The present invention relates in general to electroacoustical transducing and more particularly concerns novel apparatus and techniques for selectively altering sound radiation patterns related to sound level.
A computer program listing appendix is submitted on a compact disc and the material on compact disc is incorporated by reference. The compact disc is submitted in duplicate and contains the file sharcboot_gemstone.h having 833,522 bytes created Sep. 10, 2003.
For background, reference is made to U.S. Pat. Nos. 4,739,514, 5,361,381, RE37,223, 5,809,153, Pub. No. US 2003/0002693 and the commercially available Bose 3•2•1 sound system incorporated by reference herein.
In general, in one aspect, the invention features a method that comprises controlling audio electrical signals to be provided to a plurality of electroacoustical transducers of an array to achieve directivity and acoustic volume characteristics that are varied with respect to a parameter associated with operation of the array, the controlling of the signals resulting in maintaining the radiated relative acoustic power spectrum of the array substantially the same as the characteristics are varied.
Implementations of the invention may include one or more of the following features. The variation is based on a volume level selected by a user. The compensating is based on a signal level detected in the controlled audio electrical signals. The controlling comprises reducing the amplitude of one of the electrical signals for higher acoustic volume levels. The controlling comprises combining two components of an intermediate electrical signal in selectable proportions. The controlling of the audio electrical signals comprises adjusting a level of one of the signals over a limited frequency range. Controlling the audio electrical signals includes processing one of the signals in a high pass filter and processing the other of the signals in a complementary all pass filter.
In general, in another aspect, the invention features an apparatus comprising an input terminal to receive an input audio electrical signal, and circuitry (a) to generate two related output audio electrical signals from the input audio signal for use by a pair of electroacoustical transducers of an array, (b) to control the two output signals to achieve predefined directivity and acoustic volume characteristics that are varied with respect to a parameter associated with operation of the array, and (c) to compensate for a change in the radiated acoustic power spectrum of the array that results from the controlling of the signals.
Implementations of the invention may include one or more of the following feartures. The circuitry comprises a dynamic equalizer. The dynamic equalizer includes a pair of signal processing paths and a mixer to mix signals that are processed on the two paths. The circuitry is also to compensate for the change based on a volume level.
In general, in another aspect, the invention features an electroacoustical transducer array comprising: a pair of electroacoustical transducers driven respectively by related electrical signal components, an input terminal to receive an input audio electrical signal, and circuitry (a) to generate two related output audio electrical signals for use by the pair of electroacoustical transducers of an array, (b) to control the two output signals to achieve predefined directivity and acoustic volume characteristics that are varied with respect to a parameter associated with operation of the array, and (c) to compensate for a change in acoustic power spectrum of the array that results from the controlling of the signals. The circuitry comprises a dynamic equalizer. The dynamic equalizer includes a pair of signal processing paths and a mixer to mix signals that are processed on the two paths. The apparatus comprises a second input terminal to carry a signal indicating a volume level for use by the circuitry.
In general, in another aspect, the invention features a sound system comprising a pair of electroacoustical transducer arrays, each of the arrays comprising: a pair of electroacoustical transducers or drivers driven respectively by related electrical signal components, an input terminal to receive an input audio electrical signal, and circuitry (a) to generate two related output audio electrical signals for use by the pair of electroacoustical transducers of an array, (b) to control the two output signals to achieve predefined directivity and acoustic volume characteristics that are varied with respect to a parameter associated with operation of the array, and (c) to compensate for a change in radiated acoustic power spectrum of the array that results from the controlling of the signals.
In general, in another aspect, the invention features an apparatus comprising a speaker array comprising a pair of adjacent speakers each having an axis along which acoustic energy is radiated from the speaker, and circuitry (a) to generate two related output audio electrical signals from an input audio signal for use by the pair of speakers, and (b) to control the two output signals to achieve predefined directivity and acoustic volume characteristics, the speakers being oriented so that the axes are separated by an angle of about 60 degrees.
It is an important object of the invention to provide electroacoustical transducing with a number of advantages.
Other features, objects and advantages of the invention will become apparent from the following description when read in connection with the accompanying drawing in which:
With reference now to the drawing and more particularly
For a range of higher frequencies, typically above 2 KHz, sound from the inside drivers 302LI and 302RI reach listener 320 over a direct path 308 and 314, respectively, and from outside drivers 302LO and 302RO after reflection from walls 304L and 304R, respectively.
Referring to
The distance between driver centers of 81 mm corresponds to a propagation delay of approximately 240 μs. In the frequency range below Fd, the system is constructed and arranged to drive one of the drivers in an enclosure radiating a cancelling signal attenuated 1 dB and inverted in polarity relative to the signal energizing the other driver to provide a 180° relative phase shift at all frequencies below Fd. This attenuation reduces the extent of cancellation, allowing more power to be radiated while preserving a sharp notch in the directivity pattern. By changing the delay in the signal path to one of the drivers from 0 μs to 240 μs, the effective directivity pattern changes from that of a dipole for 0 μs delay to a cardioid when the signal delay furnished is 240 μs that corresponds to the propagation delay between centers. For signal delays between these extremes, the notch or notches progressively change direction. In addition to using variable delay to alter the directivity pattern, other signal processing techniques can be used, such as altering the relative phase and magnitude of signals applied to the various drivers.
According to the invention, cancellation may be reduced below the frequency Fd by attenuating the broadband signal applied to one of the drivers, typically the cancelling signal, or over a narrower frequency range by attenuating one of the signals only over that narrower frequency range. Frequency selective modification of cancellation is described in more detail below.
There are a number of ways in which cancellation can be modified. The methods described in more detail here are advantageous in that changes generated in the directivity of the radiated power as a function of frequency resulting from modification of cancellation may be compensated by equalization when the modification is accomplished by attenuating the canceling signal either over the entire frequency range, or a portion of the frequency range. Any processing that modifies the relative magnitude, relative phase, or relative magnitude and phase of signals applied to drivers can be used to modify the cancellation. Relative magnitude can be modified by altering gain. Relative magnitude over a selected frequency range can be accomplished using a frequency selective filter in the signal path of one driver that modifies magnitude in phase while using a second complementary filter in the signal path of another driver that has flat magnitude response but a phase response that matches the phase response of the first filter. Modifying relative phase only can be accomplished by varying relative delay in the signal paths for different drivers, or using filters, with flat magnitude response, but different phase response in each signal path. For example, all pass filters with different cut off frequencies in each signal path may have this property. Varying both relative magnitude and phase can be accomplished by using different filters in each signal path, where the filters can either or both have minimum or nonminimum phase characteristics and arbitrary relative magnitude characteristics.
Referring to
Array processing module 504 furnishes each of the electrical signals that drive the individual drivers, such as 302RI and 302RO inside an enclosure, such as 302R. The electrical signals applied to the drivers have relative phases and magnitudes that determine a directivity pattern of the acoustic signal radiated by the enclosure. Methods for generating individual electrical signals to achieve directivity patterns are more fully described in the aforesaid Pub. No. US 2003/0002693 that has been incorporated by reference. The array processing module 504 furnishes these electrical signals according to a set of desired directivity and acoustic volume characteristics. A user can select a desired acoustic volume level using volume control 508. When the user selects one of the higher volume levels, the array processing module 504 is constructed and arranged to reduce cancellation.
Dynamic equalizer module 502 compensates for changes in the frequency spectrum of a radiated acoustic signal caused by the effects of array processing module 504. Since these effects may be determined based on the volume level, the known desired directivity pattern and the known changes in cancellation desired to occur as a function of volume level, volume control 508 can feed the volume level into dynamic equalizer module 502 (in addition to the signal processing module 500 and the array processing module 504) for establishing the amount of equalization for compensating for the changes to the spectrum of the radiated acoustic signal so as to maintain the radiated relative power response of the system substantially uniform as a function of frequency. Signal processing module 500 performs digital signal processing by sampling the input electrical signals at a sufficient sampling rate such as 44.1 kHz, and produces digital electrical output signals. Alternatively, analog signal processing could be performed on input electrical signals to produce analog electrical output signals.
Dynamic equalizer 502 and array processing module 504 may be embodied with analog circuitry, digital signal circuitry, or a combination of digital and analog signal processing circuitry. The signal processing may be performed using hardware, software, or a combination of hardware and software.
Referring to
In one example, the variable high pass filter 612 begins filtering above a volume level of V=86 (in a system in which V=100 represents maximum system volume, and radiated sound pressure level changes by approximately 0.5 dB per unit step in volume level). A filter index sub-module 616 provides an index signal i as a function of the volume level V according to i=ƒ1(V)=u(V−86)+u(V−88)+u(V−90)+u(V−92)+u(V−94) for V=1, 2, . . . , 100, where u(V) is a unit step function. The index signal i increases with volume level V, incrementing every two volume levels between 86 and 94, as illustrated in
where
ωi is the angular cutoff frequency (in radians/second) which increases with increasing index signal i according ω0/2π=210, ω1/2π=219, ω2/2π=269, ω3/2π=331, ω4/2π=407, ω5/2π=501, and j=√{square root over (−1)}. The initial cutoff frequency f0=210 Hz (f0=ω0/2π) has minimal influence on the directivity of the array which operates in a mid range of frequencies of approximately 210 Hz to 3 kHz. The highest cutoff frequency f5=501 Hz is chosen according to an acceptable directivity and sound level (e.g., by listening tests). This implementation of the array processing module 504 preserves directivity of the array for frequencies above 501 Hz at all volume levels. The directivity of the array for frequencies between 210 and 501 Hz is systematically altered at volume levels of 86 and above, that allows the loudspeaker system to play louder.
Since the phase response of the high-pass filter 612 can potentially significantly modify the phase relationship between the two paths, the first path 602 includes a variable allpass filter 614 with a phase response that approximately matches that of the highpass filter, to at least partially compensate for any phase effects. A substantially exact match is possible where the high-pass filter is critically damped, and the all-pass filter is a first order all-pass filter with the same cutoff frequency as the high pass filter. The variable all-pass filter 614 has a frequency response HAP0(ω)=1 for volume levels below V=86, and a frequency response
for volume levels at or above V=86. The filter index sub-module 616 also supplies the index signal i to the variable all-pass filter 614 such that its phase approximately tracks the phase of the variable high-pass filter 612, which is accomplished by having the cutoff frequencies of the high pass and all pass filters track with changes in the index signal. The phases of HHPi(ω) and HAPi(ω) for a cutoff frequency f1 of 219 Hz (f1=ω1/2π) are shown in
In some implementations a fixed low-pass filter 618 is included in the second path 606 to limit high-frequency output of one driver 608, pointed to the inside in order to direct most of the high frequency acoustic energy from the outside driver 604 pointed to the outside. The low-pass filter reduces output from the canceling driver at higher frequencies, so that high frequency information is only radiated by the outside drivers. In one implementation, the frequency response of the low-pass filter 618 is
and ωL=3 kHz is the cutoff frequency.
It may be advantageous to use smooth updating incident impulse response (IIR) digital filters for switching between successive indices. A blending sequence smoothly ramps successive filters in (and out) of the signal path while clearing the state of the filter during the transition free of artifacts.
Referring to
A nearly flat curve 802 represents residual effects of a highly filtered (f5=501 Hz) second array element. The shape of successive curves changes nearly continuously from that of curve 804 representing the initial filtering (f0=210 Hz). For the initial filtering case, curve 804, the radiated power at low frequencies for the two-element array is much smaller than the radiated power of a single element (i.e., S2(ω)<S1(ω)), due to destructive interference. Curve 804 at low frequencies shows that the quantity
has a large positive value, which implies S2(ω)<S1(ω). Such curves can be generated by experimental measurements (e.g., taken in an anechoic environment or in a room), by theoretical modeling, by simulation, or by a combination of such methods.
Referring to
as illustrated in
For volume levels at or below V=86, the coefficient signal C has the value 1 and the output signal 912 is equalized according to a frequency response of array filter sub-module 906
where the four poles p1±, p2± and four zeros z1±, z2± have the form
and values corresponding to those shown in Tables 1 or 2. Table 1 corresponds to values used for the highpass filtered canceler implementation of
For volume levels at or above V=94, the coefficient signal C has the value 0 and the output signal 912 is the same as the input signal 900, being equalized without the effects of the second array driver. For volume levels between 86 and 94, the output of the second array driver is gradually reduced starting from a volume setting of 84 while preserving the spectrum using the dynamic equalizer module 502, allowing the array to achieve significantly increased radiation at volume settings of 94 and above. The dynamic equalizer module 502 filters the output signal appropriately to compensate for the changing effects of the second array driver (through filtering or attenuation).
The spectral responses |HEQ(ω)|2 for each of the six volume levels corresponding to the high-pass filtered canceler implementation of
The spectral responses |HEQ(ω)|2 for each of the nine volume levels of the attenuated canceler implementation of
Referring to
It is evident that those skilled in the art may now make numerous uses and modifications of and departures from the specific apparatus and techniques disclosed herein. For example, the array processing and the dynamic equalization can be performed within a single module. Each array of drivers in the loudspeaker system may have a separate loudspeaker driver module. Control of cancellation and acoustic volume characteristics and the associated compensating equalization can be performed for electrical signal components (e.g., based on a first audio channel) which are combined with other electrical signal components (e.g., based on a second audio channel) to drive drivers of an array. Consequently, the invention is to be construed as embracing each and every novel feature and novel combination of features present in or possessed by the apparatus and techniques herein disclosed and limited solely by the spirit and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4653606 | Flanagan et al. | Mar 1987 | A |
4739514 | Short et al. | Apr 1988 | A |
5870484 | Greenberger et al. | Feb 1999 | A |
5988314 | Negishi et al. | Nov 1999 | A |
6118883 | Rocha | Sep 2000 | A |
6175489 | Markow et al. | Jan 2001 | B1 |
20040196982 | Aylward et al. | Oct 2004 | A1 |
Number | Date | Country |
---|---|---|
WO 0052959 | Sep 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20050063555 A1 | Mar 2005 | US |