This invention relates to a transducer, suitable for use within hearing aids, for reducing shock.
It is known that transducers include a coil with a first air gap or tunnel, magnetic members, such as spaced apart permanent magnets, having a second air gap or tunnel, and a reed armature. The first and second air gaps are generally aligned, with the armature reed extending through the first and second aid gaps.
The arrangement is such that when the moving part of the reed shifts in one direction or another away from a centralized position between the two poles, the magnetic flux is caused to flow in one direction or the other along the reed and hence through the coil. The reed is attached to a diaphragm and in this way the vibrations of the diaphragm caused by received sound are converted into corresponding currents in the coil or vice versa. If the transducer experiences a shock e.g., from being dropped, the reed can be easily damaged due to over deflection or unwanted deflection in the horizontal and/or vertical directions. In addition, the tip portion of the reed may strike the magnet with considerable force on the upper or lower side walls of the tunnel formed within the coil. Reference may be made to U.S. Pat. No. 5,647,013 for one such arrangement.
To reduce and prevent unwanted deflection of the armature's reed, the tunnel of the transducer can be tapered (inwardly or outwardly) from the fixed or stationary end of the armature toward the deflection end of the reed. In addition, a contact point can extend into the tunnel to reduce or prevent unwanted horizontal deflection of the armature reed. These previous techniques still require the reed to contact the surface of the tunnel and this contact can cause damage to the reed.
This invention is designed to prevent these and other problems.
According to a first embodiment of the present invention, a transducer resistant to shock comprises a stack having a pair of spaced magnets at least partially forming a tunnel. The tunnel has a central axis and the magnets have an upper and a lower tunnel wall. A coil at least partially forms the tunnel. The coil has a first and a second side wall and an upper and lower wall. Extending through the tunnel is a reed having a central portion, a stationary end, and a deflection end, wherein the reed has a tip portion which lies at least partially between the magnets. The reed is mounted for deflection towards or away from the magnets. A shock protective means is responsive to a shock impulse to the transducer where upon the protective means engages the reed. Preferably, the shock protective means comprises a ring fixedly attached between the coil and the stack. At least one bumper is responsive to an impulse shock to the transducer and the bumper acts to contact the reed.
Another embodiment of the present invention is directed to a transducer comprising a pair of spaced magnets at least partially forming a tunnel. The tunnel has a central axis. A coil having a first and a second side wall and an upper and lower wall at least partially forms the tunnel. A reed having a stationary end, a deflection end, and a central portion, extends through the tunnel. A tip portion of the reed lies at least partially between the magnets. The reed is mounted for deflection towards or away from the respective magnets. The coil has a first end toward the stationary end of the reed and a second end toward the magnets, wherein at least one side wall of the coil is tapered (inwardly or outwardly) from the central axis from the first end of the coil to the second end of the coil.
Other advantages and aspects of the present invention will become apparent upon reading the following description of the drawings and details description of the invention.
For a more complete understanding of the disclosure, reference should be made to the following detailed description and accompanying drawings wherein:
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity. It will further be appreciated that certain actions and/or steps may be described or depicted in a particular order of occurrence while those skilled in the art will understand that such specificity with respect to sequence is not actually required. It will also be understood that the terms and expressions used herein have the ordinary meaning as is accorded to such terms and expressions with respect to their corresponding respective areas of inquiry and study except where specific meanings have otherwise been set forth herein.
While the present disclosure is susceptible to various modifications and alternative forms, certain embodiments are shown by way of example in the drawings and these embodiments will be described in detail herein. It will be understood, however, that this disclosure is not intended to limit the invention to the particular forms described, but to the contrary, the invention is intended to cover all modifications, alternatives, and equivalents falling within the spirit and scope of the invention defined by the appended claims.
The transducer 2 of these figures has a pair of spaced magnets 6, 8 at least partially forming a tunnel 10. The tunnel having a central axis 12. The transducer 2 further has a coil 14 at least partially forming the tunnel 10. The coil has a first and a second side wall 16, 18 and an upper and lower wall 20, 22. The transducer 2 further has a reed 24 having a central portion 26 which extends through the tunnel 10, a stationary end 28, and a deflection end 30. The reed 24 has a tip portion 30 which lies at least partially between the magnets 6, 8. The reed 24 is mounted for deflection towards and/or away from the respective magnets 6, 8.
The coil 14 has a first end 32 toward the stationary end 28 of the reed 24 and a second end 34 toward the magnet 6, 8. The side walls 16, 18 of the coil 14 are tapered inwardly toward the central axis 12 from the first end 32 of the coil 14 to the second end 34 of the coil 14, to prevent or reduce unwanted horizontal deflection of the reed 24. Alternatively, the side walls 16, 18 of the coil 14 can be tapered outwardly away from the central axis 12 from the first end 32 of the coil 14 to the second end 34 of the coil 14, to prevent or reduce unwanted horizontal deflection of the reed 24. Alternatively, at least a part or stretch of at least one side wall 16, 18 of the coil can be tapered outwardly away from the central axis 12, moving toward the second end 34 of the coil 14, to prevent or reduce unwanted horizontal deflection of the reed 24. For the above alternatives or other alternatives, having a coil wall, or any part or stretch thereof, that is tapered, the coil wall can further have a separate raised portion toward the central axis 12, in relation to the adjacent portion of the wall thereof.
Some of the Figures depict dimensions which can be used for the present invention. Other dimensions can be used as well. For the embodiments in
Active shock protection means 104 of the armature's reed 24 can be incorporated as an alternative to the spacers 100. The shock protection means 104 comprises a pair of bumpers 110 on opposing sides 120, 122 of a reed 24. The shock protective means 104 will reduce and prevent unwanted movement of the reed 24 caused by a shock impulse. Under normal conditions, the active bumpers 110 remain out of contact with the reed 24 as depicted in
Preferably, the shock protective means 104 includes a ring 106, preferably metal, circumferentially positioned about the central axis 12 of the tunnel 10. The ring 108 has opposing upper 120 and lower 122 walls; and opposing side walls 116, 118. Extending from the upper 120 and lower 122 walls of the ring 106 and toward the armature's reed 24 is a bumper 110. Each bumper 110 is attached to the upper 120 and lower 122 wall of the ring 106 by a flexible band 126, preferably made of flurosilicon. The flexible band 126 may be molded directly onto the ring 106 and the bumbers 110 by Flexan™. The bumpers 110 remain away from the reed 24 until the transducer 2 encounters a vertical shock impulse.
As the transducer 2 receives a vertical shock impulse, the protective bumpers 110 of the shock protective means 104 respond to the vertical shock impulse and move to engage the reed 24 in
The active shock protective means 104 can be positioned between the stack and the coil 14 in
While the specific embodiments have been illustrated and described, numerous modifications come to mind without significantly departing from the spirit of the invention and the scope of protection is only limited by the scope of the accompanying claims.
This patent is a division of U.S. application Ser. No. 10/089,861, filed Aug. 8, 2002, which claims the benefit of U.S. Provisional Patent Application entitled “Transducer with Resistance to Lateral Shock,” Serial No. 60/158,572, filed Oct. 7, 1999 and U.S. Provisional Patent Application entitled “Transducer with Resistance to Shock,” Ser. No. 60/180,547, filed Feb. 7, 2000, the disclosures of which are hereby incorporated herein by reference in its entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
Parent | 10089861 | Aug 2002 | US |
Child | 11766461 | Jun 2007 | US |