The present disclosure relates to the field of acoustics, sound reproduction technologies, and the design principle of the loudspeaker, and more particularly, to an electroacoustic transducer having controlled ion generation.
Loudspeakers, hereinafter referred to as electroacoustic transducers, are devices that convert electrical energy into energy acoustic oscillations. Electroacoustic transducers are utilized in many consumer products, such as household stereo systems, home theater systems, audio systems for automobiles, portable music devices, headphones, recording studio equipment, acoustic sensory equipment, and others. Demand for high quality sound production and/or recording from these and other products has generated great interest in the development of electroacoustic transducers that can convert electronic signals into sound waves with greater accuracy and higher definition.
One problem with known electroacoustic transducers is their reliance on moving components (e.g., voice coils and diaphragms) to produce acoustic oscillations in a two-step energy conversion process. In the first step, electric energy of a sound signal is converted into mechanical vibrations of a membrane attached to the electro acoustic transducer. In the second step, the mechanical vibrations of the membrane create acoustic oscillations in a surrounding gas medium (e.g., air). The membrane has a certain mass, an ultimate rigidity and given boundaries, which affect the quality of sound reproduced in the surrounding space during the second step. Thus, the quality of sound reproduction is physically limited by these aspects of the membrane. Some manufacturers have sought to overcome these challenges by producing different types of electroacoustic transducers that operate without the use of moving parts. For example, electroacoustic devices have been developed that create sound waves using areal electric discharge. However, known electroacoustic transducers employing areal electrical discharge may not perform optimally.
One example of an electroacoustic transducer that operates with ionized gas particles instead of a moving diaphragm is disclosed in U.S. Patent Application Publication No. 20090022340 A1 (the '340 publication) of Krichtafovich et al. The '340 publication discloses ion generation at one electrode, which is active due to the presence of discharge elements with a large surface curvature. Generated ions drift to the second electrode, which is passive due to the lack of discharge elements with a large surface curvature. In the drift process, a so-called ion wind is created, which is a macroscopic air flow. This flow also generates acoustic vibrations during modulation. However, the dipole radiation pattern, i.e., the generation of two opposing waves, requires the use of acoustic processing preventing an acoustic short circuit. This design may not allow for the achievement of high operational stability and may result in the occurrence of hissing, crackling, and arcing or spark discharge due to the asymmetry of the unipolar corona discharge process, particularly when the power output is increased. Ionization of surrounding gas molecules may serve as a conductor for ions of the same sign, which may prohibit self-stabilization of the process. As a result, the electrical discharge distributed in space in the form of moving ions may be allowed to “collapse” and change to a spark or arc discharge, resulting in audible hissing or crackling sounds.
Another example of an electroacoustic transducer that operates with ionized gas particles instead of a moving diaphragm is disclosed in U.S. Pat. No. 4,460,809 (the '809 patent) to Bondar. The '809 patent describes an electroacoustic transducer comprising rows of electrodes separated by sheets of dielectric material. Each adjacent row or electrodes is connected to an opposite pole of a voltage source. This design achieves a so-called bipolar corona discharge, whereby the corona discharge process involves two types of charged particles, i.e., cations and anions. However, during the ion drift process, the ions are allowed travel freely along a bended path around dielectric sheets from one electrode to another. As a result of the uninhibited movement of ions between adjacent electrodes, the system of the '809 patent may not provide conditions for a self-stabilization process to be realized. That is, the system of the '809 patent may allow an electrical discharge of moving ions distributed in space to “collapse” and change to a spark or arc discharge.
Another example of an electroacoustic transducer is disclosed in Ukrainian Patent No. 105,621 C2 to Chizhov et al. (“the '621 patent”). The electroacoustic transducer of the '621 patent includes a cathode and an anode having discharge elements that are arranged in a row and linearly spaced apart by not more than 4 mm. The discharge elements extend into a space between the cathode and anode (i.e., an “interelectrode space”) and are three-dimensional bodies with a large surface curvature. An electrical circuit connecting the anode and cathode to a voltage source includes current-limiting elements. The configuration of the electroacoustic transducer of the '621 patent may increase the uniformity of the electric field in the interelectrode space, thereby stabilizing the corona discharge and preventing the generated cations and anions from collapsing their spatial electric discharge into a spark or arc.
While the electroacoustic transducer of the '621 patent may be effective, further improvements to the generation and control of ionized gas particles in the operation of electroacoustic transducers may yet be realized to achieve improved sound quality at higher power levels.
The disclosed electroacoustic transducer is directed to overcoming one or more of the problems set forth above and/or other problems of the prior art.
In one aspect, the present disclosure is directed to an electroacoustic transducer. The electroacoustic transducer may include an anode having one or more discharge elements electrically connected to a first pole of a voltage source, and a cathode having one or more discharge elements electrically connected to a second pole of the voltage source. The discharge elements have an active region, which is manifested in the glow of the gas surrounding it when a sufficient electrical potential difference is applied between the cathode and anode, and provide the generation of cations and anions. The active region is characterized by an area on the surface of each discharge element that is exposed to surrounding gas and directly participates in ion generation when a voltage is applied to the electrodes. The shape, size and location of the discharge elements are selected such that the area of the active region of the anode is greater than the area of the active regions of the cathode discharge elements.
In another aspect, each of the one or more discharge elements of the anode and the cathode may have a cross-sectional length not greater than 3 mm.
In another aspect, each of the one or more discharge elements groups of discharge elements may be separated from an adjacent element or group of discharge elements by means of dielectric barrier. The dielectric barrier may have a shape and a size needed for effective spatial separation of the discharge process occurring at each discharge element or group of discharge elements, and prevent the occurrence of a breakdown in the redistribution of potentials in current-limiting elements connecting the one or more discharge elements or groups of discharge elements to the voltage source.
The accompanying drawings, which constitute a part of this specification, illustrate several embodiments and, together with the description, serve to explain the disclosed principles.
The anode 14 and cathode 12 of the electroacoustic transducer 10 of
In the electroacoustic transducer of
The voltage source 26 may be any electrical device configured to generate and maintain sufficient voltage for a bipolar coronal discharge to occur. The voltage source 26 may include or be used in conjunction with voltage modulation componentry configured to modulate the power of the coronal discharge in response to a modulation signal. For example, voltage modulation componentry may include vacuum tubes, transistors, key elements, transformers, and combinations thereof. Modulation componentry may be used in amplification, transformation, or modulation modes, and may include devices, such as tube amplifiers, semiconductor amplifiers, step-up voltage transformers, modulated voltage sources, and/or other devices.
Discharge elements 28 may comprise a conductive material, such as copper, aluminum, steel, another conductive material, or combinations thereof. In some embodiments, discharge elements 28 may each be formed of the conductive material during a suitable manufacturing process, such as forging, casting, extruding, additive manufacturing (e.g., 3-D printing), machining, or any other suitable process. In other embodiments, discharge elements 28 may be formed of a suitable material coated with the conductive material. Discharge elements 28 may also or alternatively comprise chemically inert or corrosion-resistant materials, such as chrome, stainless-steel, etc., precious metals (e.g., gold, platinum, silver, palladium, etc.), intermetalloids, alloys, and/or other materials.
In some embodiments, discharge elements 28 may comprise materials having a relatively high or relatively low work function to allow greater ion generation. For example, discharge elements 28 may comprise materials having a work function no greater than 4.5 eV. However, it is understood that discharge elements may comprise materials having a higher or lower work function.
The discharge elements 28 of the cathode 22 and the anode 24 may be arranged in a row along the surface of the respective electrode. In some embodiments, the terminals of discharge elements 28 may extend to a virtual surface 32 between the cathode 22 and the anode 24. A distance d0 between each virtual surface 32 may be equidistant along each row of discharge elements 28. In other words, each of the discharge elements 28 of the cathode 22 may be equidistant from the opposing discharge elements 28 of the anode 24. The actual distance d0 between the cathode 22 and the anode 24 may be selected based on one or more design factors, such as the composition density of the gap 30 between the cathode 22 and the anode 24, the shape and size of the cathode 22 and anode 24, and the range of operating frequencies of input signals supplied to the electrodes. For instance, in one example, when the gap 30 contains air under normal conditions, the distance d0 may be about 10-40 mm. In some embodiments, the discharge elements 28 of electroacoustic transducer 20 may deviate from the virtual surface by not more than a threshold distance. For example, the terminals of discharge elements 28 may be located a distance not greater than 2 mm from the virtual surface 32 in either direction (e.g., nearer or farther) from the virtual surface 32.
In some embodiments, the discharge elements 28 may be a row of discrete elements. That is, each electrode may include a plurality of delineated discharge elements 28. For example, a plurality of delineated discharge elements 28 may include a number of discrete points, needles, blades, serrations, or another type of protruding or elongate feature. Discrete discharge elements 28 may also include portions or elements of dispersed wire mesh or corrugated sheets or films. Discharge elements 28 in a row (i.e., discharge elements 28 of a respective electrode) may be arranged equidistantly relative to adjacent discharge elements 28. In some embodiments, discharge elements 28 may be arranged equidistantly from one another along a geometric reference, such as a virtual surface 32. To improve control of ion generation during the corona discharge process, discrete discharge elements 28 may be spaced apart by no more than a particular threshold. For example, discrete discharge elements 28 may be spaced apart by no more than ⅙ of an inter-electrode distance (e.g., the distance d0 between electrodes). It is understood that other spacing thresholds may be tested and used.
In other embodiments, the discharge elements 28 may be a continuous and/or solid geometric body (e.g., a unitary element) that spans a length of the respective electrode. For example, unitary elements may include wires, blades, conductive strips, or other types of continuous bodies. In some embodiments, one electrode (e.g. cathode 22 or anode 24) may have discrete discharge elements 28 while the other (e.g., the other of cathode 22 and anode 24) has a continuous discharge element 28.
Referring to
Each discharge element 28 may have a cross-sectional length not greater than a threshold length in order limit the size of the active surface area of the discharge elements 28 and control the ion generation thereon. For example, each discharge element 28 may have one or more of a first cross-sectional length d1 and a second cross-sectional length d2. It is understood that discharge elements 28 having different configurations may have different or other cross-sectional lengths. In some embodiments, cross-sectional lengths d1 and d2 of discharge elements 28 may be less than or equal to 3 mm. It is understood that other cross-sectional lengths may be used.
Referring to
To further limit the surface area of the discharge elements 28 (i.e., the discharge element area), thereby limiting the size of the active region of each discharge element when energized, the electroacoustic transducer 20 may be configured to exhibit a ratio of the surface area (San) of anode 24 to the surface area (Scat) of cathode 22 that is greater than 1 (i.e., San/Scat>1). In other words, the surface area of anode 24 may be greater than the surface area of cathode 22. The respective surface areas of the anode 24 and cathode 22 may be the cumulative surface areas of the one or more discharge elements 28 associated with each respective electrode. In some embodiments, each discharge element 28 of an electrode may be the same size, about the same size, or a different such that undesirable arc or spark discharge (and resulting sound effects and distortions) are avoided.
Limiting the size of the active surface areas of the cathode 22 and anode 24 by maintaining a ratio of San/Scat>1 may allow for the recombination of ions of opposite signs near discharge elements 28 during the coronal discharge process even as the voltage between cathode 22 and anode 24 is modulated. Configuring electroacoustic transducer 20 with a ratio of San/Scat>1 may allow a high acoustic power density to be produced (i.e., high-volume sound production), while preserving the spatial and temporal stability of the coronal discharge (e.g., reduction or elimination of arc and/or spark breakdown and hissing and/or crackling).
For instance, cations are produced by shock ionization in the active region of the discharge elements 28 within the coronal discharge. The intensity of ion generation depends on the intensity of the electric field generated between the electrodes, as well as on the size of the discharge element area that forms the active region of the discharge elements 28. Anions arise as a consequence of the trapping of free electrons emitted by the cathode 22 due to autoelectronic emissions, which occur in the space between the electrodes. In that space, the current emission density may attain a relatively large value (e.g., up to 1010 A/cm2 in vacuum). Thus, the speed of anion generation is inversely proportional to the area of the discharge element of the cathode 22. When the San/Scat ratio≦1 and depending on the form and arrangement of the discharge electrodes, the discharge process can be either very weak (i.e., insufficient for proper sound generation) or unstable, as the balance of the generated anions and cations may be disturbed. Such disturbance can cause discharge instability, acoustic distortion, and arc or spark breakdown. When San/Scat>1, these deficiencies may be avoided.
In some embodiments, San/Scat may be greater than 1. For example electroacoustic transducer 20 may be configured to exhibit 25≧San/Scat>1 (e.g., 20≧San/Scat>1; 15≧San/Scat>1; 10≧San/Scat>1; 9≧San/Scat>1; 8≧San/Scat>1; 7≧San/Scat>1; 6≧San/Scat>1; 5≧San/Scat>1, 4≧San/Scat>1; 3≧San/Scat>1). In some embodiments electroacoustic transducer 20 may be configured to exhibit 20≧San/Scat≧2 (e.g., San/Scat=6). That is, the ratio of San to Scat may be between 2 and 20, inclusive. As used herein, the term “inclusive,” when used with reference to ranges of values, is intended to include the endpoint values of the range. It is understood that other San/Scat values may be tested and implemented than those listed above.
In some embodiments, anode 24 and/or cathode 22 may be divided into sections. For example, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
Cathode 22 and anode 24 may be connected to respective structural elements 25 and spaced apart with gap 30 between them. Discharge elements 28 of cathode 22 and anode 24 may oppose each other and extend into gap 30 from structural elements 25. In the embodiment of
Although the embodiment of
The disclosed electroacoustic transducer may be applicable to any system where it is desirable to convert electronic signals into sound waves. The disclosed electroacoustic transducer may generate linear and stable corona discharge with increasing the power of an obtained audio signal. The disclosed electroacoustic device may control the amount of generated cations and anions according to a restricted relationship between the active surface areas of the anode and the cathode. The disclosed electroacoustic device may also improve the quality and obtained sound by limiting the size and spacing of discharge elements associated with one or more of the cathode and anode. Spark and arc discharge may also be reduced by the disclosed electroacoustic transducer by anode and cathode connections to a voltage source via one or more current-limiting devices. An exemplary operation of the disclosed electroacoustic transducer will now be explained.
When a negative and positive potential from the voltage source 26 is applied to the cathode 22 and the anode 24, respectively, via the electrical conductors 36, the discharge elements 28 create two streams of negatively and positively charged particles (e.g., ions, charged dust particles, charged steam and/or water droplets) directed toward one another. The voltage potential applied to the electrodes may be sufficient to create stable uniform corona discharge. For example, when used as a loudspeaker, a constant voltage of 7-50 kV and a modulation voltage of 0-50 kV may be applied. It is understood that the voltage at which stable uniform discharge can be achieved may vary depending on the size of the electrodes, the size of gap 30, the composition density of gap 30 and/or other factors. When the streams of charged particles are created in space near each electrode, the charged particles flow along the lines of electric fields created between the electrodes and recombine in the gap 30 between the cathode 22 and anode 24.
Modulation of the voltage between the electrodes results in modulation of the quantity and energy of ions that interact with neutral atoms and molecules of the environment. During signal modulation, signals between, for example, 0-100,000 Hz may be supplied to the electrodes. In some embodiments, audio sound may be generated at about 90 dB or more using input signals of 500 Hz or greater. For signals below 500 Hz, sound generation may depend primarily on the size of the device (e.g., the size of discharge elements 28, the size of gap 30, etc.).
Acoustic wave generated as a result of this modulation may travel in all directions from the ends of the electrodes. Sound waves may be distributed evenly about a central axis 46 that extends along a length of the electrodes (e.g., a vertical axis). Sound waves may also be uniformly generated along the length of electrodes. That is, sound waves may be evenly distributed about axis 46 at each point along the length of the electrodes.
During the corona discharge process, ions are continuously generated and transported in the gap 30. Ions created by corona discharge may travel in gap 30 toward the electrode of opposite charge from itself. Continuous recombination of the ions also results in the generation of heat and excess neutral atoms in the gap 30. As the ions travel to the oppositely charged electrode, they may collide with the neutral atoms and molecules of gas (e.g., air) in the gap 30. Thus, sound waves may be generated by three mechanisms of converting electrical energy into acoustic vibrations: The transfer of kinetic energy between the ions of neutral atoms and gaseous molecules; adiabatic heating of the gas during recombination of cations and anions; and changes in the number of neutral atoms in the interelectrode space due to their continuous generation, drift and recombination in the interelectrode space.
To ensure a high acoustic power density, while preserving the spatial and temporal stability of the coronal discharge, control of the ion generation process, and hence the recombination of ions of opposite signs, is established by limiting the area of the active surface area of the discharge elements 28 of the anode 24 and cathode 22 to a ratio of San/Scat>1. Ion generation is further controlled by limiting the cross-sectional length of the discharge elements 28 to a threshold length, such as 3 mm.
When the electrodes include multiple separate sections 40 (referring to
The electroacoustic transducer 20 stabilizes the discharge process by allowing the voltage across the electrodes to be increased, thereby allowing the power of the received audio signal to be increased, while preventing distortion caused by over-voltage, sparking, and arcing. In this way, stable high-quality sound generation may be achieved within a wide range of voltages.
When the discharge elements 28 are spaced along the electrodes at intervals of no more than ⅙ of the inter-electrode distance, the functioning quality of the electroacoustic transducer 20 may be improved. When the discharge elements 28 are configured in this way, uniformity of the discharge process along the rows of discharge elements 28 may be increased, thereby minimizing or fully preventing distortions of the modulation signal.
When the discharge elements 28 of the cathode 22 and the anode 24 are arranged equidistantly along the virtual surface 32, a directional radiation pattern of the sound wave may be produced. In this way, the sound level in a desired spatial region may be controlled.
When current-limiting elements 38 are connected between the electrodes and the voltage source 26, instances of over-voltage across the electrodes may be reduced or eliminated. In this way, sound distortions caused by sparking or arcing associated with over-voltage events may be reduced or prevented, thereby improving the sound quality produced at a wide range of voltages.
When the discharge elements 28 include nano-sized or sub-micron conductive elements, the acoustic power density of the generated sound may be increased. That is, the use of nano-sized or sub-micron conductive elements may allow for a higher autoelectronic current emission, thereby providing higher acoustic power density and greater sound output. The autoelectronic current emission of the electrodes may be further increased when the discharge elements 28 include materials having a relatively small work function (e.g., less than 4.5 eV). Moreover, in order to prevent physical and chemical changes in the discharge elements, which may affect the performance of the discharge process, the discharge elements may be prepared or coated with corrosion-resistant materials, such as gold, platinum, and the like.
When the discharge elements 28 are formed as a continuous conductive body, the corona discharge produced may be more homogenous, thereby improving the uniformity and quality of the ion generation process.
When the discharge elements 28 are separated into sections 40 by dielectric partitions 42 and each section 40 is connected to the voltage source by a separate current-limiting element 38, the voltage across each current-limiting element 38 may be reduced in comparison to embodiments using only one current-limiting element 38 per electrode. This voltage drop may result in a higher operating efficiency of the electroacoustic transducer 20. The voltage across each current-limiting element 38 may be further reduced when the discharge elements 28 of the anode (or sections 40 of the discharge elements 28) are separated by dielectric partitions 42. In this way, the efficiency of the electroacoustic transducer 20 may be further increased. The voltage across each current-limiting element may be further reduced when the discharge elements of the cathode (or sections 40 of the discharge elements) are separated by dielectric partitions 42. In this way, the efficiency of the electroacoustic transducer 20 may be further increased, since the current flowing from the voltage source to the electrode will flow through parallel-connected resistors, thereby reducing the magnitude voltage drop between discharge elements. When the current-limiting element 38 in each case is a resistor, the circuitry design may be simplified and the manufacturing costs of the electroacoustic transducer 20 may be reduced.
When the discharge elements 28 of the cathode extend to the virtual surface 32 and the terminals of the discharge elements 28 are within 2 mm of the virtual surface 32, the manufacturing process of the electroacoustic transducer 20 may be simplified, thereby resulting is a quicker and less costly manufacturing process.
With reference to
With reference to
The electroacoustic transducer of this second example may not effectively provide sufficiently intense, uniform, or stable ion generation as the excess surface area of the discharge elements 28 may contribute to ion generation in a non-linear fashion in response to the modulation signal. Also, an increase in the transverse size of the discharge elements leads to a decrease of the intensity of the electric field and a decrease in the efficiency of ion generation. This non-linear relationship between ion generation and the modulation signal may unstable ion generation, acoustic distortion, and breakdown of the arc or spark.
A third example consistent with this disclosure may be analogous to Example 1, wherein active surface areas of the discharge elements 28 of the cathode 22 and anode 24 may be within the ratio of San/Scat≦1, while the discharge elements 28 are discrete bodies having a cross-sectional length less or equal to 3 mm.
The electroacoustic transducer of this second example may not effectively control the generation of cations and anions to be within a ratio that permits successful operation at a wide range of voltages. In this example, when the San/Scat ratio≦1, the discharge process may be either very weak (i.e., insufficient for proper sound generation) or unstable, as the balance of the generated anions and cations may be disturbed, causing system instability, acoustic distortion, and/or arc or spark breakdown.
With reference to
The electroacoustic transducer may function analogously to that of Example 1, and may provide protection from the occurrence of arc or spark discharge, thereby allowing the electrode voltage and, thus, the power of audio signal to be increased.
Conversion of the stable, silent, bipolar coronal discharge to an arc or spark discharge, as in the case of overvoltage or a change in environmental conditions, may be reduced or prevented when one or more current-limiting elements 38 are in the circuit. For instance, following the occurrence of an uncontrolled pre-breakdown process, the conductivity of a gaseous medium may increase sharply, and the magnitude of the voltage drop is redistributed across the electrodes and the current-limiting element 38. In this way, over-voltage at the terminals of discharge elements 28 may be prevented and the conversion of coronal discharge to an arc or spark is prevented, thereby protecting stable operations of the system.
With reference to
The electroacoustic transducer according to this example may operate analogously to that of Example 1 and protect against the occurrence of an arc or spark discharge, while simultaneously increasing the efficiency by reducing the voltage drop in each current-limiting element 38.
Separation of the electrodes into sections 40 with parallel inclusion of the resistors may allow for a decrease in the magnitude of the effective resistance in the electrode circuit, and decreases the magnitude of the voltage drop, thereby increasing the efficiency of the system.
With reference to
The electroacoustic transducer of this example may operate analogously to Example 1 and protects against the occurrence of an arc or spark discharge, while also improving efficiency by reducing the voltage drop in each current-limiting element 38.
With reference to
The electroacoustic transducer of this example may operate analogously to Example 1 and protects against the occurrence of an arc or spark discharge, while also improving efficiency by reducing the voltage drop in each current-limiting element 38.
With reference to
The electroacoustic transducer of this example may operate analogously to Example 1 and protects against the occurrence of an arc or spark discharge, while also improving efficiency by reducing the voltage drop in each current-limiting element 38
A ninth example consistent with this disclosure may be analogous to Example 1, wherein the discharge elements 28 of the cathode 22 may include sub-micron and/or nano-sized elements.
The inclusion of submicron or nano-sized discharge elements 28 may increase the intensity of the electric field near the electrodes, thereby increasing the autoelectronic emission and power density of the electro-acoustic transducer.
A tenth example consistent with this disclosure may be analogous to Example 1, wherein the discharge elements 28 of cathode 22 are made of wire mesh with dispersed fibers extending equidistantly into the inter-electrode space with respect to the second electrode.
The electroacoustic transducer of this example may operate analogously to Example 1 and have an alternative design, which expands the technological capabilities for manufacturing the electroacoustic transducer.
With reference to
The electroacoustic transducer of this example may function analogously to Example 1 and have an alternative design, which expands the technological capabilities for manufacturing the device being claimed.
With reference to
The electroacoustic transducer of this example may function analogously to Example 1 and provide a general acoustic power system making it possible to change the directional pattern of the audio signal.
With reference to
The electroacoustic transducer of this example may function analogously to Example 1, and may provide emission directivity of the sound while allowing for a desired appearance of the electroacoustic transducer 20.
Several advantages may be realized by the implementation of the disclosed electroacoustic transducer 20. In particular, because the electroacoustic transducer 20 may generate stable corona discharge, sound distortions caused by arcing, sparking, or other unwanted reactions may be significantly reduced or eliminated. Further, because the electroacoustic transducer 20 may generate stable uniform corona discharge over a range of varying voltage inputs, audio signals may be converted into sound waves at volumes that vary linearly with the modulation of the input signal. Additionally, the configuration of the disclosed electroacoustic transducer 20 may allow for the electroacoustic transducer 20 to remain powered up without generating undesired sound effects when in a standby mode or when audio signals are not being supplied to the electrodes. Furthermore, because the disclosed electroacoustic transducer converts audio signals into sound waves by directly ionizing and modulating air or other gas particles without relying on moving parts to transfer kinetic energy, the disclosed electroacoustic transducer may produce sound waves with high accuracy and in high definition (i.e., without or with reduced loss and distortion of sound).
It will be apparent to those skilled in the art that various modifications and variations can be made to the electroacoustic transducer of the present disclosure. Other embodiments of the electroacoustic transducer will be apparent to those skilled in the art from consideration of the specification and practice of the electroacoustic transducer disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope of the disclosure being indicated by the following claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
1533730 | Engler | Apr 1925 | A |
1605295 | Shrader | Nov 1926 | A |
1687011 | Fleischmann | Oct 1928 | A |
1758993 | Wolff | May 1930 | A |
3476887 | Seligson et al. | Nov 1969 | A |
4204244 | Ho | May 1980 | A |
4460809 | Bondar | Jul 1984 | A |
8085957 | Shishov et al. | Dec 2011 | B2 |
20090022340 | Krichtafovich et al. | Jan 2009 | A1 |
20150117692 | Akino | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
105621 | May 2014 | UA |