The present invention relates to the art of electroacoustic transducers, and more specifically to an electroacoustic transducer used in a portable device, such as a mobile phone.
A typical electroacoustic transducer has only one simple function. Inputted electric energy causes the sound coil and a magnet of the electroacoustic transducer to produce a coupling effect and to further move a vibration panel. When the vibration panel is vibrated, air molecules contacting the vibration panel are excited to produce a variable dense-disperse wave (longitudinal wave). The amount of variation of the dense-disperse wave is the waveform of sound pressure audible to human ears.
The electroacoustic transducer can only produce a magnetic loop to convert electric energy into sound energy without any other added functions. Therefore, while installed in an electronic telecommunication apparatus (for example, a cellular phone), two component parts are required to achieve sound producing and vibration functions. In recent years, it has been the market tendency to make electronic apparatus thinner and smaller and to provide electronic telecommunication apparatus with user-friendly operation interfaces. The vibrating member needs sufficient vibration amplitude for ensuring good performance. However, as mentioned above, the transducer is designed smaller and thinner, no extra space is provided for the vibrating member to vibrate with sufficient amplitude. As the vibration amplitude is restricted, sound performance of the transducer cannot satisfy the requirements.
So, it is necessary to provide a new transducer for solving the problem mentioned above.
Many aspects of the embodiments can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the embodiments.
Reference will now be made to describe the exemplary embodiment of the present invention in detail.
Referring to
Referring to
The vibrating member further comprises a weight 19 defines an annular main body 191 and a plurality of flanges 192 extending outwardly from the main body 191. The main body 191 coupled to the side wall 142 of the yoke 14. In an alternative embodiment, the weight may be an integral part of the yoke. The elastic plate 15 is at least partially sandwiched between the annular main body 191 and the lapel 141 of the yoke 14. Therefore, the weight 19 is suspended in the hollow space 120 by the elastic plate 15. Accordingly, the vibrating member is firmly assembled to the elastic plate 15.
The diaphragm 10 comprises a domed central area 101 and a margin 102 extending from the periphery of the domed central area 101 along a direction away from a centre of the domed central area 101.
Referring to
For increasing the weight of the yoke 14, the lapel 141 defines a first width H1 along the vibrating direction of the vibrating member, the side wall 142 defines a second width H2 along a direction perpendicularly to the vibrating direction, and the bottom wall 143 defines a third width H3 along the vibrating direction. The first width H1 is greater than the second width H2 or the third width H3. Another words, a width of the lapel 141 is greater than that of the side wall 142 or the bottom wall 143.
The present invention meets the electronic telecommunication apparatus's current design focus, which is characterized in being thinner, smaller, and shorter, and greatly reducing material cost and assembly cost.
While the present invention has been described with reference to the specific embodiment, the description of the invention is illustrative and is not to be construed as limiting the invention. Various of modifications to the present invention can be made to the exemplary embodiment by those skilled in the art without departing from the true spirit and scope of the invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
201020671854.X | Dec 2010 | CN | national |