The disclosure relates to a field of digital microfluidic technology, and in particularly, to an electro-wetting-based microfluidic droplet positioning system and method.
A dielectric wetting microfluidic technology is a method for using an electric field to control the surface tension of liquid, which can change the wettability of a droplet and a solid surface by controlling an applied voltage to cause an internal pressure difference inside the droplet and then drive the microdroplet to move.
Droplet microfluidic, also known as digital microfluidic, is a research hotspot of microfluidic technology due to the advantages of less sample consumption, fast reaction, good mass and heat transfer effect and no cross contamination. A typical microfluidic chip mainly operates on continuous fluid. Functional components such as a microchannel, a micropump, a microvalve, a microreservoir, a microelectrode, a detecting element, a window and a connector are integrated into a micro total analysis system on a chip material like an integrated circuit through a microfabrication technology. In recent 10 years, a dielectricwetting-based digital microfluidic chip has become the research focus of many microfluidic research institutions, and great progress has been made. At, the volume of the operable and controllable droplet has reached microliter or even nanoliter, so that different types of droplets can be driven and controlled on a micro scale.
For the experiment of the dielectric-wetting-based digital microfluidic chip, to determine the current position of the droplet and the real-time status of the chip is of great concern. Most of the existing researches on the dielectric-wetting microfluidic in the prior art focus on the drive mechanism of the droplet and electrode design, but few researches on the positioning and feedback of the related droplet are provided. In 2004, H. Ren et al. used an annular oscillating circuit to distribute and position the highly-accurate droplet. Then, Gong et al. proposed an integrated droplet positioning and feedback system based on an improved annular oscillating circuit, which fed back the distribution status of the droplet to a droplet generator in real time. Shin et al. invented a control system based on visual feedback. The controller could lock the position of the droplet by detecting the relative position of a cross section of the droplet and a drive electrode. But this system needs a high-precision video processing system, so that the expense and cost are higher. In 2011, Shih et al. invented a sensor-based feedback control system. The sensor is used for detecting an alternating current signal of a EWOD chip, and comparing with a drive voltage signal applied to achieve the purpose of feedback and control. However, this technology is more dependent on the characteristics of the droplet and has poor universality.
In conclusion, it is necessary to improve the technology.
In order to solve the above technical problem, the disclosure aims at providing an electro-wetting-based microfluidic droplet positioning system and method, which can be used for, specific to a “chip-droplet” equivalent capacitance model of the current movement status and movement position of a droplet, intuitively realizing the current movement status and position of the droplet from such parameter of a capacitance value according to the model, and thus driving the droplet to move.
The technical solutions in the disclosure are as follows.
The disclosure provides an electro-wetting-based microfluidic droplet positioning system, including an electro-wetter, a microprocessor, a main control module, a droplet drive module, a droplet positioning module and a power supply. The microprocessor is connected with the main control module. An output end of the main control module is connected with an input end of the droplet drive module. An output end of the droplet drive module is connected with an input end of the electro-wetter. An output end of the electro-wetter is connected with an input end of the droplet positioning module. An output end of the droplet positioning module is connected with an input end of the main control module. An output end of the power supply is connected with the input end of the main control module.
In an improvement of the technical solution, the main control module is a STM32 chip.
In an improvement of the technical solution, the droplet drive module is an SSD1627 chip.
In an improvement of the technical solution, the droplet positioning module includes a data collecting chip and a data processing chip.
Further, the data collecting chip is a Pcap01 chip.
Further, the data processing chip is a CycloneIV chip.
On the other hand, the disclosure further provides an electro-wetting-based microfluidic droplet positioning method, including the following steps of:
considering, by a system, a droplet to be measured in an electro-wetter and a hydrophobic insulation layer below the droplet as a capacitor connected in series;
issuing, by a main control chip, a command to a droplet drive module, and driving, by the droplet drive module, the droplet to be measured to move;
collecting, by a droplet positioning module, a current capacitance value of the droplet, and determining a relative position of the droplet;
and verifying, by the system, whether the droplet is at a target position; if the droplet is not at the target position, issuing, by the main control module, a command to the droplet drive module and driving the droplet to move until the droplet reaches the target position; and if the droplet is at the target position, issuing, by the main control module, a command to the droplet drive module and driving the droplet to move to next target position.
The disclosure has the advantageous effects as follows: in the disclosure, a solution of a droplet positioning and feedback system based on a system “chip-droplet” equivalent capacitance model is proposed, a “chip-droplet” equivalent capacitance model is established, a droplet driving system is combined with a droplet positioning system, and then a real-time status of the droplet and the hydrophobic layer inside the current chip is fed back to the driving system. In this way, the specific position and general distribution of the droplet on the EWOD chip electrode can be more accurately realized with the data support rather than being only observed by naked eyes. The highly intelligent and accurate droplet movement positioning and feedback system and method can be used to position and control more intuitively and directly, which are convenient and more effective, are beneficial for improving the movement continuity and movement speed of the droplet, and have practicability and certain innovation.
The specific embodiments of the disclosure will be described in detailed with reference to the drawings wherein:
It should be noted that, without conflict, the embodiments in the application can be combined with the features in the embodiments mutually.
Equivalent capacitance is an essential circuit property of the EWOD chip. In one EWOD chip with fixed parameters, the capacitance value of each drive electrode unit is only related to the relative position of the drive electrode. In this solution, a dimensionless value is obtained by collecting the equivalent capacitance ration on the drive electrode adjacent to the EWOD chip by means of such characteristics. According to the dimensionless value, the distribution and position of the droplet of the droplet on the two drive electrodes can be analyzed and positioned. Therefore, the capacitance value thereof can be detected to reflect whether a bad point is formed to judge the type of the bad point and an opening rate of the bad point. The capacitance value is measured by a capacitance measuring platform based on Pcap01-AD controlled by FPGA.
In this solution a droplet positioning and feedback system based on a system equivalent capacitance model is proposed. The model and system can accurately detect the current position of the droplet in the EWOD chip and the current distribution on the drive electrode, and simultaneously transmit this information to the driving system in real time. Then, the driving system recharges the determined drive electrode according to the current status. The integrated model and system can improve the continuity and movement speed of droplet movement and play an important auxiliary role in the application of a digital microfluidic chip.
The electronic circuit model is an effective method for analyzing and predicting the behavior of a EWOD system. According to the principle of dielectric wetting, the capacitive character is the essential circuit property of the EWOD chip. Therefore, the designed bipolar plate microfliodic chip can be regarded as an equivalent capacitance system. As shown in
where, C1 represents the capacitance of the equivalent model, C2 represents the capacitance of the droplet, and C3 represents the capacitance of the hydrophobic insulation layer.
C
1
=C
3.
According to a theoretical mode, for a microdroplet with a radius of R, an area of the droplet in the process of motion can be divided into three parts to describe and calculate, as shown in
The above formula has several-power and trigonometric functions, a large number of arithmetic operations will be produced in practical applications, so that the droplet takes the shape of a rectangle simply, that is, the areas can be simplied into the following formulas:
S
1=(r−x)L
S
2
=Lx
S
3
=Lr
According to the area obtained by the above formula, the system equivalent capacitance corresponding to the three parts can be further calculated by using the formula of the parallel plate capacitance, as shown in the formulas below:
where ε0 represents a dielectric constant of the vacuum, and E represents s a dielectric constant of the hydrophobic insulation layer. One equation for solving x can be solved by using the capacitance ratio of the two drive electrodes. In this solution, a unilateral measurement method based on the system equivalent capacitance model is adopted. The method is designed as shown in the schematic diagram, which obtains one equation for solving x by measuring the total equivalent capacitance of the two adjacent electrodes, and finally determines the current position of the droplet.
According to the formula, the following equation can be solved.
x
2
Lε
0εAF−xrLε0εAF+C1rdAF=0
where C1 represents the total equivalent capacitance of the two adjacent electrodes in the current status. The specific position and general distribution of the droplets on the electrode of the EWOD chip at the current moment can be obtained by measuring this equivalent capacitance value.
The unilateral measurement method has the following advantages of: 1. reducing a lead of the drive electrode on a PCB, thus increasing a wiring space of the PCB; and 2. reducing the expense of the device and improving the real-time performance of system driving and positioning without the isolation of a photoelectric relay.
The solutions are specifically implemented below:
A. Setting Up a Measuring System
The system includes a STM32 chip and a SSD1627 chip of a STEM chip made in ARM Company, wherein the STM32 chip is regarded as the main control chip, and the SSD1627 chip is regarded as the drive chip of the EWOD chip. Both of the chips are communicated by I2C. The droplet positioning includes a Pcap01 chip made in German ACAM Company and a CycloneIV chip of a FPGA chip made in ALTERA Company, wherein the Pcap01 chip is regarded as a collector for “chip-droplet” equivalent capacitance, and the CycloneIV chip is used for data processing of a capacitance value collected from the Pcap01 chip to determine a relative position of the droplet on the EWOD chip. Both of the chips are communicated by SPI. And then, the data processed (i.e. the relative position of the droplet on the EWOD chip) is fed back to the main control chip STM by the CycloneIV chip.
considering, by a system, a droplet to be measured in an electro-wetter and a hydrophobic insulation layer below the droplet as a capacitor connected in series;
issuing, by a main control chip, a command to a droplet drive module, and driving, by the droplet drive module, the droplet to be measured to move;
collecting, by a droplet positioning module, a current capacitance value of the droplet, and determining a relative position of the droplet;
and verifying, by the system, whether the droplet is at a target position; if the droplet is not at the target position, issuing, by the main control module, a command to the droplet drive module and driving the droplet to move until the droplet reaches the target position; and if the droplet is at the target position, issuing, by the main control module, a command to the droplet drive module and driving the droplet to move to next target position.
According to
B. Measuring a Capacitance Value of Each Electrode on the EWOD Chip
(L is the width of the electrode, r is the diameter of the droplet, dAF is the thickness of the hydrophobic insulation layer, C1 is the “chip-droplet” equivalent capacitance, and x is a position of the droplet on the electrode). In this situation, the droplet completely has a capacitance value on the electrode 1. As shown in
1. a group of electrodes (electrode 1 and electrode 2) are selected to measure the capacitance value between the electrodes, and the equivalent capacitance value is that: C1=128.22 pF;
2. according to the solving formula: x2Lε0εAF−xrLε0εAF+C1rdAF=0, (wherein L=3*1{circumflex over ( )}−3 mm, ε0=8.84*10{circumflex over ( )}−12, εAF=1.934, r=4*10{circumflex over ( )}−3 m, dAF=400*10{circumflex over ( )}−9 m), the numerical value is that: x=2 mm;
The positions of the representative droplets on the electrode 1 and the electrode 2 are selected from the experimental data for illustration;
It can be known from the above table that the capacitance value according to the established “chip-droplet” equivalent capacitance model is basically the same as that obtained by an impedance analyser.
C. Processing the Measured Capacitance Value
After each measurement of an equivalent capacitance value, the data is transmitted by the FPGA chip to a computer through a serial port for subsequent processing. Processing is used for setting up a user interface for data processing on the basis of establishing the “chip-droplet” equivalent capacitance model to clearly know the measured equivalent capacitance value and the droplet moving distance x, and thus judging the specific position and distribution of the droplet on the EWOD chip.
A droplet positioning and feedback system solution based on a system equivalent capacitance model proposed by the disclosure firstly combines a droplet driving system with a droplet positioning system, then transmits the AF real-time status to a microprocessor through the droplet inside the current chip, so that the specific position and the general distribution of the droplet on the electrode of the EWOD chip can be reflected more intuitively by data.
The preferred embodiments of the disclosure are specifically described above, but not intended to limit the innovation and creation of the disclosure. Any equivalent variations or replacements easily envisaged by those skilled in the art without departing from the spirit of the disclosure shall all fall within the protection scope of the claim of the application.
Number | Date | Country | Kind |
---|---|---|---|
201710105878.5 | Feb 2017 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2017/110987 | 11/15/2017 | WO | 00 |