The present invention relates to an electroacoustic transducer and an ear speaker device, and is preferably applied to a head-mounted wearable speaker device, for example.
Conventionally, as a headphone device which is an example of a head-mounted wearable speaker device, there has been widely used the headphone device that is used in a state of being mounted on the head of a listener, and converts an audio signal expressing a reproduced voice of a CD (Compact Disc) to a sound (hereinafter, referred to as a reproduced sound) so as to make the listener capable of listening to the reproduced sound.
In the headphone device generally used, a speaker unit that generates the reproduced sound is positioned in the vicinity of the front of an entrance of an external acoustic meatus of the listener. Although a sound is allowed to reach an eardrum directly from the speaker unit to possibly improve sound quality, a sound image is localized in the head of the listener and this has provided an unnatural impression to the listener.
For the above reason, there has been devised the headphone device in which the speaker unit is positioned at a location somewhat distant from the entrance of the external acoustic meatus (ear hole) and closer to a parietal region. In this manner, the sound image is localized outside the head just like a general stationary speaker to remove the unnaturalness. At the same time, the headphone device is made as a closed type to form enclosed space around an ear of the listener in consideration of making the listener capable of listening to a low-pitched sound sufficiently.
Pat. Document: Jpn. Pat. No. 3054295 (page 3, FIG. 1)
With respect to the headphone device with the above configuration, it has been requested to provide the listener with a sense of liberation by making the headphone device to be an open type while excellent sound quality including a sufficient low-pitched sound is maintained. However, since the speaker unit is isolated from the ear hole, the sound quality becomes deteriorated with insufficient low frequencies when nothing further than changing the closed type to the open type is carried out, and there has been a problem that the above request cannot be fulfilled.
In addition, in the headphone device with the above configuration, the speaker unit is positioned at the location somewhat distant from the entrance of the external acoustic meatus (ear hole) and closer to the parietal region. For this reason, middle-pitched and high-pitched sounds do not reach the ear hole smoothly as well, and there has been a problem that the listener is not capable of listening to the middle-pitched and high-pitched sounds at a sufficient level.
The present invention has been made in consideration of the above point. An object of the present invention is to suggest an electroacoustic transducer and an ear speaker device that make the listener capable of listening to the reproduced sound with high quality while providing natural sound image localization.
In order to achieve the above object, according to an aspect of the present invention, there is provided a housing mounted at a predetermined position of the head of a listener, a speaker unit that is mounted in the housing and is positioned away from an entrance of an external acoustic meatus of the listener for a predetermined distance when the housing is mounted on the head of the listener, and a tubular duct that is extended so as to allow a sound generated by the housing to reach the vicinity of the entrance of the external acoustic meatus of the listener.
In the above manner, the sound generated by the housing can be allowed to directly reach an eardrum in the external acoustic meatus from the vicinity of the entrance of the external acoustic meatus of the listener via the tubular duct. Therefore, a sound at a sufficient level can be listened to by the listener, while natural sound image localization is provided as an open type.
In addition, according to an aspect of the present invention, there is provided a housing mounted at a predetermined position of the head of a listener, a speaker unit that is mounted on one surface of the housing and is positioned away from an entrance of an external acoustic meatus of the listener for a predetermined distance when the housing is mounted on the head of the listener, and a tubular duct that is extended so as to allow a sound generated in inside space of the housing to reach the vicinity of the entrance of the external acoustic meatus of the listener.
In the above manner, middle-pitched and high-pitched sounds emitted from the speaker unit positioned away from the entrance of the external acoustic meatus for the predetermined distance can be allowed to reach the inside of the external acoustic meatus, and also a low-pitched sound emitted from the vicinity of the entrance of the external acoustic meatus of the listener via the tubular duct can be allowed to reach the eardrum in the external acoustic meatus efficiently. Therefore, the middle-pitched and the high-pitched sounds that can localize the sound image outside the head of the listener and the low-pitched sound having an increased sound pressure level can all together be listened by the listener.
Further, according to the present invention, there is provided a housing mounted at a predetermined position of the head of a listener, a speaker unit that is mounted on one surface of the housing and is positioned away from an entrance of an external acoustic meatus of the listener for a predetermined distance when the housing is mounted on the head of the listener, and a tubular duct that is extended so as to allow a sound generated by a front surface of the speaker unit to reach the vicinity of the entrance of the external acoustic meatus of the listener.
In the above manner, mainly middle-pitched and high-pitched sounds generated by the speaker unit can be allowed to directly reach the eardrum in the external acoustic meatus from the vicinity of the entrance of the external acoustic meatus of the listener via the tubular duct. Therefore, the listener can listen to the middle-pitched and the high-pitched sounds at a sufficient level, while being provided with the natural sound image localization as the open type.
According to the present invention, the sound generated by the housing can be allowed to directly reach the eardrum in the external acoustic meatus from the vicinity of the external acoustic meatus of the listener via the tubular duct. Therefore, it is possible to achieve the electroacoustic transducer and the ear speaker device that can make the listener capable of listening to the sound at a sufficient level while providing the natural sound image localization as the open type. In this manner, it is possible to achieve the electroacoustic transducer and the ear speaker device that can make the listener capable of listening to a reproduced sound with high quality while providing the natural sound image localization.
In addition, according to the present invention, the middle-pitched and the high-pitched sounds emitted from the speaker unit that is positioned away from the entrance of the external acoustic meatus for a predetermined distance can be allowed to reach the inside of the external acoustic meatus, and also the low-pitched sound emitted from the vicinity of the entrance of the external acoustic meatus of the listener can be allowed to efficiently reach the eardrum in the external acoustic meatus via the tubular duct. Therefore, it is possible to make the listener capable of listening to the middle-pitched and the high-pitched sounds that can localize the sound image outside the head of the listener and the low-pitched sound with a higher sound pressure level all together. In this manner, it is possible to achieve the electroacoustic transducer and the ear speaker device that can make the listener capable of listening to the reproduced sound with high quality, while providing the natural sound image localization.
Further, according to the present invention, mainly middle-pitched and high-pitched sounds generated by the speaker unit can be allowed to directly reach the eardrum in the external acoustic meatus from the vicinity of the entrance of the external acoustic meatus of the listener via the tubular duct. Therefore, it is possible to achieve the electroacoustic transducer and the ear speaker device that can make the listener capable of listening to the middle-pitched and the high-pitched sounds at a sufficient level, while providing the natural sound image localization as the open type.
Hereinafter, an embodiment of the present invention will be classified into a first embodiment and a second embodiment, and described in detail with reference to the accompanying drawings.
With respect to
Unlike a box-shaped speaker device generally used, the ear speaker device 1 is premised to be mounted on the head of the listener as similar to a headphone device. The ear speaker device 1 is configured with a electroacoustic transducers 2L and 2R that convert the audio signal to the reproduced sound, and a band part 3 for mounting and fixing the electroacoustic transducers 2L and 2R on the head of the listener, according to a rough classification.
The electroacoustic transducers 2L and 2R are mainly configured with housings 4L and 4R having a shape of a ball being quartered along a vertical direction. Each of the housings 4L and 4R has plane surfaces formed on a rear side, and a left or a right inner side, respectively. Pad parts 5L and 5R for softening side pressure to the head of the listener are provided on inner sides on the left and the right.
Baffle plates 4AL and 4AR that are the plane surfaces on the rear side of the housings 4L and 4R are provided with speaker units 7L and 7R that convert the audio signal to the reproduced sound. The speaker units 7L and 7R are configured so as to emit sound by vibrating a diaphragm according to the audio signal supplied from the portable CD player, the DMP, and the like via a connection cable 6.
In addition, the baffle plates 4AL and 4AR of the housings 4L and 4R are provided with tubular ducts 8L and 8R that are made of metal such as aluminum having predetermined rigidity, or plastic, resin, or the like having predetermined rigidity, and have a hollow member having predetermined thickness being curved in a substantial U-shape on sides. As shown in
The band part 3 is formed in a substantial arch shape corresponding to a shape of the head of a general person, centering on a center part 3A. Also, the band part 3 is configured so that an entire length of the band part 3 can be adjusted by adjusting parts 3BL and 3BR that can slide in an extensible manner with respect to the center part 3A.
The band part 3 is formed in the arch shape with a diameter smaller than the shape of the head of the general person, and also has an elastic force. When the ear speaker device 1 is mounted on the listener while the housings 4L and 4R are stretched to the left and the right, the band part 3 tends to return to an original shape by action of the elastic force after the mounting. In this manner, the ear speaker device 1 is held in a state that the housings 4L and 4R are made in contact with the head of the listener.
The ear speaker device 1 is configured in substantial symmetry as shown in
In practice, as shown in a left side view of
In the above manner, the electroacoustic transducer 2L of the ear speaker device 1 allows middle-pitched and high-pitched sounds emitted from the speaker unit 7L to directly reach the inside of an external acoustic meatus of the listener, and also allows a reflected sound reflected by a cheek and the auricle 101L of the listener to reach the inside of the external acoustic meatus. Therefore, the ear speaker device 1 is configured to be capable of providing natural sound image localization that is similar to a case of listening to a sound via a general stationary speaker.
When the ear speaker device 1 is mounted on the listener in a normal manner, the speaker unit 7L is positioned somewhat closer to the front than the auricle 101L and an entrance 102L of the external acoustic meatus, and the hole 8AL of the tubular duct 8L is positioned in the vicinity of the entrance 102L of the external acoustic meatus.
The tubular duct 8L has its end formed in a substantial U-shape, and therefore is configured so as to be put in contact with the entrance 102L of the external acoustic meatus of the listener and not to enter into the inside of the external acoustic meatus. In this manner, the ear speaker device 1 is configured so as to be able to prevent the tubular duct 8L from hurting the inside of the external acoustic meatus in error when the listener mounts the ear speaker device 1, and so on.
Here, as a cross section cut along the line Q1-Q2 in
In addition, the tubular duct 8L reaches the vicinity of the entrance 102L of the external acoustic meatus of the listener by penetrating through the baffle plate 4AL of the housing 4L from the inside of the housing 4L. In practice, the electroacoustic transducer 2L makes the tubular duct 8L working as a bass reflex duct, thereby the electroacoustic transducer 2L as a whole operates as a bass reflex speaker.
In a general bass reflex speaker, a duct is provided only inside a housing and does not extend to the outside. Therefore, for comparison with the electroacoustic transducer 2L, an electroacoustic transducer 12L as shown in
The electroacoustic transducer 12L (
In a case of the electroacoustic transducer 12L, in a comparison between path length EM in which the middle-pitched and the high-pitched sounds emitted from the speaker unit 7L reach an eardrum 103L of the listener when a position of the speaker unit 7L is regarded as a position (hereinafter referred to as the virtual sound source position) PM of a virtual sound source, and path length EL2 in which the low-pitched sound emitted from holes 18AL and 19AL through the tubular ducts 18L and 19L reach the eardrum 103L of the listener when the holes 18AL and 19AL are regarded as a virtual sound source position PL2, a relationship of the path length EM≈the path length EL2 is obtained.
Here, a frequency characteristic of a sound reaching the eardrum 103L by the electroacoustic transducer 12L is shown in
In the above manner, the electroacoustic transducer 12L can make the listener capable of listening to the reproduced sound having the sound pressure level in the low frequencies in the characteristic curve SM increased to some extent, as shown in a characteristic curve SG2 in which the characteristic curve SM and the characteristic curve SL2 are synthesized.
On the other hand, in the electroacoustic transducer 2L (
Here, a frequency characteristic of the sound reaching the eardrum 103L by the electroacoustic transducer 2L is shown in
In general, distance from the sound source and the sound pressure level are in a relationship of inverse proportion. Here, when the path length of the electroacoustic transducer 2L (
That is, in the electroacoustic transducer 2L (
That is, as shown in
As a result, as shown in the characteristic curve SG1 in which the characteristic curve SM and the characteristic curve SL1 are synthesized, the electroacoustic transducer 2L in the first embodiment can make the listener capable of listening to the reproduced sound at a sufficient sound pressure level to an extent of a comparatively low frequency band where the sound pressure level in the low frequencies in the characteristic curve SM is increased higher than when the electroacoustic transducer 12L is used (characteristic curve SG2).
Here, when the characteristic curve SG1 and the characteristic curve SG2 are compared, the sound pressure level lowers comparatively steeply as it progresses to a low frequencies side in the characteristic curve SG2, whereas degree of the lowering of the sound pressure level is moderate as it progresses to the low frequencies side in the characteristic curve SG1.
That is, the electroacoustic transducer 2L can allow an excellent reproduced sound having the high sound pressure level extending to a wide frequency band, that is, including the sufficient low frequencies to be transmitted to the eardrum 103 of the listener and can make the listener capable of listening to the excellent reproduced sound.
In this case, as shown in
For the above reason, the electroacoustic transducer 2L allows a sound generated around the listener (hereinafter referred to as the surround sound) to reach the eardrum 103L of the listener without blocking the surround sound and makes the listener capable of listening to the surround sound, in addition to the reproduced sound made up of combination of the middle-pitched and the high-pitched sounds emitted from the speaker unit 7L and the low-pitched sound emitted from the hole 8AL of the tubular duct 8L.
As for the electroacoustic transducer 2L, an internal volume of the housing 4L is 10 [ml], an external diameter of the speaker unit 7L is 21 [mm], an effective vibration radius in a diaphragm of the speaker unit 7L is 8.5 [mm], equivalent mass of a vibration system is 0.2 [g], a minimum resonance frequency f0 is 360 [Hz], and a resonance frequency Q0 is 1.0.
As for the tubular duct 8L, an inner diameter is 1.8 [mm], effective length from an internal end 8BL positioned in the housing 4L of the tubular duct 8L to the hole 8AL is 50 [mm], and a distance from a surface of the baffle plate 4AL to the hole 8AL is around 35 [mm].
Here, the tubular duct 8L has its side surface formed in a U-shape, and the hole 8AL provided on the center of the outer end part. Therefore, it is substantially same as that two bass reflex ducts of the top half and the bottom half make up the tubular duct 8L, and the inner diameter and the effective length of the tubular duct 8L are determined after the inner diameter (equivalent to 2.5 [mm] in this case) when the tubular duct 8L is converted to one tubular duct is considered.
That is, the tubular duct 8L has the side surface formed in the U-shape, thereby the effective length of the tubular duct 8L can be set to be short as compared with the case when the tubular duct 8L is configured with one tubular duct, and design and safety of the tubular duct 8L are significantly improved.
With respect to the electroacoustic transducer 2L (
In
In the electroacoustic transducer 2L, the tubular duct 8L is formed by metal such as aluminum having predetermined rigidity or plastic, resin, and so on having predetermined rigidity. The end part of the tubular duct 8L is made in contact with the vicinity of the entrance 102L of the external acoustic meatus. Thereby, a vibration component in the low frequencies generated at the end part of the tubular duct 8L can be allowed to reach the eardrum 103L of the listener mainly by transmission via the skin and the listener can listen to the sound.
In particular, a sense of the low frequencies can be experienced by the user in a manner that the skin of the human being vibrates due to the vibration in the low frequencies generated at the end part of the tubular duct 8L since the tubular duct 8L is made in contact with the vicinity of the entrance 102L of the external acoustic meatus, and such vibration of the skin is transmitted from a nerve of the skin to the brain.
As shown in
In addition, as shown in
Further, as shown in
On the other hand, in a case where a tubular duct (not shown) formed by a soft material such as an elastomer is used in the ear speaker device 1, even if the tubular duct is made in contact with the vicinity of the entrance 102L of the external acoustic meatus, the vibration generated at an end of the tubular duct is not transmitted via the skin of the listener due to the soft material, and it is difficult to increase the sound pressure of the low-pitched sound particularly at around 100 [Hz] or below by the vibration generated at the end part of the tubular duct.
However, in the ear speaker device 1, the sound pressure level of the low-pitched sound at around 100 [Hz] or below is increased to some extent due to the tubular duct 8L working as the bass reflex duct, and therefore, the sound pressure does not drop much.
As described above, in the ear speaker device 1, the vibration in the top-to-bottom direction, the front-to-rear direction, and the left-to-right direction is largely generated with respect to the end part of the tubular duct 8L, and such vibration reaches to the eardrum 103L of the listener by the transmission via the skin of the listener. Therefore, the ear speaker device 1 is configured to make the listener capable of listening to the low-pitched sound at a sufficient level.
As described above, when the ear speaker device 1 is mounted on the head 100 of the listener, the speaker unit 7L is positioned away from the entrance 102L of the external acoustic meatus of the listener for some distance. Then, the middle-pitched and the high-pitched sounds of the reproduced sound is emitted from the speaker unit 7L, and also the low-pitched sound of the reproduced sound is emitted from the hole 8AL of the tubular duct 8L extended from the housing 4L to the vicinity of the entrance 102L of the external acoustic meatus and working as the bass reflex duct. In addition, the low-pitched sound is also transmitted to the listener mainly via the skin transmission action of the tubular duct 8L. In this manner, the ear speaker device 1 makes the listener capable of listening to the excellent reproduced sound including the sufficient low-pitched sound while providing the natural sound image localization.
As shown in
Hereinafter, description will be made by mainly taking the electroacoustic transducer 2L on the left side as an example as similar to the case of the ear speaker device 1 described above. With respect to the electroacoustic transducer 2R on the right side, a configuration is made in a manner symmetrical to the electroacoustic transducer 2L on the left side.
For example, an ear speaker device 20 shown in
The ear speaker device 20 can have the electroacoustic transducer 2L mounted on the head 100 of the listener by hanging the ear clip 21L on the auricle 101L of the listener. In this manner, as similar to the ear speaker device 1, the ear speaker device 20 can make the listener capable of listening to the excellent reproduced sound including the sufficient low-pitched sound while providing the natural sound image localization.
In addition, an ear speaker device 30 shown in
The ear speaker device 30 (
Further, an ear speaker device 40 shown in
The ear speaker device 40 (
Further, an ear speaker device 50 shown in
The ear speaker device 50 (
Further, an ear speaker device 60 shown in
The ear speaker device 60 (
Further, an ear speaker device 70 shown in
An audio signal for a rear channel in a multi-channel sound source such as 4-channel and 5.1-channel is configured to be supplied to the rear electroacoustic transducer 72L.
The ear speaker device 70 (
In addition, in the above case, the ear speaker device 70 (
The ear speaker device 70 (
Further, an ear speaker device 80 shown in
In addition, the housing 4L has a tubular duct 88L extended from the housing 4L to the vicinity of the entrance 102L of the external acoustic meatus of the listener provided thereto in place of the tubular duct 8L. The tubular duct 88L has its inner diameter, path length of a sound, and so on appropriately calculated so as to emit the excellent low-pitched sound of the reproduced sound from the hole 88AL.
The ear speaker device 80 (
As described above, according to the present invention, the electroacoustic transducers 2L and 2R may be mounted on the head 100 of the listener by the mounting parts in a variety of modes such as the ear speaker devices 20 to 80 (
In the above configuration, the ear speaker device 1 is mounted on the head 100 of the listener, thereby the speaker unit 7L provided to the housing 4L of the electroacoustic transducer 2L is positioned somewhat closer to the front than the entrance 102L of the external acoustic meatus of the listener. At the same time, the ear speaker device 1 outputs the reproduced sound based on the audio signal supplied from a predetermined amplifier in a state that the end part of the tubular duct 8L extended to the rear side from the housing 4L and working as the bass reflex duct is positioned in the vicinity of the entrance 102L of the external acoustic meatus.
At this time, with respect to the electroacoustic transducer 2L (
As described above, the electroacoustic transducer 2L of the ear speaker device 1 can allow the middle-pitched and the high-pitched sounds emitted from the speaker unit 7L to reach the eardrum 103L after being reflected by the cheek, the auricle 101L, and so on of the listener. Therefore, the electroacoustic transducer 2L can make the reproduced sound having a characteristic similar to the case where the reproduced sound is listened to via the general speaker, and in this manner the electroacoustic transducer 2L can provide a natural sense of localization as though the sound image is positioned outside the head.
Further, the electroacoustic transducer 2L of the ear speaker device 1 has the tubular duct 8L extended to the vicinity of the entrance 102L of the external acoustic meatus of the listener. In this manner, the electroacoustic transducer 2L can make the listener capable of listening to the excellent reproduced sound that has the comparatively excellent sound pressure level down to the low frequencies as shown in the characteristic curve SG1 (
In this case, the electroacoustic transducer 2L of the ear speaker device 1 has the tubular duct 8L extended to the vicinity of the entrance 102L of the external acoustic meatus of the listener. Therefore, as compared with the low-pitched sound as shown in the characteristic curve SL2 (
Further, the ear speaker device 1 does not increase reproducing sound volume of the low-pitched sound, but puts the hole 8AL of the tubular duct 8L which is an emission aperture of the low-pitched sound closer to the eardrum 103L to allow the sufficient low-pitched sound to reach the eardrum 103L (
Therefore, in a case that the listener listens to the reproduced sound via the ear speaker device 1 late at night, for example, the listener can enjoy the excellent reproduced sound including the sufficient low-pitched sound without too much caring about whether the neighbors and the surroundings are disturbed.
The tubular duct 8L does not block the entrance 102L of the external acoustic meatus of the listener. Therefore, the ear speaker device 1 can allow, without blocking, the surround sound generated around the listener to reach the eardrum 103L and can make the listener capable of listening to the surround sound together with the reproduced sound.
In the above manner, the ear speaker device 1 can make the listener capable of reliably listening to the surround sound in addition to the excellent reproduction sound even in a case where the listener needs to listen to the surround sound, such as when the listener is walking or playing some sports.
The ear speaker device 1 does not cover the auricle 101L and so on of the listener by the electroacoustic transducer 2L like a conventional closed-type headphone. Therefore, the ear speaker device 1 does not cause uncomfortableness such as a cooped-up feeling and sweatiness the listener feels when the listener wears the closed-type headphone. Further, the ear speaker device 1 does not form closed space, therefore the ear speaker device 1 does not generate a change of a resonance frequency in the external acoustic meatus which may be generated in a case of using the closed-type headphone, and does not make the listener uncomfortable.
In addition, the ear speaker device 1 can make the listener capable of listening to the low-pitched sound at the sufficient sound volume level by putting the hole 8AL of the tubular duct 8L which is the emission aperture of the low-pitched sound close to the eardrum 103L. Therefore, the diameter of the speaker unit 7L does not need to be made bigger than necessary, and size of the housing 4L can be limited to be minimum. In this manner, the entire size and mass of the speaker device 1 can be limited to be minimum, therefore troublesomeness caused by the size and the mass of the ear speaker device 1 when the listener wears the ear speaker device 1 can be restricted as much as possible.
According to the configuration described above, the ear speaker device 1 positions the speaker unit 7L of the electroacoustic transducer 2L somewhat closer to the front than the entrance 102L of the external acoustic meatus of the listener when the ear speaker device 1 is mounted on the head 100 of the listener. At the same time, the reproduced sound is output in a state that the hole 8AL of the tubular duct 8L is positioned in the vicinity of the entrance 102L of the external acoustic meatus. In this manner, the ear speaker device 1 can allow the low-pitched sound emitted from the hole 8AL of the tubular duct 8L working as the bass reflex duct to reach the eardrum 103 at the sufficient sound pressure level. Therefore, the ear speaker device 1 can make the listener capable of listening to the excellent reproduced sound having the sufficient sound pressure level down to the comparatively low frequencies while providing the natural sound image localization.
In the first embodiment described above, the description is made with respect to the case where the tubular duct 8L has a side surface formed in a substantial U-shape and is made to function as the two bass reflex ducts with the hole 8AL in the middle. However, the present invention is not limited thereto, and the tubular duct 8L may be configured with one or three or more tubular ducts.
For example, as shown in
In addition, in the first embodiment, the description was made with respect to the case of using the tubular duct 8L made of a hard material such as metal. However, the present invention is not limited thereto, and the tubular duct 8L made of a soft material such as flexible resin may be used.
Further, in the first embodiment, the description was made with respect to the case that the tubular duct 8L is provided so as to pass through the baffle plate 4AL of the housing 4L. However, the present invention is not limited thereto, and the tubular duct 8L may be provided so as to pass through another side surface of the housing 4L.
Further, in the first embodiment, the description was made with respect to the case where the sound emitting surface of the speaker unit 7L is oriented to a substantially rear direction when the ear speaker device 1 is mounted on the head 100 (
Further, in the first embodiment, the description was made with respect to the case where the ear speaker device 1 has the left and the right electroacoustic transducers 2L and 2R, and outputs the reproduced sound of two channels. However, the present invention is not limited thereto, and, for example, the ear speaker device 1 may have only the electroacoustic transducer 2L on the left side and output the reproduced sound of one channel.
Further, in the first embodiment, the description was made with respect to the case where the speaker unit 7L for the middle-pitched and the high-pitched sounds is provided in the housing 4L. However, the present invention is not limited thereto, and a plurality of speaker units may be provided in the housing 4L in a manner that, for example, two speaker units for the middle-pitched sound and the high-pitched sound are provided in the housing 4L to configure a two-way speaker.
Further, in the first embodiment, the description was made with respect to the case where the housing 4L having a shape of a ball being quartered in a vertical direction. However, the present invention is not limited thereto, and for example, the housing 4L may have any of a variety of shapes such as a cube shape and a cylinder shape. What is important here is that the housing 4L needs to have substantially closed space that can function as an enclosure of the bass reflex speaker in the inside.
Further, in the first embodiment, the description was made with respect to the case of the housing 4L in a state of having an edge remaining at an end part of an inner end part 8BL of the tubular duct 8L (
Further, in the first embodiment, the description was made with respect to the case where the tubular ducts 8L and 8R are attached to the housings 4L and 4R in an integrated manner. However, the present invention is not limited thereto, the tubular ducts 8L and 8R may be configured to be attachable and detachable.
For example, as shown in
Further, in the first embodiment, the description was made with respect to the case of using the tubular duct 8L having duct length from the hole 8AL to both the inner end parts 8BL is set to be the same length. However, the present invention is not limited thereto, and a tubular duct having the duct length different from the other may be used.
For example, as shown in
Further, in the first embodiment, the description was made with respect to the case where the housings 4L and 4R are held in a state that the pad parts 5L and 5R of the housings 4L and 4R are made in contact with the head of the listener by the elastic force of the band part 3. However, the present invention is not limited thereto, and the housings 4L and 4R may be held by having the ear hanger hung on an ear of the listener. In this case, the ends of the tubular ducts 8L and 8R are actively pressed to the vicinity of the entrance of the external acoustic meatus, and the low-pitched sound can be easily transmitted to the listener by the skin transmission action described above.
More specifically, as shown in
The electroacoustic transducers 902L and 902R have housings 904L and 904R having a hemispherical shape, and have speaker units 907L and 907R that convert the audio signal to the reproduced sound attached to baffle plates 904AL and 904AR which are plane surface parts of the housings 904L and 904R.
In addition, tubular ducts 908L and 908R made of metal such as aluminum having predetermined rigidity or plastic, resin, and so on having predetermined rigidity, and having a hollow member having predetermined thickness that is curved in a substantial U-shape on a side surface are attached to the baffle plates 904AL and 904AR of the housings 904L and 904R.
The tubular ducts 908L and 908R have their end parts curved to an inner side direction to the left or the right respectively. Further, holes 908AL and 908AR are provided on a substantial center of the respective end parts in a state of being oriented to an opposite direction of the entrance of the external acoustic meatus of the listener.
The band part 903 is formed in a substantial arch shape so as to surround an upper part of the head of a general human by centering on a center part 903A. At the same time, the entire length of the band part 903 is made adjustable by using adjusting parts 903BL and 903BR that can slide with respect to the center part 903A in an extendible manner.
In addition, the band part 903 is formed in the arch shape having a diameter smaller than the shape of the head of the general human being and also has elastic force. Therefore, when the ear speaker device is mounted on the listener while the housings 904L and 904R are extended to the left and the right, respectively, the band part 903 tends to return to the normal shape by action of the elastic force after the mounting. In this manner, the housings 904L and 904R are held at a position on the front of the auricle of the listener.
At this time, in the ear speaker device 900, ear hangers 901L and 901R are attached to the adjusting parts 903BL and 903BR of the band part 903 with a left plate 909L and a right plate 909R interposed therebetween, respectively.
Next, description will be made with respect to a state that the ear hangers 901L and 901R are attached to the adjusting parts 903BL and 903BR. A state that the ear hanger 901L is attached to the adjusting part 903BL and a state that the ear hanger 901R is attached to the adjusting part 903BR are similar to each other. Therefore, for convenience, description will be made only with respect to the state that the ear hanger 901R is attached to the adjusting part 903BR.
As shown in
Therefore, the ear speaker device 900 is configured such that, when the ear hangers 901L and 901R attached to the adjusting parts 903BL and 903BR of the band part 903 are hung on the auricles of the listener, the housing parts 904L and 904R can be held at the position in front of the auricles by action of holding the auricles of the listener by the ear hangers 901L and 901R. At the same time, the ends of the tubular ducts 908L and 908R are kept pressed against the vicinity of the entrance of the external acoustic meatus.
In the above manner, the ear speaker device 900 can effectively exert the skin transmission action by the tubular ducts 908L and 908R described above, and makes the listener capable of sufficiently listening to the low-pitched sound output from the holes 908AL and 908AR of the tubular ducts 908L and 908R.
The tubular ducts 908L and 908R have their ends formed in a substantial U-shape. Therefore, although the tubular ducts 908L and 908R are kept pressed against the vicinity of the entrance of the external acoustic meatus of the listener, the tubular ducts do not enter the inside of the external acoustic meatus. In the above manner, the ear speaker device 900 is configured to be able to prevent that the tubular ducts 908L and 908R hurt the inside of the external acoustic meatus in error when the listener wears the ear speaker device 900.
In the ear speaker device 900, the holes 908AL and 908AR of the tubular ducts 908L and 908R are oriented to the opposite direction of the entrance of the external acoustic meatuses of the listener. However, since the low-pitched sound emitted from the holes 908AL and 908AR of the tubular ducts 908L and 908R does not have directivity, the low-pitched sound can ensure to be allowed to reach the external acoustic meatus of the listener. On the other hand, the middle-pitched and the high-pitched sounds slightly leaked and emitted from the holes 908AL and 908AR hardly reach the external acoustic meatus of the listener, since the holes 908AL and 908AR of the tubular ducts 908L and 908R are oriented to the opposite direction of the entrance of the external acoustic meatuses and the middle-pitched and the high-pitched sounds have directivity.
Therefore, the ear speaker device 900 outputs the middle-pitched and the high-pitched sounds of the reproduced voice from the speaker units 907L and 907R and allows these sounds to reach the entrance of the external acoustic meatuses of the listener. At the same time, the ear speaker device 900 allows only the low-pitched sound of the reproduced voice from the hole 908AL and 908AR of the tubular ducts 908L and 908R to reach the entrance of the external acoustic meatuses of the listener. On the other hand, since the middle-pitched and the high-pitched sounds slightly leaked are output from the holes 908AL and 908AR oriented to the opposite directions of the entrance of the external acoustic meatus of the listener in a state of having directivity. Therefore, the middle-pitched and the high-pitched sounds being leaked do not reach the entrance of the external acoustic meatus of the listener, and do not apply an adverse effect to the sound image localization of the listener that the middle-pitched and the high-pitched sounds mainly act on.
In the above manner, the ear speaker device 900 makes the listener capable of listening to the low-pitched sound at a sufficient level via the holes 908AL and 908AR of the tubular ducts 908L and 908R while providing the natural sound image localization by the middle-pitched and the high-pitched sounds output from the speaker units 907L and 907R.
The positions of the holes 908AL and 908AR are not limited to the positions described above. The holes 908AL and 908AR may be positioned at any place on the tubular ducts 908L and 908R as long as the holes are oriented to the opposite directions of the entrances of the external acoustic meatuses of the listener.
Further, in the first embodiment, the description was made with respect to the case where the electroacoustic transducers 2L and 2R as the electroacoustic transducers are configured with the housings 4L and 4R as the housing, the speaker units 7L and 7R as the speaker unit, and the tubular ducts 8L and 8R as the tubular duct. However, the present invention is not limited thereto, and the electroacoustic transducer may be configured with the housing, the speaker unit, and the tubular duct, which have a variety of other configurations.
Further, in the first embodiment, the description was made with respect to the case where the ear speaker device 1 as the ear speaker device is configured with the housings 4L and 4R as the housing, the speaker units 7L and 7R as the speaker unit, the band part 3 as the mounting part, and the tubular ducts 8L and 8R as the tubular duct. However, the present invention is not limited thereto, and the ear speaker device may be configured with the housing, the speaker unit, the mounting part, and the tubular duct, which have a variety of other configurations.
In
The ear speaker device 200 is also premised to be mounted on the head of the listener as similar to a normal headphone device unlike a general box-type speaker device. The ear speaker device 200 is configured with electroacoustic transducers 202L and 202R that convert the audio signal to the reproduced sound and the band part 3 that mounts and fixes the electroacoustic transducers 202L and 202R on the head of the listener, as a rough classification.
The electroacoustic transducers 202L and 202R are configured centering on housings 204L and 204R having an entire shape as a substantial ball shape, and the speaker units 207L and 207R are provided inside the housings 204L and 204R, respectively.
The housing 204L (
The speaker unit 207L mainly emits the middle-pitched and the high-pitched sounds by vibrating the diaphragm in accordance with the audio signal supplied from the portable CD player, the DMP, and so on via the connection cable 6.
The cover part 204LB (
The tubular ducts 208L and 208R (
The band part 3 is formed in a substantial arch shape so as to surround an upper part of the head of a general human being centering on a center part 3A. At the same time, the entire length of the band part 3 is made adjustable by using adjusting parts 3BL and 3BR that can slide with respect to the center part 3A in an extendible manner.
In addition, the band part 3 is formed in the arch shape having a diameter smaller than the shape of the head of the general human being and also has elastic force. Therefore, when the ear speaker device is mounted on the listener while the housings 204L and 204R are extended to the left and the right, the band part 3 tends to return to the normal shape by action of the elastic force after the mounting. In this manner, the housings 204L and 204R are held in the state that the housings contact the head of the listener.
The ear speaker device 200 is configured in substantial symmetry. Therefore, the electro acoustic transducer 202L on the left side will be mainly described hereinafter.
In practice, the ear speaker device 200 (
In the above manner, when the electroacoustic transducer 202L is mounted on the listener in a normal manner via the band part 3, the speaker unit 207L of the housing 204L is positioned somewhat closer to the front than the auricle 101L and the entrance 102L of the external acoustic meatus, and the hole 208AL of the tubular duct 208L of the cover part 204LB is positioned in the vicinity of the entrance 102L of the external acoustic meatus.
Therefore, the ear speaker device 200 can allow mainly the middle-pitched and the high-pitched sounds emitted from the speaker unit 207L to reach the inside of the external acoustic meatus of the listener directly via the cover part 204LB and the tubular duct 208L. In this manner, the ear speaker device 200 can provide the natural sound image localization in a state of less sound leakage of the middle-pitched and the high-pitched sounds than when the sounds are listened to via the general stationary speaker.
The tubular duct 208L has its end part formed in a substantial U-shape on its side surface, and therefore is configured so as to be put in contact with the entrance 102L of the external acoustic meatus of the listener and not to enter into the inside of the external acoustic meatus. In this manner, the ear speaker device 200 is configured so as to be able to prevent the end part of the tubular duct 208L from hurting the inside of the external acoustic meatus in error when the listener mounts the ear speaker device 200, and so on.
Here, as a cross section cut along the line Q3-Q4 in
In addition, the tubular duct 208L reaches the vicinity of the entrance 102L of the external acoustic meatus of the listener via the cover part 204LB of the housing 204L from the inside of the housing 204L. In practice, the electroacoustic transducer 202L gathers mainly the middle-pitched and the high-pitched sounds emitted from a front surface of the speaker unit 207L via the cover part 204LB and the tubular duct 208L, and allows the middle-pitched and the high-pitched sounds to directly reach the eardrum 103 of the listener from the hole 208AL of the tubular duct 208L. In this manner, the middle-pitched and the high-pitched sounds at an sufficient sound level can be listened to by the listener in a state where there is little sound leakage.
The tubular duct 208L is formed in a substantial U-shape on its side surface. Therefore, effective length of the tubular duct 208L can be set shorter as compared with a case where one tubular duct is used. Also, design and safety of the tubular duct 208L can be significantly improved.
As shown in
In the above manner, the electroacoustic transducer 202L can allow a sound (hereinafter referred to as the surround sound) generated around the listener and also the reproduced sound emitted from the speaker unit 207L via the hole 208AL of the tubular duct 208L to reach the eardrum 103L (
The electroacoustic transducer 202L has the tubular duct 208L made of metal such as aluminum having predetermined rigidity or plastic, resin, and so on having predetermined rigidity, and the end part of the tubular duct 208L is made in contact with the vicinity of the entrance 102L of the external acoustic meatus. In this manner, the electroacoustic transducer 202L can allow the vibration component of low frequencies generated at the end part of the tubular duct 208L to reach the eardrum 103L of the listener by transmission mainly via the skin, and make the listener capable of listening to the sound.
In particular, a sense of the low-pitched sound can be experienced by the listener in a manner that the skin of the human being vibrates due to vibration of low frequencies generated at the end part of the tubular duct 208L since the tubular duct 208L is made in contact with the vicinity of the entrance 102L of the external acoustic meatus, and then the vibration is transmitted to the brain from a nerve of the skin.
As shown in
In addition, as shown in
Further, as shown in
In the above manner, in the ear speaker device 200, large vibration is generated in the top-to-bottom direction, the front-to-rear direction, and the left-to-right direction at the end part of the tubular duct 8L. The vibration reaches the eardrum 103L of the listener by transmission via the skin of the listener. Therefore, not only the middle-pitched and the high-pitched sounds, but also the low-pitched sound to some extent can be listened by the listener.
As described above, the ear speaker device 200 positions the speaker unit 207L at a location somewhat distant from the entrance 102L of the external acoustic meatus of the listener when the ear speaker device 200 is mounted on the head 100 of the listener. The ear speaker device 200 emits the middle-pitched and the high-pitched sounds from the speaker unit 207L via the tubular duct 208L. At the same time, the ear speaker device 200 allows the vibration component of low frequencies generated at the end part of the tubular duct 208L extended to the vicinity of the entrance 102L of the external acoustic meatus from the housing 204L to reach the eardrum 103L of the listener by transmission mainly via the skin. In this manner, the ear speaker device 200 can make the listener capable of listening to the excellent reproduced sound including the low-pitched sound to some extent while providing the natural sound image localization.
As shown in
Hereinafter, as similar to the case of the ear speaker device 200 described above, description will be made by taking mainly the electroacoustic transducer 202L on the left side as an example. The electroacoustic transducer 202R on the right side is configured in a symmetrical manner as the electroacoustic transducer 202L on the left side.
For example, as shown in
The ear speaker device 220 (
In addition, as shown in
The ear speaker device 230 (
Further, as shown in
The ear speaker device 240 (
Further, as shown in
The ear speaker device 250 (
Further, as shown in
The ear speaker device 260 (
Further, as shown in
The rear electroacoustic transducer 272L is supplied with the audio signal for the rear channel in the multi-channel sound source such as the 4-channel and the 5.1-channel.
This ear speaker device 270 (
In addition, in the above case, the ear speaker device 270 (
In the ear speaker device 270 (
Further, as shown in
In addition, the housing 204L is provided with a tubular duct 281L extending from the housing 204L to the vicinity of the entrance 102L of the external acoustic meatus of the listener in place of the tubular duct 208L. The tubular duct 281L has its inner diameter, path length of the sound, and so on appropriately calculated to emit the excellent low-pitched sound in the reproduced sound from a hole 281AL.
The ear speaker device 280 (
As described above, in the present invention, the electroacoustic transducers 202L and 202R may be mounted on the head 100 of the listener by the mounting parts in a variety of modes such as ear speaker devices 220 to 280 (
In the above configuration, the ear speaker device 200 gathers mainly the middle-pitched and the high-pitched sounds emitted from the speaker unit 207L provided on the housing 204L of the electroacoustic transducer 202L via the cover part 204LB to the tubular duct 208L by being mounted on the head 100 of the listener. Then, the ear speaker device 200 outputs the middle-pitched and the high-pitched sounds from the hole 208AL of the tubular duct 208L positioned in the vicinity of the entrance 102L of the external acoustic meatus.
Therefore, the electroacoustic transducer 202L of the ear speaker device 200 can allow the middle-pitched and the high-pitched sounds emitted from the speaker unit 207L to directly reach the eardrum 103L only from the hole 208AL of the tubular duct 208L. Therefore, the electroacoustic transducer 202L can make the listener capable of listening to the reproduced sound having a characteristic similar to the case of making the listener listening to the sound via the general speaker, without sound leakage, and can provide a sense of the natural localization as though the sound image is localized outside the head.
In addition, the ear speaker device 200 only positions the hole 208AL of the tubular duct 208L in the vicinity of the entrance 102L of the external acoustic meatus, and does not block the entrance 102L of the external acoustic meatus unlike a closed-type headphone. Therefore, the ear speaker device 200 can allow not only the reproduced sound output from the hole 208AL of the tubular duct 208L, but also the surround sound without being blocked, to reach the eardrum 103. In this manner, the ear speaker device 200 can make the listener capable of listening to the reproduced sound via the tubular duct 208L and also to the surround sound outside.
In the above manner, the ear speaker device 200 can ensure to make the listener listen to the surround sound in addition to the reproduced sound output from the hole 208AL of the tubular duct 208L, even in a case where the listener needs to listen to the surround sound such as when the listener is walking and playing some sport.
In addition, the ear speaker device 200 does not cover the auricle 101L, and so on of the listener with the electroacoustic transducer 202L. Therefore, the ear speaker device 200 never causes uncomfortableness such as a sense of closeness and sweatiness the listener feels when the listener wears the general headphone. Further, the ear speaker device 200 does not form closed space, therefore the ear speaker device 200 does not generate a change of a resonance frequency in the external acoustic meatus which may be generated in a case of using the closed-type headphone, and does not make the listener uncomfortable.
In addition, the ear speaker device 200 can make the listener capable of listening to the middle-pitched and the high-pitched sounds at the sufficient sound volume level by making the hole 208AL of the tubular duct 208L which is an emitting aperture of the reproduced sound closer to the eardrum 103L. At the same time, the ear speaker device 200 can make the listener capable of listening to the low-pitched sound to some extent by vibration in low frequencies generated at the end part of the tubular duct 208L. Therefore, a diameter of the speaker unit 207L does not need to be made large unnecessarily, and size of the housing 204L can be minimized.
In this manner, the entire size and weight of the ear speaker device 200 can be limited to be minimum, therefore troublesomeness caused by the size and the weight of the ear speaker device 200 when the listener wears the ear speaker device 200 can be restricted as much as possible.
According to the configuration described above, the ear speaker device 200 positions the speaker unit 207L of the electroacoustic transducer 202L somewhat closer to the front than the entrance 102L of the external acoustic meatus of the listener when the ear speaker device 200 is mounted on the head 100 of the listener. Also, the ear speaker device 200 gathers mainly the middle-pitched and the high-pitched sounds emitted from the speaker unit 207L via the cover part 204LB to the tubular duct 208L without leaking to the outside, and outputs the reproduced sound based on the sound signal from the hold 208AL of the tubular duct 208L positioned in the vicinity of the entrance 102L of the external acoustic meatus. In this manner, the ear speaker device 200 can allow the middle-pitched and the high-pitched sounds emitted from the hole 208AL of the tubular duct 208L to reach the eardrum 103 at the sufficient sound pressure level. Therefore, the ear speaker device 200 can make the listener capable of listening to the excellent reproduced sound at the sufficient sound pressure level while providing the natural sound image localization.
In the second embodiment described above, the description was made with respect to the case where the tubular duct 208L is formed in a substantial U-shape on its side surface, and is configured with two tubular ducts with the hole 208AL located on a border therebetween. However, the present invention is not limited thereto, and the tubular duct 208L may be configured with one or three or more tubular ducts.
For example, as shown in
In addition, in the second embodiment, the description was made with respect to the case where the tubular duct 208L made of a hard material such as metal is used. However, the present invention is not limited thereto, and the tubular duct 208L made of a soft material such as flexible resin may be used. In this case, the inner diameter and the path length are desirably set in consideration of a difference of materials of the tubular duct 208L.
Further, in the second embodiment, the description was made with respect to the case where the sound emitting surface of the speaker unit 207L is oriented to a substantial rear direction when the ear speaker device 200 is mounted on the head 100 (
Further, in the second embodiment, the description was made with respect to the case where the ear speaker device 200 has the electroacoustic transducers 202L and 202R on the left and the right, and outputs the reproduced sound of two channels. However, the present invention is not limited thereto, and, for example, the ear speaker device 200 may have only the electroacoustic transducer 202L on the left and output the reproduced sound of one channel.
Further, in the second embodiment, the description was made with respect to the case where the speaker unit 207L for the middle-pitched and the high-pitched sounds is provided in the housing 204L. However, the present invention is not limited thereto, and, for example, a plurality of speaker units may be provided in the housing 204L in such a manner as providing two speaker units for the middle-pitched sound and the high-pitched sound in the housing 204L to make the two-way speaker.
Further, in the second embodiment, the description was made with respect to the case where the cover part 204LB having a hemispheric shape is used. However, the present invention is not limited thereto, and, for example, the cover part 204LB may have a quadrangular pyramid or a triangular pyramid shape. What is important here is that the cover part 204LB needs to have a configuration that can gather the middle-pitched and the high-pitched sounds output from the speaker unit 207L and does not allow such sounds to leak to the outside.
Further, in the second embodiment, the description was made with respect to the case where the housing 204L in which a hemispheric part 204LA configured to block a rear part of the speaker unit 207L is used. However, the present invention is not limited thereto, and as shown in
In the housing 304L (
In the housing 304L (
Further, in the second embodiment, the description was made with respect to the case where the housing 204L in which the hemispheric part 204LA configured to block the rear part of the speaker unit 207L. However, the present invention is not limited thereto, and as shown in
In the housing 404L (
In the housing 404L (
Further, in the second embodiment, the description was made with respect to the case where the housing 204L having the tubular duct 208L provided on a surface of the cover part 204LB is used. However, the present invention is not limited thereto, and as shown in
In the above case, the housing 504L (
The configuration of the housing 504L (
Further, in the second embodiment, the description was made with respect to the case where the housing 204L having the tubular duct 208L formed on the surface of the cover part 204LB in an integrated state is used. However, the present invention is not limited thereto, and as shown in
In the above manner, the housing 604L (
Further, in the second embodiment, the description was made with respect to the case where the housing 204L (
In the housing 704L, air pushed out from a front surface side of the speaker unit 207L does not hit the edge part to generate wind noise, and only the middle-pitched and the high-pitched sounds of high quality can be emitted from a hole 708AL of the tubular duct 708L.
Further, in the second embodiment, the description was made with respect to the case where the housing 204L having the tubular duct 208L formed on the surface of the cover part 204LB in an integrated state. However, the present invention is not limited thereto, and a housing having a configuration where a tubular duct formed in a tubular shape with thinner diameter as it goes to an end in a form of covering the front surface side of the speaker unit 207L is attached to the baffle plate 204AL may be used without discriminating the cover part 204LB and the tubular duct 208L.
Further, in the second embodiment, the description was made with respect to the case where the tubular duct 208L having duct length from the hole 208AL to the surface of the cover part 204LB set to be the same length in both ways is used. However, the present invention is not limited thereto, and a tubular duct set to have different duct length between the both ways may be used.
For example, as shown in
Further, in the second embodiment, the description was made with respect to the case where the electroacoustic transducers 202L and 202R as the electroacoustic transducer are configured with the housings 204L and 204R as the housing, the speaker units 207L and 207R as the speaker unit, and the tubular ducts 208L and 208R as the tubular duct. However, the present invention is not limited thereto, and the electroacoustic transducer may be configured with a housing, a speaker unit, and a tubular duct having a variety of other configurations.
Further, in the second embodiment, the description was made with respect to the case where the ear speaker device 1 as the ear speaker device is configured with the housings 204L and 204R as the housing, the speaker units 207L and 207R as the speaker unit, the band part 3 as the mounting part, and the tubular ducts 208L and 208R as the tubular duct. However, the present invention is not limited thereto, and the ear speaker device may be configured with a housing, a speaker unit, a mounting part, and a tubular duct having a variety of other configurations.
The present invention can be utilized for a variety of ear speaker devices that mount a speaker device including a back load horn type and so on having a variety of ducts, in addition to the bass reflex type speaker, on the head of the listener.
1, 20, 30, 40, 50, 60, 70, 80, 90, 200, 220, 230, 240, 250, 260, 270, 280, 290, 900 . . . EAR SPEAKER DEVICE, 2L, 2R, 72L, 92L, 202L, 202R, 902L, 902R . . . ELECTRO ACOUSTIC TRANSDUCER, 3, 31, 51, 61, 71, 81 . . . BAND PART, 4L, 4L1, 4L3, 4R, 204L, 204R, 304L, 404L, 504L, 604L, 704L, 804L, 904L, 904R . . . HOUSING, 7L, 7R, 207L, 207R, 907L, 907R . . . SPEAKER UNIT, 8L, 8R, 208L, 208R, 261L, 281L, 298L, 308L, 608L, 708L, 808L, 908L, 908R . . . TUBULAR DUCT, 8AL, 8AR, 208AL, 208AR, 908AL, 908AR . . . HOLE, 100 . . . HEAD, 101L . . . AURICLE, 102L . . . ENTRANCE OF EXTERNAL AC0 USTIC MEATUS, 103L . . . EARDRUM, 901L, 901R . . . EAR HANGER, 910 TO 913 . . . SCREW
Number | Date | Country | Kind |
---|---|---|---|
2006-024957 | Feb 2006 | JP | national |
2006-328603 | Dec 2006 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2007/052164 | 2/1/2007 | WO | 00 | 10/1/2007 |