view of array 300 before application of adhesion layer 330. Electrodes 320 and voids 340 are arranged in a grid pattern. Preferably, array 300 is manufactured from a sheet of stainless steel stamped and/or etched to produce voids 340 and electrodes 320 within the area of voids 340. Electrodes 320 are bended upward so that the major axis is in the desired direction, preferably normal to the surface of substrate 310.



FIG. 3C is a mechanical drawing depicting an exemplary embodiment of percutaneous electrode array 300. The array comprises 3600 electrodes arranged in a regular grid pattern of 60 by 60. The width W1 of each electrode is approximately 200 um. A distance S1 of about 860 um separates the electrodes. These dimensions result in a 5 cm by 5 cm array of electrodes. Detail A shows the electrodes within the void area before they are bent upwards.


Suitable materials for use in adhesion layer 330 are a hydrogel or sol-gel construct containing an electrolyte. The minimum height of the hydrogel layer, H1, is limited by the estimated evaporation time and the mechanical modulus of the gel. In a preferred embodiment, the array comprises a 635 um thick conductive gel, e.g. Uni-Patch type RG63B. As the hydrogel is exposed to the air, the water in the gel will evaporate, drying out the array and reducing the adhesive and conductive properties of the gel. The use of such an array would require a higher applied voltage. If the array is flexed or the skin/array mechanical interface is otherwise altered, an instantaneous drop in interfacial impedance can occur, giving rise to an unpleasant feeling in the patient and concentrating the current at points of good contact, raising the possibility of a thermal burn. Adhesion layer 330 is preferably adapted to provide an indication that the array is no longer suitable for use.


In a preferred embodiment, the hydrogel contains materials well known in the art that, when exposed to air after the packaging material containing the electrode is opened, causes the hydrogel to slowly change color as a function of the evaporation rate. For example, the hydrogel may have a normally clear appearance, but would turn into a dark color after exposure to the atmosphere. Alternatively, the normal appearance of the hydrogel may be colored, and after exposure the hydrogel turns clear. Such color changes indicate that the array needs to be replaced or that the integrity of the packaging is compromised and that the array is no longer sterile. In an alternate preferred embodiment, after the hydrogel has come into direct contact with human skin, a chemical reaction would occur which changes the color of the hydrogel without leaving any residue on the skin.


In an alternative preferred embodiment, an adhesion layer of an electrode is monitored to determine if the array has dried out or if the temperature is increasing by measuring the electrical capacitance of the adhesion layer. FIG. 4 discloses the components of this embodiment. As shown in FIG. 4, the electrode comprises a substrate 410, an adhesion layer 430 and a capacitive plate 440 covered by an insulating layer 450. Capacitive plate 440 comprises a small section of conductive material on the bottom side of adhesion layer 430, thus forming an electrical capacitor comprising a dielectric (adhesion layer 430) between two conductive plates (substrate 410 and capacitive plate 440). The capacitance of the array capacitor is a function of both temperature and moisture content. An electrical lead is connected to capacitive plate 440 for connection in a monitoring circuit. Insulating layer 450 is coated over capacitive plate 440 to prevent capacitive plate 440 from electrically contacting the patient or others.


Circuits that measure capacitance are well known in the art. An exemplary circuit for measuring the array capacitance is illustrated in FIG. 5. Measuring system 500 comprises a pair of identical low-pass filters 510, 520, a pair of low-offset comparators 530, 540, a flip-flop 550, a binary counter 560, a microcontroller 570 and a high frequency clock 580. A stable sinusoidal signal, a component of the signal generated by the electro-therapy generator device described in more detail in U.S. patent application Ser. No. 09/756,999, entitled “Electro-Therapy Method and Apparatus,” filed on Jan. 8, 2001 (and identified by Pennie & Edmonds attorney docket no. 9756-005-999), is used to determine the capacitance of adhesion layer 430.


Substrate 410 and capacitive plate 440 are connected to a monitoring circuit comprising low-pass filters 510, 520. Low-pass filters 510, 520 preferably comprise 8-pole switched capacitor filters that pass a stable sinusoidal signal. Low-offset comparators 530, 540, detect the zero crossings of the stable sinusoidal output applied to the reference, a fixed precision resistor, and the array capacitor. Reference low-offset comparator 530 sets flip-flop 550, which starts binary counter 560, and capacitance comparator 540 resets flip-flop 550, which stops binary counter 560. High frequency clock 580 provides a clocking signal to binary counter 560 which increments the counter once it is started. Binary counter 560 counts until the capacitance signal performs its zero crossing. Microcontroller 570 reads the count and then resets binary counter 560. Thus, binary counter 560 measures the time difference between the zero crossings of the reference signal and the current through the capacitor. Microcontroller 570 determines the phase shift between the signals from the count, which is indicative of the capacitance of the array capacitor. This measurement is independent of the amplitude of the two signals. Microcontroller 570 comprises embedded software that uses this information to determine if the change in capacitance represents a fault state. If such a determination is made, it can shut the system down and inform the user of the error condition. The software requires that a specific profile of the change in capacitance be maintained during system operation.



FIG. 6 discloses a preferred embodiment of an electrode comprising a substrate 610 and a temperature-sensing element 640 bonded to substrate 610. The element comprises one of a thermistor, a diode, or other semiconductor junction, and a thermocouple. In a preferred embodiment, temperature-sensing element 640 is a small device, typically no more than 0.5 mm in thickness. Temperature-sensing element 640 accurately measures the temperature of substrate 610.


In an alternative preferred embodiment, an electrode comprising an adhesion layer has temperature-sensing element 640 embedded in the adhesion layer to monitor the integrity of the adhesion layer, for reasons stated above in the capacitance embodiment.



FIG. 6A is a circuit diagram of an exemplary circuit that measures the temperature of a percutaneous electrode array comprising an integrated thermistor. In this embodiment, thermistor element 640 is connected to a monitoring circuit comprising a voltage divider bridge circuit 650, a differential amplifier 660, an analog-to-digital converter 670 and a microcontroller 680. Amplifier 660 eliminates any common mode noise associated with the lead length from the thermistor element 640 to the monitoring circuit. The resultant voltage from amplifier 660 varies as a function of array temperature. The monitoring circuit converts the voltage signal to a binary value by analog-to-digital converter 670. The monitoring circuit further comprises microcontroller 680 having software that converts the binary representation of the voltage signal into the temperature of the array.



FIG. 6B is a circuit diagram of an exemplary circuit that measures the temperature of a percutaneous electrode array comprising either an integrated semiconductor or discrete-device semiconductor junction. In this embodiment, temperature element 640 comprises a diode or transistor having a well-characterized, temperature dependent behavior that measures temperature to a high precision. As shown in FIG. 6B, the junction is connected to a monitoring circuit comprising a constant current source 651, a reference resistor 652, an amplifier 660, an analog-to-digital converter 670, and a microcontroller 680. The current is supplied to the junction of temperature element 640 through reference resistor 652 to forward bias junction of temperature element 640. A voltage is measured across junction of temperature element 640, which varies with junction temperature. The relationship between the junction voltage and temperature is:


Vjunction=kT/q*ln(Ijunction/Ijunction saturation current), where k is Boltzmann's constant (1.38×10−23 J/K), T is the absolute temperature in degrees Kelvin, q is the electron charge (1.601×10−19 coulomb), Ijunction is the constant supplied reference current, and Ijunction saturation current is the saturation current of the semiconductor device (2×10−16 A for silicon).


Amplifier 660 increases the junction voltage to a useful level and analog-to-digital converter 670 transforms the signal into a binary representation. Microcontroller 680 uses the binary representation to determine the array temperature.



FIG. 6C is a circuit diagram of an exemplary circuit that measures the temperature of a percutaneous electrode array comprising a thermocouple. In this embodiment, temperature element 640 comprises a thermocouple. A thermocouple is a device comprising two dissimilar metals (e.g., platinum and rhodium) in electrical contact with each other at a junction. The device generates an electromotive force correlated to the temperature at the junction. The thermocouple requires compensation for the temperature of the junctions formed between the device and its connecting leads (cold-junction compensation).


The monitoring circuit illustrated in FIG. 6C comprises an amplifier 660, a analog-to-digital converter 670 and a microcontroller. Amplifier 660 amplifies thermocouple 640's output voltage, analog-to-digital converter 670 converts it to a binary representation, and then software in microcontroller 680 uses the binary voltage value to determine the array's temperature. Amplifier 660 contains the necessary components to effect cold-junction compensation circuitry as is well known in the art. The software contains a lookup table as is well known in the art to convert the binary representation of thermocouple voltage to temperature.


In a preferred embodiment, the measured temperature parameter is used as an interlock in the electro-therapy generator device to protect the patient from harm. If for some reason the array rises above 40 degrees Celsius, or ramps up in temperature at a higher rate than would normally be expected, a temperature-monitoring portion of the electro-therapy generator device can interrupt its output, thus lessening or eliminating the possibility of a burn or thermal irritation. Such detected conditions are used to inform the operator of potential problems with the integrity of the percutaneous electrode array, or the adhesion or placement of the array, two of the most likely causes of an increase in current density.


In another embodiment, the electro-therapy generating device continuously monitors the impedance of the percutaneous electrode array. The device includes a warning indicator which alerts the operator when the impedance of the percutaneous electrode array is too high, indicating that the array should be checked or replaced. The indicator would provide one or more of a visual indication, for example a blinking light emitting diode (LED) or an error message on an liquid crystal display (LCD), an audio indication such as a beeping sound, and a sensory indication such as a vibration producing device. The warning indicator can also be used to indicate error conditions such as a loose array, unplugged lead wires, weak batteries, missing temperature signal, missing capacitance monitoring signal, or any other defective condition of the array.


In another preferred embodiment, a voltage associated with the patient's use of the electro-therapy apparatus is monitored and the therapeutic signal is controlled in response to the monitored voltage level, as described in U.S. patent application Ser. No. 11/103,776, included by reference herein. In such embodiment the therapeutic signal is controlled so as to maintain a monitored voltage at a selected constant voltage level.


The treatment methods described in U.S. Pat. No. 6,760,627 may be more effectively facilitated by substituting percutaneous electrode arrays for the prior art disposable electrode pads. These treatments are incorporated by reference herein.


In another embodiment, the electro-therapy methods described above is accomplished with the use of a non-invasive electrode pad. In such embodiment, the electro-therapy described above is accomplished with the use of at least one non-invasive electrode pad in addition to at least one percutaneous electrode array. A non-invasive electrode pad may be used in place of a percutaneous electrode array, as described in the above method.


While the invention has been described with reference to preferred embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed as the best mode contemplated for this invention, but that the invention will include all embodiments falling within the scope of the appended claims.

Claims
  • 1. A method of introducing electrical energy into body tissue at a treatment site, the method comprising: providing an electro-therapy apparatus comprising: a signal generator configured to produce first and second signals; andat least one percutaneous electrode array;positioning the at least one array on a first portion of the patient's body near the treatment site;forming a treatment signal from said first and second signals; andpassing the treatment signal through the at least one array in order to treat the treatment site.
  • 2. The method of claim 1, wherein the at least one percutaneous electrode array comprises: a substrate having a top side and a bottom side; anda plurality of electrodes each having a proximal end, a distal end, an axis from the proximal end to the distal end, and a length along the axis, wherein each electrode is attached to the top side of the substrate;wherein the electrodes have a total surface area of more than 0.2 square centimeters.
  • 3. The method of claim 1, wherein the electro-therapy apparatus further comprises: positioning a non-invasive electrode pad on a second portion of the patient's body so that the treatment site is between the at least one percutaneous electrode array and the electrode pad.
  • 4. The method of claim 3, further comprising: feeding the treatment signal through the non-invasive electrode pad into body tissue.
  • 5. The method of claim 3, further comprising: returning the treatment signal from the body tissue through the non-invasive electrode pad.
  • 6. The method of claim 1, further comprising: feeding the treatment signal through the at least one array into the body tissue.
  • 7. The method of claim 1, further comprising: returning the treatment signal from the body tissue through the at least one array.
  • 8. The method of claim 1, wherein the first and second signals are sinusoidal alternating current signals having a frequency difference between 1 Hz and 250 Hz, each signal having a frequency at least about 1 KHz.
  • 9. The method of claim 1, further comprising: filtering to reduce a DC component of at least one of the first signal, the second signal and the treatment signal.
  • 10. The method of claim 1, further comprising: monitoring a voltage associated with the patient's use of the electro-therapy apparatus; andcontrolling the treatment signal in response thereto.
  • 11. The method of claim 1, further comprising: controlling the treatment signal so as to maintain a monitored voltage at a selected constant voltage level.
  • 12. The method of claim 1, further comprising: adhering the at least one array to the patient with a conductive hydrogel;
  • 13. The method of claim 12, wherein the at least one array has a first approximate diameter of 1.5 inches, and the conductive hydrogel has a second approximate diameter of 2.5 inches.
  • 14. The method of claim 1, further comprising: sterilizing the at least one array using gamma radiation.
  • 15. The method of claim 1, wherein the treatment site comprises at least one of bone and cartilage.
  • 16. The method of claim 1, wherein the treatment site comprises muscle.
  • 17. The method of claim 1, wherein the treatment signal is applied during childbirth.
  • 18. The method of claim 1, wherein the treatment signal is applied during surgery.
  • 19. The method of claim 1, further comprising: applying an electric current in conjunction with a chemical drug delivery system to accelerate delivery of at least one drug into the body tissue.
  • 20. A method of introducing therapeutic electrical energy to body tissues in a treatment site beneath the epidermis of a patient, comprising: providing an electro-therapy apparatus comprising: a signal generator configured to produce first and second signals; anda first and second percutaneous electrode array;positioning the first array on a first portion of the patient's body and positioning the second array on a second portion of the patient's body such that the first and second arrays are positioned on the tissue of the patient, and the treatment site is located between the first and second arrays;forming a therapeutic signal from said first and second signals; andintroducing the therapeutic signal through the first and second arrays.
CROSS REFERENCE TO RELATED APPLICATIONS

This is a continuation-in-part of U.S. patent application Ser. No. 10/956,105, which is a divisional application of U.S. patent application Ser. No. 10/459,695, filed Jun. 6, 2003, now U.S. Pat. No. 7,013,179, which is a continuation-in-part of U.S. application Ser. No. 09/756,999, filed Jan. 8, 2001, now U.S. Pat. No. 6,584,358, which claims priority to U.S. provisional application No. 60/175,003, filed on Jan. 7, 2000 and also to U.S. provisional application No. 60/183,258, filed on Feb. 17, 2000; in addition, the instant application is a continuation-in-part of U.S. patent application Ser. No. 11/103,775 which is a continuation-in-part of U.S. patent application Ser. No. 09/756,999, etc., each of which is hereby incorporated by reference for each of its teachings and embodiments.

Provisional Applications (2)
Number Date Country
60175003 Jan 2000 US
60183258 Feb 2000 US
Divisions (1)
Number Date Country
Parent 10459695 Jun 2003 US
Child 10956105 US
Continuation in Parts (4)
Number Date Country
Parent 10956105 Oct 2004 US
Child 11539551 US
Parent 09756999 Jan 2001 US
Child 10459695 US
Parent 11103775 Apr 2005 US
Child 09756999 US
Parent 09756999 Jan 2001 US
Child 11103775 US