This application is a U.S. National Stage entry of PCT Application No: PCT/JP2019/015196 filed Apr. 5, 2019, which claims priority to Japanese Patent Application No. 2018-077190 filed Apr. 12, 2018, the contents of which are incorporated herein by reference.
The present invention relates to an electroacoustic transducer and an acoustic device for transmitting sound to a wearer. In particular, it relates to an electroacoustic transducer that vibrates a housing by mechanical vibration caused by an electromechanical transducer to transmit sound, and an audio device that is configured to include the electroacoustic transducer and a sound source.
In electroacoustic transducers and acoustic devices for transmitting sounds to wearers such as hearing aids and earphones, there has been heretofore proposed an electroacoustic transducer or an acoustic device that has no sound outlet but can transduce an electrical signal into mechanical vibration by an electromechanical transducer, and vibrate a housing by the mechanical vibration so as to generate air conduction sound (sound that is transmitted by vibrating air in an external auditory canal) or bone conduction sound (sound that is transmitted by vibrating the skull) and transmit the sound to an inner ear.
For example, PTL 1 discloses a bone conduction earphone that generates bone conduction sound. The bone conduction earphone has a bone conduction vibration portion which is formed into an ellipsoidal shape and which has a form provided with protrusions on an inner side (referred to as front side in PTL 1) and an outer side (referred to as back side in PTL 1). The bone conduction earphone has a configuration in which when the bone conduction earphone is worn in a cavum conchae, one longitudinal end portion of the bone conduction vibration portion is pressed against a tragus and a wall portion of the cavum conchae, the other longitudinal end of the bone conduction vibration portion is pressed against an antitragus and the wall portion of the cavum conchae, the outer side protrusion is pressed against the tragus, and further, the inner side protrusion is pressed against the circumference of an inlet of an external auditory canal in the wall portion of the cavum conchae.
PTL 2 discloses a receiver provided with a rod-like bone conduction speaker portion and a ring-like vibration transmitting portion. Here, the bone conduction speaker portion is configured to be coupled to the vibration transmitting portion at its one longitudinal end through a support portion and to protrude outside an auricle from the vicinity of an intertragic notch. The vibration transmitting portion is formed to have a size that is pressed against a tragus and an antitragus.
Recently, there is a demand to also hear ambient sound while listening to sound (for example, music etc.) based on vibration emitted from an electroacoustic transducer. However, when the bone conduction earphone according to PTL 1 is worn in the cavum conchae, the external auditory canal is blocked. For this reason, it is difficult to directly hear the ambient sound while using the electroacoustic transducer. On the other hand, the receiver according to PTL 2 has the vibration transmitting portion formed into the ring shape or the like. Thus, the external auditory canal is open even in a state in which the reception device is worn in the cavum conchae. Consequently, it is possible to hear the ambient sound while listening to the sound generated by the electroacoustic transducer. However, the bone conduction speaker portion is arranged on an outer side of the intertragic notch. According to this structure, the sound is easily emitted to the outside.
To solve such a problem, an object of the present invention is to provide an electroacoustic transducer and an acoustic device, by which it is possible to also hear ambient sound while listening to sound obtained by vibration based on an electric signal, that can suppress radiated sound (sound leakage) to an external environment due to vibration of a housing, and that is also easily worn in a cavum conchae.
The electroacoustic transducer in the present invention includes: an electromechanical transducer that transduces an electric signal into mechanical vibration; and a housing that can be attached to a cavum conchae without blocking an external auditory canal, in which the electromechanical transducer is housed, and that vibrates due to the mechanical vibration caused by the electromechanical transducer to generate sound, wherein: the housing includes an inner housing portion and an outer housing portion so that when the housing is attached to the cavum conchae, the inner housing portion is located on the external auditory canal side and the outer housing portion is located on an external environment side; and the housing has an ellipsoidal shape or an oval shape.
In such an electroacoustic transducer, the housing has the ellipsoidal shape or the oval shape whose width is preferably not smaller than 10 mm and not larger than 14 mm.
The electromechanical transducer preferably vibrates the housing in a direction toward the external auditory canal.
In addition, the electromechanical transducer is preferably disposed in the housing at such a position that the center of the electromechanical transducer coincides with the center of the housing.
Further, the outer housing portion preferably includes a cord leading-out portion through which a cord connected to the electromechanical transducer is inserted.
In the present invention, the housing vibrated by the electromechanical transducer is attached to the cavum conchae without blocking the external auditory canal. Accordingly, it is possible to hear ambient sound as air conduction sound while using, as an acoustic device. In addition, in the case where the cord leading-out portion is provided on the outer housing portion, the cord leading-out portion is positioned to be received in an intertragic notch when the housing is attached to the cavum conchae. Accordingly, the housing can be attached to the cavum conchae easily and stably.
Further, in the electroacoustic transducer in which the housing is vibrated by the electromechanical transducer, not only the inner housing portion that abuts against a wall portion of the cavum conchae but also the outer housing portion that is opposed to the inner housing portion vibrate when the electromechanical transducer is driven. Therefore, the vibration of the outer housing portion may be transmitted to air, thereby resulting in sound leakage to the surroundings. On the other hand, the outer shape of the housing according to the present invention is entirely formed as an approximately curved shape like an ellipsoidal shape or an oval shape, and the housing is small-sized. Therefore, when the housing vibrates at a position where its distance to a person in the surroundings is sufficiently far in comparison with the size of the housing, sound generated by vibration of the inner housing portion and sound generated by vibration of the outer housing portion are cancelled with each other. As a result, an effect of suppressing the sound leakage to the surroundings can be also obtained.
An embodiment of an earphone, which is an electroacoustic transducer in accordance with the present invention, will be described below with reference to the drawings. As shown in
The electromechanical transducer 2 transduces an electric signal transmitted through the cord 3 into mechanical vibration. The electromechanical transducer 2 according to the present embodiment is a balanced armature type electromechanical transducer that uses restoring forces of springs and that has a configuration the same as the electromechanical transducer described in Japanese Patent No. 5653543.
Here, a specific configuration of the electromechanical transducer 2 will be described with reference to
The first and second outer portions 17b and 17c of the armature 17 in such an electromechanical transducer 2 are fixedly supported by the housing 4. When an electric signal is applied through the cord 3, driving force is generated between the aforementioned structure portion and the armature 17 so that the armature 17 is displaced relatively. On the other hand, the armature unit 17 is returned to its original position by the restoring forces from the first and second elastic mechanisms 18 to 21 supporting the armature 17. For this reason, mechanical vibration corresponding to the electric signal is generated in the armature 17, and the mechanical vibration is transmitted from the armature 17 to the housing 4. Accordingly, the housing 4 can be vibrated.
As shown in
The inner housing portion 40 is shaped to have an ellipsoidal shape or an oval shape. Here, the ellipsoidal shape in the description of the present invention or the like means at least a portion of a curved surface that satisfies the following expression (Equation 1) when the center is placed at the origin of xyz Cartesian coordinates, as shown in
In such a housing 4 constituted by the inner housing portion 40 and the outer housing portion 41, the aforementioned electromechanical transducer 2 is disposed at such a position that the center of the electromechanical transducer 2 coincides with the center of the housing 4, as shown in
Values of the three semi-axial lengths a, b, and c in the ellipsoidal shape or values defining the curved line of the oval shape can be selected desirably. However, as will be described later, the earphone 1 in the present embodiment is formed to have a size in which the housing 4 does not block the external auditory canal when being attached to the cavum conchae (the housing 4 may reach a part of an inlet of the external auditory canal, but does not completely cover the inlet of the external auditory canal). These values are selected in the range. Further, if the housing 4 is too large, the housing 4 is strongly pressed against the wall portion of the cavum conchae when being attached to the cavum conchae. This brings discomfort. If the housing 4 is too small, the electromechanical transducer 2 is also small to be incapable of obtaining sufficient output. Moreover, stability of the housing 4 is deteriorated when the housing 4 is attached to the cavum conchae. As a result of repeated studies on such a problem, it has been found that the width of the ellipsoidal shape or the oval shape is preferably set in a range of not smaller than 10 mm and not larger than 14 mm. This numerical range means that all diameters 2a, 2b and 2c of the ellipsoidal shape shown in
The cord leading-out portion 5 in the present embodiment is shaped like a cylinder whose diameter is set at about 3 to 4 mm.
The earphone 1 having such a form is used as shown in
When an electric signal is applied to the electromechanical transducer 2 through the cord 3, the housing 4 vibrates correspondingly to mechanical vibration generated between the structure portion and the armature 17, and the inner housing portion 40 in itself serves as a vibrating plate to generate sound due to the vibration. That is, by the earphone 1, sound can be generated due to the vibration of the housing 4, so that the sound corresponding to the applied electric signal can be transmitted to an inner ear. Further, since the external auditory canal is not blocked by the housing 4, it is also possible to hear ambient sound in addition to the sound transmitted from the earphone 1. The housing 4 has an ellipsoidal shape or an oval shape and is small-sized. Therefore, when the housing 4 vibrates at a position where its distance to a person in the surroundings is sufficiently far in comparison with the size of the housing 4, sound generated due to vibration of the inner housing portion 40 and sound generated due to vibration of the outer housing portion 41 are cancelled with each other. Accordingly, an effect of suppressing sound leakage to the surroundings can be also obtained. On the other hand, as to a distance to the external auditory canal is short in comparison with the size of the housing 4, a difference between a distance from the external auditory canal to the inner housing portion 40 and a distance from the external auditory canal to the outer housing portion 41 affects. Accordingly, the sound to be transmitted to the eternal auditory canal can be hardly cancelled with each other.
Further, in the present embodiment, the cord leading-out portion 5 through which the cord 3 has been inserted can be attached in the cavum conchae 100 in accordance with a cavity of the intertragic notch 101. Therefore, the cord 3 can be naturally led out of the cavum conchae 100. In addition, the cord leading-out portion 5 is received in the intertragic notch 101. Therefore, the housing 4 can be retained stably when being attached to the cavum conchae 100. In addition, the balanced armature type electromechanical transducer 2 which uses the restoring forces of the springs and which belongs to the earphone 1 in the present embodiment can vibrate the housing 4 at high output. Accordingly, sound can be sufficiently transmitted by the vibration of the housing 4 even if the inner housing portion 40 is not so strongly pressed against the wall portion of the cavum conchae 1X). That is, since vibration outputted by an existing electromechanical transducer is so small that the housing has to be strongly pressed against the wall portion or the like of the cavum conchae in order to transmit sound to the inner ear, long-term use thereof may cause discomfort. In contrast, by using of the aforementioned electromechanical transducer 2 according to the present embodiment, the discomfort can be also suppressed.
The aforementioned earphone 1 is worn so that the housing 4 is hung on the lower part of the cavum conchae 100. Accordingly, the earphone 1 may be unstable when being used outdoors or during exercise. In this case, for example, an adhesive tape or the like may be used on the lower part of the housing 4 to prevent the earphone 1 from moving in the cavum conchae 100. Further, an adapter 200 shown in
Although the earphone which is an embodiment of the electroacoustic transducer according to the present invention has been described above, the present invention is not limited to the aforementioned embodiment but may also include various modifications made within a category complying with the scope of Claims. For example, the aforementioned outer housing portion 41 has the same semi-spheroidal shape as the inner housing portion 40. However, the outer housing portion 41 may be set to have an ellipsoidal shape whose semiaxes are different from those of the inner housing portion 40. Further, a shape obtained by combining a plurality of basic shapes with one another (e.g. a shape which is mostly formed as an ellipsoid but partially provided with a flat surface, or the like) may be used.
Further, the acoustic device using the electroacoustic transducer according to the present invention is not limited to an audio device but may be a hearing aid. An example of such a hearing aid is a behind-the-ear type hearing aid which is provided with a housing 300 the same as the aforementioned one, and a body portion 302 connected to the housing 300 through a thin electric wire cord 301, for example, as shown in
Number | Date | Country | Kind |
---|---|---|---|
JP2018-077190 | Apr 2018 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2019/015196 | 4/5/2019 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/198647 | 10/17/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7841446 | Leong | Nov 2010 | B2 |
20090226024 | Dean | Sep 2009 | A1 |
20120244917 | Hosoi et al. | Sep 2012 | A1 |
20120289162 | Hosoi et al. | Nov 2012 | A1 |
20130242809 | Tone et al. | Sep 2013 | A1 |
20130324193 | Hosoi et al. | Dec 2013 | A1 |
20140378191 | Hosoi et al. | Dec 2014 | A1 |
20150065057 | Hosoi et al. | Mar 2015 | A1 |
20150141088 | Hosoi et al. | May 2015 | A1 |
20150181338 | Hosoi et al. | Jun 2015 | A1 |
20150207392 | Iwakura et al. | Jul 2015 | A1 |
20160205233 | Hosoi et al. | Jul 2016 | A1 |
20160286296 | Hosoi et al. | Sep 2016 | A1 |
20160373851 | Prelogar | Dec 2016 | A1 |
20170006144 | Hosoi et al. | Jan 2017 | A1 |
20170353797 | Hosoi et al. | Dec 2017 | A1 |
20180199127 | Hosoi et al. | Jul 2018 | A1 |
20180262839 | Hosoi et al. | Sep 2018 | A1 |
20180352061 | Hosoi et al. | Dec 2018 | A1 |
20200068308 | Hosoi et al. | Feb 2020 | A1 |
Number | Date | Country |
---|---|---|
2007103989 | Apr 2007 | JP |
2011160175 | Aug 2011 | JP |
2012222682 | Nov 2012 | JP |
2014116755 | Jun 2014 | JP |
2015139041 | Jul 2015 | JP |
2016063276 | Apr 2016 | JP |
Entry |
---|
International Search Report and Written Opinion for related PCT App No. PCT/JP2019/015196 dated May 28, 2019, 9 pgs. |
Number | Date | Country | |
---|---|---|---|
20210029477 A1 | Jan 2021 | US |