In various embodiments, the present disclosure relates generally to electroactive polymer actuated air flow thermal management modules. More particularly, the present disclosure relates to a single or dual double-diaphragm electroactive polymer actuated air flow thermal management module.
The power and speed of computer components has increased steadily since the introduction of desktop computers decades ago. As with other semiconductor devices, the heat generated by high circuit densities in computer systems and light emitting diode (LED) systems has increased significantly in recent years, such that the thermal management of these devices has become more challenging. Conventional thermal management is often addressed through the use of forced convective air cooling through the use of fans with or without heat sinks. However, fan-based cooling systems are undesirable due to the noise attendant to their use. Moreover, the use of fans also requires relatively large moving parts, and corresponding high power inputs, in order to achieve the desired level of heat transfer. These moving parts are also a potential source of mechanical failure. Furthermore, while fans are adequate for providing global movement of air over electronic devices, they generally provide insufficient localized cooling for adequate heat dissipation of the hot spots that typically exist in a semiconductor device. In addition, the structure, arrangement and mounting mechanisms employed with ruggedized cards frequently interfere with the fluid flow of a thermal management system.
More recently, thermal management systems have been developed which utilize synthetic jet ejectors. These systems are more energy efficient than comparable fan-based systems, and also offer reduced levels of noise and electromagnetic interference. Systems of this type are described in greater detail in U.S. Pat. No. 6,588,497 issued to Glezer et al. The use of synthetic jet ejectors has proven very efficient in providing localized heat dissipation, and hence can be used to address hot spots in semiconductor devices. Synthetic jet ejectors may be used in conjunction with fan-based systems to provide thermal management systems that afford both global and localized heat dissipation.
One example of a thermal management system that utilizes synthetic jet ejectors employs an air-cooled heat transfer module which is based on a ducted heat ejector (DHE) concept. The module uses a thermally conductive, high aspect ratio duct that is thermally coupled to one or more integrated circuit (IC) packages. Heat is removed from the IC packages by thermal conduction into the duct shell, where it is subsequently transferred to the air moving through the duct. The air flow within the duct is induced through internal forced convection by a pair of low form factor synthetic jet ejectors which are integrated into the duct shell. In addition to inducing air flow, the turbulent jet produced by the synthetic jet ejector enables highly efficient convective heat transfer and heat transport at low volume flow rates through small scale motions near the heated surfaces, while also inducing vigorous mixing of the core flow within the duct.
Often times, the synthetic jet ejectors utilize rare earth magnets to move diaphragms to move air, and while such systems represent notable improvements in the art, such rare earth magnets implementations also limit the form factor in which the synthetic jet ejectors can be embodied. Such systems are also limited in the amount of audible noise that is generated, may be quite heavy and relatively bulky.
Accordingly, there still exists a need in the art for a thermal management system that eliminates expensive, limited supply rare earth magnets, and that opens up the possibility of different form factors that are unattainable with current systems. Furthermore, there still exists a need for a thermal management system that can operate while maintaining a very low audible signature that are light weight and can be made smaller than magnet based systems.
In one embodiment, the present invention provides a thermal management apparatus comprising a housing that defines a first air flow channel and a second air flow channel; an electroactive polymer actuator located within the housing, the electroactive polymer actuator configured to move in response to an activation signal; wherein the electroactive polymer actuator defines a first chamber in fluid communication with the first air flow channel and defines a second chamber in fluid communication with the second air flow channel, the first and second chambers are fluidically isolated from each other; and wherein the electroactive polymer actuator is configured to oscillate when excited by the activation signal and eject pulses of air through the first and second air flow channels.
In another embodiment, the present invention provides a thermal management apparatus comprising a housing that defines a first air flow channel and a second air flow channel; a first electroactive polymer actuator located within the housing, the first electroactive polymer actuator configured to move in response to a first activation signal; a second electroactive polymer actuator located within the housing, the second electroactive polymer actuator configured to move in response to a second activation signal; wherein the first electroactive polymer actuator defines a first chamber in fluid communication with the first air flow channel and defines a second chamber in fluid communication with the second air flow channel, the first and second chambers are fluidically isolated from each other; wherein the second electroactive polymer actuator defines a third chamber in fluid communication with the first air flow channel, the third chamber is fluidically isolated from the first and second chambers; wherein the first and second electroactive polymer actuators are configured to oscillate when excited by the first and second activation signals and eject pulses of air through the first and second air flow channels.
In yet another embodiment, the present invention provides a method of generating air flow in a thermal management apparatus comprising a housing that defines a first air flow channel and a second air flow channel, an electroactive polymer actuator located within the housing, the electroactive polymer actuator configured to move in response to an activation signal, wherein the electroactive polymer actuator defines a first chamber in fluid communication with the first air flow channel and defines a second chamber in fluid communication with the second air flow channel, the first and second chambers are fluidically isolated from each other, and wherein the electroactive polymer actuator is configured to oscillate when excited by the activation signal and eject pulses of air through the first and second air flow channels, the method comprising applying a first excitation voltage to the electroactive polymer actuator; applying a second excitation voltage to the electroactive polymer actuator that is 180° out of phase with the first excitation voltage; and oscillating the electroactive polymer actuator within the housing in response to the first and second excitation voltages.
In some embodiments, fluids other than air may be used. These fluids may include gases such as nitrogen or argon or fluids. An encapsulating layer may be used to provide protection or electrical isolation of the dielectric film and electrodes of the electroactive polymer actuator from the fluid.
These and other advantages and benefits of the present invention will be apparent from the Detailed Description of the Invention herein below.
The present invention will now be described for purposes of illustration and not limitation in conjunction with the figures, wherein:
Examples of electroactive polymer devices, their applications, and methods of manufacturing are described, for example, in U.S. Pat. Nos. 7,394,282; 7,378,783; 7,368,862; 7,362,032; 7,320,457; 7,259,503; 7,233,097; 7,224,106; 7,211,937; 7,199,501; 7,166,953; 7,064,472; 7,062,055; 7,052,594; 7,049,732; 7,034,432; 6,940,221; 6,911,764; 6,891,317; 6,882,086; 6,876,135; 6,812,624; 6,809,462; 6,806,621; 6,781,284; 6,768,246; 6,707,236; 6,664,718; 6,628,040; 6,586,859; 6,583,533; 6,545,384; 6,543,110; 6,376,971; 6,343,129; 7,952,261; 7,911,761; 7,492,076; 7,761,981; 7,521,847; 7,608,989; 7,626,319; 7,915,789; 7,750,532; 7,436,099; 7,199,501; 7,521,840; 7,595,580; 7,567,681; 7,595,580; 7,608,989; 7,626,319; 7,750,532; 7,761,981; 7,911,761; 7,915,789; 7,952,261; 8,183,739; 8,222,799; 8,248,750, and in U.S. Patent Application Publication Nos.: 2007/0200457; 2007/0230222; 2011/0128239; 2012/0126959; 2012/0126667; 2012/0206248; 2013/0002587; 2013/0194082; and in PCT Publication Nos.: WO/2011/097020; WO/2012/099850; WO/2012/099854; WO/2012/118916; WO/20121120009; WO/2011/22438; WO/2012/122440; WO/2012/122440; WO/2012/129357; WO/2012/136503; WO/2012/148644; WO/2012/156423; WO/2012/173669; WO/2012/175533; WO/2013/037508; WO/2013/049485; WO/2013/059560, WO/2013/059562; WO/2013/103470; WO/2013/142552; WO/2013/148641; WO/2013/155377; WO/2013/192143; WO/2014/006005; WO/2014/028819; WO/2014/028822; WO/2014/028825; the entirety of each of which is incorporated herein by reference.
In one embodiment, the present invention provides a thermal management system comprising a single double-diaphragm electroactive polymer actuator. The oscillating electroactive polymer actuator moves air to cool various electronic systems, subsystems, and/or components. In other embodiments, the thermal management system comprises a dual double-diaphragm electroactive polymer actuator, which oscillates to move air. The double-diaphragm electroactive polymer actuator systems are suspended within a housing and are driven at a tuned resonance, 180° out of phase, to move air in and out of the housing through air channels. The resonance frequency may preferably be chosen to minimize audible noise and maximize displacement of the oscillating double-diaphragm. In one example, the resonance frequency may preferably be selected to be approximately 60 Hz. Each diaphragm comprises an electroactive polymer film, a portion of Which is sandwiched between at least one pair of opposing compliant electrodes. An electrical field imposed across the electrodes causes the dielectric electroactive polymer film to thin (decrease in thickness) and expand in area.
A single or dual double-diaphragm comprises two diaphragms, placed back to back (i.e., oriented adjacent to each other), connected in the center with each diaphragm biased away from its mate. In the dual double-diaphragm device, one of the pair may be set on the top of the device (i.e., at one end) and one at the bottom (i.e., at the opposite end). Masses may be affixed to a portion of the diaphragm sets (preferably the center) to provide greater motion at resonance and to lower their resonant frequency and thereby reduce generation of undesired audio artifacts.
The diaphragms may preferably be connected so that the chambers created by the first (outer) and second (inner) surfaces of the diaphragm pairs do not directly communicate with each other, rather the first (outer) and second (inner) surfaces of the diaphragm sets form independent air plenums. This configuration creates a biphasic pumping action in which driving the actuators 180° out of phase with each other creates maximum air displacement on each stroke.
By employing the electroactive polymer actuators in the diaphragm configuration, the thermal management system may be made to operate without the use of rare earth magnets thereby saving cost, reducing weight, and increasing the recyclability of the product at end of life. Also, as electroactive polymer actuators may be made through a printed process, this approach offers the possibility of implementing the thermal management system in a variety of different form factors. Further, electroactive polymer technology may provide a thermal management system that generates less audible noise than conventional systems as the Q factor in the electroactive polymer system is low and the inherent mass is low, allowing the operating parameters to be tuned across a wide range.
Before explaining the embodiments of the inventive electroactive polymer based thermal management system in detail, it should be noted that the disclosed embodiments are not limited in application or use to the details of construction and arrangement of parts illustrated in the accompanying drawings and description. The disclosed embodiments may be implemented or incorporated in other embodiments, variations and modifications, and may be practiced or carried out in various ways. They may be used with fluids other than air, such as inert gases and liquids.
Further, unless otherwise indicated, the terms and expressions employed herein have been chosen for the purpose of describing the embodiments for illustrative purposes and for the convenience of the reader and are not intended for the purposes of limiting any of the embodiments to the particular ones disclosed. It should be understood that any one or more of the disclosed embodiments, expressions of embodiments, and examples may be combined with any one or more of the other disclosed embodiments, expressions of embodiments, and examples, without limitation. Thus, the combination of an element disclosed in one embodiment and an element disclosed in another embodiment is considered to be within the scope of the present disclosure and appended claims.
As shown in
With a voltage applied, the transducer film 10 continues to deflect until mechanical forces balance the electrostatic forces driving the deflection. The mechanical forces include elastic restoring threes of the dielectric layer 12, the compliance or stretching of the electrodes 14, 16 and any external resistance provided by a device and/or load coupled to transducer 10. The resultant deflection of the transducer 10 as a result of the applied voltage may also depend on a number of other factors such as the dielectric constant of the elastomeric material and its size and stiffness. Removal of the voltage difference and the induced charge causes the reverse effects.
In some cases, the electrodes 14 and 16 may cover a limited portion of dielectric film 12 relative to the total area of the film. This may be done to prevent electrical breakdown around the edge of the dielectric or achieve customized deflections in certain portions thereof. Dielectric material outside an active area (the latter being a portion of the dielectric material having sufficient electrostatic force to enable deflection of that portion) may be caused to act as an external spring force on the active area during deflection. More specifically, material outside the active area may resist or enhance active area deflection by its contraction or expansion.
The dielectric film 12 may be pre-strained. The pre-strain improves conversion between electrical and mechanical energy, i.e., the pre-strain allows the dielectric film 12 to deflect more and provide greater mechanical work. Pre-strain of a film may be described as the change in dimension in a direction after pre-straining relative to the dimension in that direction before pre-straining. The pre-strain may include elastic deformation of the dielectric film and be formed, for example, by stretching the film in tension and fixing one or more of the edges while stretched. The pre-strain may be imposed at the boundaries of the film or for only a portion of the film and may be implemented by using a rigid frame or by stiffening a portion of the film.
The transducer structure of
When a voltage difference is applied across the oppositely-charged electrodes 32 of each working pair (i.e., across paired electrodes that are on either side of the film 26), the opposed electrodes attract each other thereby compressing the dielectric polymer layer 26 therebetween. The area between opposed electrodes is considered the active area. As the electrodes are pulled closer together, the dielectric polymer 26 becomes thinner (i.e., the Z-axis component contracts) as it expands in the planar directions (i.e., the X- and Y-axes components expand) (See
As stated herein, deflection refers to any displacement, expansion, contraction, torsion, linear or area strain, or any other deformation of a portion of dielectric layer 26. This deflection may be used to produce mechanical work. As shown in
In fabricating a transducer, an elastic film 26 can be stretched and held in a pre-strained condition usually by a rigid frame 8. In those variations employing a four-sided frame, the film can be stretched bi-axially. It has been observed that pre-strain improves the dielectric strength of the polymer layer 26, thereby enabling the use of higher electric fields and improving conversion between electrical and mechanical energy, i.e., the pre-strain allows the film to deflect more and provide greater mechanical work. Preferably, the electrode material is applied after pre-straining the polymer layer, but may be applied beforehand. The two electrodes provided on the same side of layer 26, referred to herein as same-side electrode pairs, i.e., electrodes on the top side of dielectric layer 26 and electrodes on a bottom side of dielectric layer 26, can be electrically isolated from each other. The opposed electrodes on the opposite sides of the polymer layer form two sets of working electrode pairs, i.e., electrodes spaced by the electroactive polymer film 26 form one working electrode pair and electrodes surrounding the adjacent exposed electroactive polymer film 26 form another working electrode pair. Each same-side electrode pair can have the same polarity, whereas the polarity of the electrodes of each working electrode pair is opposite each other. Each electrode has an electrical contact portion configured for electrical connection to a voltage source.
In this variation, the electrodes 32 are connected to a voltage source via a flex connector 30 having leads 22, 24 that can be connected to the opposing poles of the voltage source. The cartridge 12 also includes conductive vias 18, 20. The conductive vias 18, 20 can provide a means to electrically couple the electrodes 8 with a respective lead 22 or 24 depending upon the polarity of the electrodes.
The cartridge 12 illustrated in
An electroactive polymer actuator for use in the processes and devices described herein can then be formed in a number of different ways. For example, the electroactive polymer can be formed by stacking a number of cartridges 12 together, having a single cartridge with multiple layers, or having multiple cartridges with multiple layers. Manufacturing and yield considerations may favor stacking single cartridges together to form the electroactive polymer actuator. In doing so, electrical connectivity between cartridges can be maintained by electrically coupling the vias 18, 20 together so that adjacent cartridges are coupled to the same voltage source or power supply.
The first and second diaphragms 110, 112 are located within an internal wall 120 defined by the housing 104. The first and second diaphragms 110, 112 are connected to define a first chamber 116 and a second chamber 118, wherein the first chamber 116 is in fluid communication with the first air flow channel 108, the second chamber 118 is in fluid communication with the second air flow channel 106, and the first and second chambers 116, 118 are fluidically isolated such that they do not communicate directly with each other. Accordingly, the first and second chambers 116, 118 created by the first (outer) surfaces of the diaphragm pairs 110, 112 do not directly communicate with each other, and rather the first (outer) surfaces of the diaphragms 110, 112 form independent air plenums. This configuration creates a bi-phasic pumping action whereby driving the actuators 180° out of phase with each other creates maximum air displacement on each stroke. Second (inner) surfaces of each diaphragm 110, 112 also form an isolated chamber 111 that is not in fluid communication with either the first chamber 116 or the second chamber 118.
The single double-diaphragm electroactive polymer actuator 102 is driven by alternating high voltage electrical signals that are out of phase relative to each other to cause the single double-diaphragm electroactive polymer actuator 102 to oscillate. Schematically the drive signals are represented by Vθ1 and Vθ2. Although, generally Vθ1 and Vθ2 are 180° out of phase, relative phase angle may be selected to suit a particular application. For a detailed description of the operation of the double-diaphragm electroactive polymer actuator 102, please see the description associated with
With reference now to
As the dual-diaphragm 102 is driven in direction A, a pulse of air 124 is ejected out of the first chamber 116 through the first air flow channel 108 and a pulse of ambient air 128 is drawn into the second chamber 118 through the second air flow channel 106. As the dual-diaphragm 102 is driven in direction B, a pulse of air 126 is ejected out of the second chamber 118 through the second air flow channel 106 and a pulse of ambient air 130 is drawn into the first chamber 116 through the first air flow channel 108. In other embodiments, the thermal management system comprises a dual double-diaphragm electroactive polymer actuator, which oscillates to move air.
The second (lower) double-diaphragm electroactive polymer actuator 402′ comprises a first diaphragm 410′ and a second diaphragm 412′ placed back to back (i.e., oriented adjacent to each other), connected at a center portion with each diaphragm biased away from its mate. A mass 414′ is affixed to the center portion of the first and second diaphragms 410′, 412′ to provide greater motion at resonance and to lower their resonant frequency to reduce generation of undesired audio artifacts. Each diaphragm 410′, 412′ comprises an electroactive polymer film configured to move in response to an activation signal being applied to the electroactive polymer film, as described in connection with
The first and second diaphragms 410, 412 of the first (upper) double-diaphragm electroactive polymer actuator 402 are located within an internal wall 420 defined by the housing 404. The first and second diaphragms 410, 412 are connected to define a first chamber 416 and a second chamber 422, wherein the first chamber 416 is in fluid communication with the first air flow channel 408, the second chamber 422 is in fluid communication with the second air flow channel 406, and the first and second chambers 416, 422 are fluidically isolated such that they do not communicate directly with each other. Accordingly, the first and second chambers 416, 422 created by the first (outer) surfaces of the diaphragm pairs 410, 412 do not directly communicate with each other, and rather the first (outer) surfaces of the diaphragms 410, 422 form independent air plenums. This configuration creates a bi-phasic pumping action in which driving the actuators 180° out of phase with each other creates maximum air displacement on each stroke. Second (inner) surfaces of each diaphragm 410, 412 also form an isolated chamber 411 that is not in fluid communication with either the first chamber 416 or the second chamber 422.
The first and second diaphragms 410′, 412′ of the second (lower) double-diaphragm electroactive polymer actuator 402′ are located within an internal wall 420 defined by the housing 404. The first and second diaphragms 410′, 412′ are connected to define a third chamber 418 and that is in fluid communication with the first air flow channel 408 and is fluidically isolated form the first and second chambers 416, 422 such that they do not communicate directly with each other. Accordingly, the first, second, and third chambers 416, 422, 418 created by the first (outer) surfaces of the diaphragm pairs 410, 412 and 410′, 412′ do not directly communicate with each other, and rather the first (outer) surfaces of the diaphragms 410, 412 and 410′, 412′ form three independent air plenums. This configuration creates a bi-phasic pumping action in which driving the actuators 180° out of phase with each other creates maximum air displacement on each stroke. Second (inner) surfaces of each diaphragm 410, 412 and 410′, 412′ also form an isolated chamber 411′ that is not in fluid communication with either the first, second, or third chamber 416, 422, 418.
The first (upper) and second (lower) double-diaphragm electroactive polymer actuators 402, 402′ are each driven by alternating high voltage electrical signals that are out of phase relative to each other to cause the first (upper) actuator 402 and the second (lower) actuator 402′ to oscillate. Schematically the drive signals are represented by Vθ1 and Vθ2, for the first (upper) actuator 402 and
With reference to
As the first (upper) dual-diaphragm electroactive polymer actuator 402 is driven in direction A, the second (lower) dual double-diaphragm electroactive polymer actuator 402′ is driven in direction B′ and a pulse of air 424 is ejected from the first and third chambers 416, 418 through the first air flow channel 408 and a pulse of ambient air 428 is drawn into the second chamber 422 through the first air flow channel 408. As the first (upper) dual-diaphragm 402 is driven in direction B, the second (lower) dual double-diaphragm electroactive polymer actuator 402′ is driven in direction A′ and a pulse of air 426′ is ejected from the second chamber 422 through the first air flow channel 408 and a pulse of ambient air 430 is drawn into the first and third chambers 416, 418 through the first air flow channel 408.
Thus, in operation either the single 102 or dual 402, 402′ double-diaphragm electroactive polymer actuator air flow modules create turbulent, pulsating air-jets that can be directed precisely to locations where thermal management is needed. For example, this may include integrated circuits, light emitting diodes, or any electronic components for heat dissipation and cooling in a highly reliable, flexible form-factor, low cost, and low audible noise implementation.
As airflow is produced by the oscillating diaphragms, 102, 402, 402′, e.g., as the electroactive polymer diaphragms 102, 402, 402′ move up and down (or side to side) in response to the excitation voltage, pulses of air are ejected or pushed out of the air flow channels 106, 108, 406, 408 and injected or drawn in therefrom. The pulses of air are violently ejected and propelled a significant distance away from the air flow channel 106, 108, 406, 408 outlets with such a velocity that a secondary flow is generated as the surrounding air is entrained due to the primary high momentum pulse. This secondary entrainment is responsible for up to ten times the air flow output by the airflow channels 106, 108, 406, 408. As the initial pulse of air is ejected away from the thermal management modules 100, 400, the next pulse of cool air is pulled in and it is done at much lower velocity. The module relies entirely on the ambient air. The air flow is unsteady and turbulent with a series of vortex rings, which results in much higher heat transfer coefficients and therefore, lower airflows are needed to cool the same dissipated power. As the ejected air starts to cool the surface of the heat sink or electronic component, the pulse of air warms up and carries the heat away.
The electroactive polymer based air flow thermal management modules 100, 400 yield a higher effective heat transfer at low-volume flow rates as compared to conventional air movers. Thus, the thermal management modules 100, 400 provide increased thermal efficiency as a result of the turbulence created by the high velocity pulsed air flow. The pulsating nature increases the airflow mixing between the boundary layer and mean flow. The self-induced entrained air flow moves the heated air out of the system. The thermal management modules 100, 400 may be tailored to the air flow needs of any system. Multiple hot spots may be cooled without heat sinks as the thermal management modules 100, 400 place the cooling directly where it is needed without complicated ducting. Heat sinks may be cooled much more effectively by providing uniform flow across the entire heat sink.
Having described schematically the operation of single and dual double-diaphragm electroactive polymer actuator modules 100, 400, the description now turns to
The first (upper) double-diaphragm electroactive polymer actuator 502 comprises a first diaphragm 510 and a second diaphragm 512 placed back to back (i.e., oriented adjacent to each other), connected at a center portion with each diaphragm biased away from its mate. A mass 514 is affixed to the center portion of the first and second diaphragms 510, 512 to provide greater motion at resonance and to lower their resonant frequency to reduce generation of undesired audio artifacts. Each diaphragm 510, 512 comprises an electroactive polymer film configured to move in response to an activation signal being applied to the electroactive polymer film, as described in connection with
The second (lower) dual double-diaphragm electroactive polymer actuator 502′ comprises a first diaphragm 510′ and a second diaphragm 512′ placed back to back (i.e., oriented adjacent to each other), connected at a center portion with each diaphragm biased away from its mate. A mass 514′ may preferably be affixed to the center portion of the first and second diaphragms 510′, 512′ to provide greater motion at resonance and to lower their resonant frequency to reduce generation of undesired audio artifacts. Each diaphragm 510′, 512′ comprises an electroactive polymer film configured to move in response to an activation signal being applied to the electroactive polymer film, as described in connection with
The first and second diaphragms 510, 512 of the first (upper) double-diaphragm electroactive polymer actuator 502 are located inside an internal wall 520 defined by the housing 504. The first and second diaphragms 510, 512 are connected to define a first chamber 516 and a second chamber 522, wherein the first chamber 516 is in fluid communication with the first air flow channel 508, the second chamber 522 is in fluid communication with the second air flow channel 506, and the first and second chambers 516, 522 are fluidically isolated such that they do not communicate directly with each other. Accordingly, the first and second chambers 516, 522 created by the first (outer) surfaces of the diaphragm pairs 510, 512 do not directly communicate with each other, and rather the first (outer) surfaces of the diaphragms 510, 522 form independent air plenums. This configuration creates a bi-phasic pumping action in which driving the actuators 180° out of phase with each other creates maximum air displacement on each stroke. Second (inner) surfaces of each diaphragm 510, 512 also form an isolated chamber 511 that is not in fluid communication with either the first chamber 516 or the second chamber 522.
The first and second diaphragms 510′, 512′ of the second (lower) double-diaphragm electroactive polymer actuator 502′ are located inside an internal wall 520 defined by the housing 504. The first and second diaphragms 510′, 512′ are connected to define a third chamber 418 and that is in fluid communication with the first air flow channel 508 and is fluidically isolated from the first and second chambers 516, 522 such that they do not communicate directly with each other. Accordingly, the first, second, and third chambers 516, 522, 518 created by the first (outer) surfaces of the diaphragm pairs 510, 512 and 510′, 512′ do not directly communicate with each other, and rather the first (outer) surfaces of the diaphragms 510, 512 and 510′, 512′ form three independent air plenums. This configuration creates a bi-phasic pumping action in which driving the actuators 180° out of phase with each other creates maximum air displacement on each stroke. Second (inner) surfaces of each diaphragm 510, 512 and 510′, 512′ also form an isolated chamber 511′ that is not in fluid communication with either the first, second, or third chamber 516, 522, 518.
The first (upper) and second (lower) double-diaphragm electroactive polymer actuators 502, 502′ are each driven by alternating high voltage electrical signals that are out of phase relative to each other to cause the first (upper) actuator 502 and the second (lower) actuator 402′ to oscillate. Schematically, as shown in
With reference now to
As the first (upper) dual-diaphragm electroactive polymer actuator 502 is driven in direction A, the second (lower) dual double-diaphragm electroactive polymer actuator 502′ is driven in direction B′ and a pulse of air is ejected from the first and third chambers 516, 518 through the first air flow channel 508 and a pulse of ambient air is drawn into the second chamber 522 through the second (lower) air flow channel 506. As the first (upper) dual-diaphragm 502 is driven in direction B, the bottom dual double-diaphragm electroactive polymer actuator 502′ is driven in direction A′ and a pulse of air is ejected from the second chamber 522 through the second air flow channel 506 and a pulse of ambient air is drawn into the first and third chambers 516, 518 through the first air flow channel 508.
When powering electroactive polymer actuator devices significant reactive power is required. Electroactive polymer devices are capacitive by design and require high voltages to actuate. Much of the electrical energy used to actuate the device is not used to provide mechanical energy. If some of this electrical energy can be recovered an overall improvement in efficiency could be realized. Accordingly, in one embodiment, the present invention provides an electrical circuit (power modulator) that employs electrical energy transferring between two electroactive polymer devices (two phase) to improve the electrical efficiency of the electrical circuit.
It should be understood that the circuits described herein are not restricted to this actuator configuration. They may be utilized advantageously in other systems where multiple actuators or multiple active regions in a monolithic actuator are driven out of phase from one another.
Preferably, the cap section will be sized to produce a perimeter of sufficient length to adequately distribute stress applied to the material. The ratio of size of the cap to the diameter of the frame holding the electroactive polymer layers may vary. Clearly, the size of disc, square, etc. employed for the cap will be larger under higher stress/force application. The relative truncation of the structure (as compared to point-loaded cones, pressure biased domes, etc.) is of further importance to reduce the aggregate volume or space the transducer occupies in use, for a given amount of pre-stretch to the electroactive polymer layers. Furthermore, in a frustum type diaphragm actuator, the cap or diaphragm 642 element may serve as an active component (such as a valve seat, etc. in a given system).
With the more rigid cap section formed or set in place, when the electroactive polymer material housed by a frame is stretched in a direction perpendicular to the cap, it produces the truncated form. Otherwise, the electroactive polymer film remains substantially flat or planar.
Still with reference to
Single-sided frustum transducers are within the contemplated scope of the present invention as well as double-sided structures. For preload, single-sided devices employ any of a spring interfacing with the cap (e.g., a coil, a constant force or roll spring, leaf spring, etc.), air or fluid pressure, magnetic attraction, a weight (so that gravity provides preload to the system), or a combination of any of these means or others.
In double-sided frustum transducers, one side preferably provides preload to the other. Still, such devices may include additional bias features/members.
However constructed, the double-frustum transducer operates as shown in
If only one active side 674/676 is provided, forced motion is limited to one side of neutral position 682. In which case, the non-active side of the device may simply comprise a spring or an elastic polymer to provide preload/bias (as mentioned above) or electroactive polymer material that is connected electrically to sense change in capacitance only or to serve as a generator to recover motion or vibration input in the device in a regenerative capacity.
Additional optional variations for transducers according to the present invention include provision for multi-angle/axis sensing or actuation.
The electroactive polymer section shown in Ha 23 is round.
Each cartridge 622 may employ compound electroactive polymer layers 10. Either one or both approaches—together—may be employed to increase the output potential of the subject device. Alternatively, at least one cartridge member in the stack (on either one or both sides of the device) may be setup for sensing as opposed to actuation to facilitate active actuator control or operation verification. Regarding such control, any type of feedback approach such as a PI (proportional-integral) or PID (proportional-integral-derivative) controller may be employed in such a system to control actuator position with very high accuracy and/or precision.
It is to be appreciated that the embodiments described herein illustrate example implementations, and that the functional elements, logical blocks, program modules, and circuits elements may be implemented in various other ways which are consistent with the described embodiments. Furthermore, the operations performed by such functional elements, logical blocks, program modules, and circuits elements may be combined and/or separated for a given implementation and may be performed by a greater number or fewer number of components or program modules. As will be apparent to those of skill in the art upon reading the present disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope of the present disclosure. Any recited method can be carried out in the order of events recited or in any other order which is logically possible.
Groupings of alternative elements or embodiments disclosed herein are not to be construed as limitations. Each group member may be referred to and claimed individually or in any combination with other members of the group or other elements found herein. It is anticipated that one or more members of a group may be included in, or deleted from, a group for reasons of convenience and/or patentability.
Various aspects of the subject matter described herein are set out in the following numbered clauses:
1. A thermal management apparatus comprising: a housing defining a first air flow channel and a second air flow channel; an electroactive polymer actuator located within the housing, the electroactive polymer actuator configured to move in response to an activation signal; wherein the electroactive polymer actuator defines a first chamber in fluid communication with the first air flow channel and defines a second chamber in fluid communication with the second air flow channel, the first and second chambers fluidically isolated from each other; and wherein the electroactive polymer actuator is configured to oscillate when excited by the activation signal and eject pulses of air through the first and second air flow channels.
2. The thermal management apparatus according to clause 1, wherein the electroactive polymer actuator comprises: a first diaphragm comprising a first electroactive polymer film; and a second diaphragm comprising a second electroactive polymer film, wherein the first and second diaphragms are oriented adjacent to each other and are connected at a portion thereof; and wherein each of the first and second diaphragms is configured to move in response to an activation signal being applied to each of the first and second electroactive polymer films.
3. The thermal management apparatus according to clause 2, wherein a first surface of the first diaphragm forms a portion of the first chamber and a first surface of the second diaphragm forms a portion of the second chamber.
4. The thermal management apparatus according to clause 2, wherein a second surface of the first diaphragm and a second surface of the second diaphragms forms a third chamber fluidically isolated form the first and second chambers.
5. The thermal management apparatus according to any one of clauses 2 to 4, wherein the first electroactive polymer film is excited by a first activation signal and the second electroactive polymer film is excited by a second activation signal.
6. The thermal management apparatus according to clause 5, wherein the first and second activation signals are 180° out of phase.
7. The thermal management apparatus according to any one of Claims 2 to 6, wherein the first and second diaphragms are biased away from each other.
8. The thermal management apparatus according to any one of Claims 1 to 7, further comprising a mass attached to the electroactive polymer actuator.
9. The thermal management apparatus according to any one of Claims 1 to 8, wherein the apparatus has a series resistance greater than 1000 ohms.
10. The thermal management apparatus according to any one of Claims 1 to 9, wherein the apparatus operates at voltages greater than 200 volts.
11. The thermal management apparatus according to any one of Claims 1 to 10, wherein the apparatus has an operating frequency less than 1000 Hz.
12. A method of generating air flow in a thermal management apparatus comprising a housing that defines a first air flow channel and a second air flow channel, an electroactive polymer actuator located within the housing, the electroactive polymer actuator configured to move in response to an activation signal, wherein the electroactive polymer actuator defines a first chamber in fluid communication with the first air flow channel and defines a second chamber in fluid communication with the second air flow channel, the first and second chambers are fluidically isolated from each other, and wherein the electroactive polymer actuator is configured to oscillate when excited by the activation signal and eject pulses of air through the first and second air flow channels, the method comprising: applying a first excitation voltage to the electroactive polymer actuator; applying a second excitation voltage to the electroactive polymer actuator that is 180° out of phase with the first excitation voltage; and oscillating the electroactive polymer actuator within the housing in response to the first and second excitation voltages.
13. The method according to Claim 12, further comprising: ejecting a pulse of air from the first chamber; and drawing in a pulse of air in the second chamber, when the electroactive polymer is deflected in a first direction towards the first chamber and away from the second chamber in response to the first and second excitation voltages.
14. The method according to one of Claims 12 and 13, further comprising: inverting the phase of the first and second excitation voltages; ejecting a pulse of air from the second chamber; and drawing in a pulse of air in the first chamber, when the electroactive polymer is deflected in a second direction towards the second chamber and away from the first chamber in response to the inverted first and second excitation voltages.
15. The method according to Claim 12, comprising: repeating:
16. A method of driving an energy-efficient electroactive polymer actuator comprising at least a first and second pair of opposing compliant electrodes sandwiching a dielectric electroactive polymer film, the method comprising: applying a first excitation voltage to the first pair of electrodes on the electroactive polymer actuator; and applying a second excitation voltage to the second pair of electrodes on the electroactive polymer actuator that is 180° out of phase with the first excitation voltage; wherein at least a portion of charge obtained by discharging the first excitation voltage is applied during the second excitation voltage.
17. The method according to Claim 16, wherein the frequency and/or duty cycle is varied to alter the performance parameters of the apparatus.
18. The method according to Claim 16, wherein the electrical charge is varied to alter the performance parameters of the apparatus.
19. The method according to Claim 16, wherein three or more polymer actuators are operated sequentially.
This application claims the benefit, under 35 USC §119(e), of U.S. provisional patent application No. 61/791,192, filed Mar. 15, 2013, entitled “EAP AIR MOVING APPLICATION,” the entire disclosure of which is hereby incorporated by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/027226 | 3/14/2014 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61791192 | Mar 2013 | US |