Electroanatomical mapping system with visualization of energy-delivery and elongated needle assemblies

Information

  • Patent Grant
  • 11793446
  • Patent Number
    11,793,446
  • Date Filed
    Wednesday, May 26, 2021
    3 years ago
  • Date Issued
    Tuesday, October 24, 2023
    8 months ago
  • CPC
    • A61B5/367
    • A61B5/262
    • A61B5/273
    • A61B5/339
  • Field of Search
    • US
    • NON E00000
  • International Classifications
    • A61B5/367
    • A61B5/339
    • A61B5/262
    • A61B5/273
Abstract
Apparatus for use with an electroanatomical mapping system, an elongated needle assembly having a distal energy emitter configured to be detectable by the electroanatomical mapping system, an energy-delivery assembly having at least one sensor configured to receive, at least in part, the distal energy emitter of the elongated needle assembly in such a way that the distal energy emitter and said at least one sensor are movable relative to each other. The apparatus includes a signal-interface assembly. The signal-interface assembly includes a signal-input section configured to be signal connectable to said at least one sensor of the energy-delivery assembly. A signal-output section is configured to be signal connectable to an input section of the electroanatomical mapping system.
Description
TECHNICAL FIELD

This document relates to the technical field of (and is not limited to): (A) a signal-interface assembly for an electroanatomical mapping system (and/or a method associated therewith); and/or (B) an energy-delivery assembly having a sensor configured to be interfaced to a signal-input section of the signal-interface assembly of an electroanatomical mapping system (and/or a method associated therewith); and/or (C) a synergistic combination of an electroanatomical mapping system, an elongated needle assembly, an energy-delivery assembly and a signal-interface assembly (and/or a method associated therewith).


BACKGROUND

Known medical devices are configured to facilitate a medical procedure, and help healthcare providers diagnose and/or treat medical conditions of sick patients.


SUMMARY

It will be appreciated that there exists a need to mitigate (at least in part) at least one problem associated with the existing (known) electroanatomical mapping systems. After much study of, and experimentation with, existing (known) electroanatomical mapping systems, an understanding (at least in part) of the problem and its solution have been identified (at least in part) and are articulated (at least in part) as follows:


Electroanatomic mapping refers to the acquisition and display (via a display device) of electrical information (signals) pertaining to (derived or sensed from) a biological feature of a patient in combination with spatial localization (a visual map) of a biological feature (this is done, preferably, in situ). An electroanatomical mapping system (EAM system) is configured to provide a display device configured to show (map out and indicate, preferably in real time or near real time, in situ) the three-dimensional anatomy of a biological feature (such as the heart, etc.) of the patient.


It is known that electroanatomical mapping systems may utilize magnetic sensors and/or electrical impedance sensors for generating anatomical maps. Moreover, known transcatheter interventional procedures are utilized for the treatment of a biological feature (such as the left side of the heart) of the patient. For instance, a known procedure among these is the pulmonary vein isolation (PVI) procedure that utilizes an ablation catheter by way of selective application (emission) of radio-frequency energy to a desired portion of the biological feature (such as, a biological wall, etc.). The known PVI procedure may be executed (performed) with assistance from an electroanatomical mapping system configured to visualize both the left atrium (of the heart) and the ablation catheter (preferably, this is done simultaneously and in situ). While under visualization (via the display device of the electroanatomical mapping system), a medical device (which transports the ablation catheter) may be maneuvered and/or navigated (preferably in situ) in such a way that the ablation catheter may be maneuvered to a desired biological feature (or a biological site) of the patient; once the desired biological site is located (by identification via the display device), and the ablation catheter is suitably positioned proximate to (or in contact with) the desired biological site (as indicated by the display device), radio-frequency ablation may be activated (via the ablation catheter) for formation of a desired lesion at the desired biological site.


It may be desirable to accomplish a procedure with less time and/or with more certainty, thereby reducing, at least in part, labor costs, operating room time, etc., associated with executing the procedure.


It may be desirable to provide, for the electroanatomical mapping system, a medical sheath assembly (which is steerable within the patient) configured to improve the procedural workflow of a procedure, such as the known PVI procedure, by allowing a medical device (such as a medical sheath assembly, etc.) to be visualized (in situ) along with an ablation device (such as an ablation catheter, etc.) via the display device of the electroanatomical mapping system.


Before an ablation procedure may be carried out, a transseptal puncture may be required to access the left atrium of the heart. This portion of the procedure may be very difficult to be properly, and confidently, visualized using the display device of the electroanatomical mapping system.


It may be desirable to provide, to users (such as electrophysiologists), an apparatus configured to enable visualization of a radio-frequency transseptal puncture needle by the electroanatomical mapping system.


It may be desirable to provide, for a procedure using energy puncturing, a signal switch assembly (an electrical switch box) configured to convey information (such as voltage measurements, etc.) from at least one medical device (such as, a combination of an ablation catheter and/or a medical sheath assembly) to the electroanatomical mapping system.


For instance, electrophysiologists may rely on a mix of ultrasound, such as, Intracardiac Echocardiography (ICE) and/or Transesophageal Echocardiography (TEE) and fluoroscopy to perform the transseptal puncture (preferably, in situ); these types of equipment may be, disadvantageously, very expensive to own, maintain and/or operate.


It may be desirable to perform the transseptal puncture by utilizing the electroanatomical mapping system. In this manner, the user may, advantageously, receive less (preferably no) or limited x-ray radiation from fluoroscopy, which may be a high priority; moreover, significant capital cost might be avoiding ultrasound technologies altogether.


It may be desirable to provide a steerable sheath assembly with sensors (such as electrodes) using the electroanatomical mapping system. It will be appreciated that a device may be needed for various sensor combinations deployed on the medical devices.


It may be desirable to share sensors of a combination of medical devices (such as a sheath assembly, an energy puncture device, etc.) for visualization of the medical devices via the display device of the electroanatomical mapping system.


It may be desirable to provide electroanatomic mapping based on the acquisition and display (via a display device) of electrical information (signals) pertaining to (derived or sensed from) a biological feature of a patient in combination with spatial localization (a visual map) of the biological feature along with at least one sensor (or two or more sensors) associated with at least one medical assembly such as a catheter (or two or more medical assemblies); this is done, preferably, in situ (during a procedure).


To mitigate, at least in part, at least one problem associated with the existing technology, there is provided (in accordance with a major aspect) an apparatus. The apparatus is for use with an electroanatomical mapping system, an elongated needle assembly (having a distal energy emitter configured to be detectable by the electroanatomical mapping system), an energy-delivery assembly (having at least one sensor configured to receive, at least in part, the distal energy emitter of the elongated needle assembly; this is done in such a way that the distal energy emitter and the sensor are movable relative to each other). The apparatus includes and is not limited to a signal-interface assembly including a signal-input section. The signal-input section is configured to be signal connectable to the sensor of the energy-delivery assembly. The signal-interface assembly also includes a signal-output section configured to be signal connectable to an input section of the electroanatomical mapping system. The electroanatomical mapping system is configured to display, via a display device, a spatial positioning of the sensor of the energy-delivery assembly along with the distal energy emitter (of the elongated needle assembly); this is done, preferably, after: (A) the signal-input section, in use, is signal connected to the sensor of the energy-delivery assembly; and (B) the signal-output section, in use, is signal connected to the input section of the electroanatomical mapping system.


To mitigate, at least in part, at least one problem associated with the existing technology, there is provided (in accordance with a major aspect) an apparatus. The apparatus is for use with an electroanatomical mapping system (including a signal-interface assembly), and is also for use with an elongated needle assembly (having a distal energy emitter configured to be detectable by the electroanatomical mapping system). The apparatus includes and is not limited to an energy-delivery assembly having at least one sensor configured to receive, at least in part, the distal energy emitter of the elongated needle assembly; this is done in such a way that the distal energy emitter and the sensor are movable relative to each other. The sensor is also configured to be interfaced to a signal-input section of the signal-interface assembly. The electroanatomical mapping system is configured to display, via a display device, spatial positioning of the sensor of the energy-delivery assembly along with the distal energy emitter of the elongated needle assembly; this is done, preferably, after: (A) the signal-interface assembly, in use, is signal connected to said at least one sensor of the energy-delivery assembly; and (B) the signal-interface assembly, in use, is signal connected to the input section of the electroanatomical mapping system.


To mitigate, at least in part, at least one problem associated with the existing technology, there is provided (in accordance with a major aspect) a method. The method is for operating an electroanatomical mapping system (having a signal-interface assembly), an elongated needle assembly (having a distal energy emitter configured to be detectable by the electroanatomical mapping system), an energy-delivery assembly (having at least one sensor configured to receive, at least in part, the distal energy emitter of the elongated needle assembly; this is done in such a way that the distal energy emitter and the sensor are movable relative to each other). The method includes displaying, via a display device of the electroanatomical mapping system, spatial positioning of the sensor of the energy-delivery assembly along with the distal energy emitter (of the elongated needle assembly); this is done, preferably, after: (A) the signal-input section, in use, is signal connected to the sensor of the energy-delivery assembly; and (B) the signal-output section, in use, is signal connected to the input section of the electroanatomical mapping system.


Other aspects are identified in the claims. Other aspects and features of the non-limiting embodiments may now become apparent to those skilled in the art upon review of the following detailed description of the non-limiting embodiments with the accompanying drawings. This Summary is provided to introduce concepts in simplified form that are further described below in the Detailed Description. This Summary is not intended to identify potentially key features or possible essential features of the disclosed subject matter, and is not intended to describe each disclosed embodiment or every implementation of the disclosed subject matter. Many other novel advantages, features, and relationships will become apparent as this description proceeds. The figures and the description that follow more particularly exemplify illustrative embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS

The non-limiting embodiments may be more fully appreciated by reference to the following detailed description of the non-limiting embodiments when taken in conjunction with the accompanying drawings, in which:



FIG. 1 depicts a schematic view of an embodiment of a signal-interface assembly of an electroanatomical mapping system; and



FIG. 2 and FIG. 3 depict schematic views of embodiments of a display device of the electroanatomical mapping system of FIG. 1; and



FIG. 4 depicts a schematic view of an embodiment of the signal-interface assembly of the electroanatomical mapping system of FIG. 1; and



FIG. 5 depicts a schematic view of an embodiment of a configuration of the signal-interface assembly of FIG. 4; and



FIG. 6 depicts a schematic view of an embodiment of the signal-interface assembly of the electroanatomical mapping system of FIG. 1; and



FIG. 7 depicts a schematic view of an embodiment of an energy-delivery assembly for use with the signal-interface assembly of the electroanatomical mapping system of FIG. 1; and



FIG. 8 depicts a schematic view of an embodiment of the signal-interface assembly of the electroanatomical mapping system of FIG. 1; and



FIG. 9 depicts a schematic view of an embodiment of a configuration of the signal-interface assembly of FIG. 6 and/or FIG. 8.





The drawings are not necessarily to scale and may be illustrated by phantom lines, diagrammatic representations and fragmentary views. In certain instances, details unnecessary for an understanding of the embodiments (and/or details that render other details difficult to perceive) may have been omitted. Corresponding reference characters indicate corresponding components throughout the several figures of the drawings. Elements in the several figures are illustrated for simplicity and clarity and have not been drawn to scale. The dimensions of some of the elements in the figures may be emphasized relative to other elements for facilitating an understanding of the various disclosed embodiments. In addition, common, and well-understood, elements that are useful in commercially feasible embodiments are often not depicted to provide a less obstructed view of the embodiments of the present disclosure.












LISTING OF REFERENCE NUMERALS


USED IN THE DRAWINGS







energy-delivery assembly 201


medical sheath assembly 202


sheath sensors (203A, 203B, 203C, 203D)


medical dilator assembly 204


dilator sensor 205


needle assembly 206


distal energy emitter 208


travel path 209


wire 210


sheath lumen 211


connection 212


energy generator 214


sensor wires 216


handle assembly 500


sheath steering adjustment knob 502


handle extension 504


needle handle 506


conductor cable 508


extension cable 510


switch box 512


mapping cable 514


sheath side port tube 516


sheath conductor cable 518


first electrical wire 813A


second electrical wire 815


first electrical contact 833


second electrical contact 835


electrical commutator device 836


electroanatomical mapping system 900


signal-interface assembly 901


mapping cable 520


hub 522


conductor 524


handle assembly 600


steering adjustment knob 602


handle extension 604


needle handle 606


energy cable 608


extension cable 610


switch-box assembly 612


energy port 613


sensor-signal port 614


sheath side port tube 616


sheath wire assembly 618


sheath extension cable 619


mapping cable 620


hub 622


conductor 624


pins (703A, 703B, 703C, 703D, 705, 708)


sheath image 802


dilator image 804


needle image 806


puncture-device image 808


display device 902


sockets 905


signal-input section 910


signal-output section 912


first internal jumper 1002


second internal jumper 1004









DETAILED DESCRIPTION OF THE NON-LIMITING EMBODIMENT(S)

The following detailed description is merely exemplary and is not intended to limit the described embodiments or the application and uses of the described embodiments. As used, the word “exemplary” or “illustrative” means “serving as an example, instance, or illustration.” Any implementation described as “exemplary” or “illustrative” is not necessarily to be construed as preferred or advantageous over other implementations. All of the implementations described below are exemplary implementations provided to enable persons skilled in the art to make or use the embodiments of the disclosure and are not intended to limit the scope of the disclosure. The scope of the disclosure is defined by the claims. For the description, the terms “upper,” “lower,” “left,” “rear,” “right,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the examples as oriented in the drawings. There is no intention to be bound by any expressed or implied theory in the preceding Technical Field, Background, Summary or the following detailed description. It is also to be understood that the devices and processes illustrated in the attached drawings, and described in the following specification, are exemplary embodiments (examples), aspects and/or concepts defined in the appended claims Hence, dimensions and other physical characteristics relating to the embodiments disclosed are not to be considered as limiting, unless the claims expressly state otherwise. It is understood that the phrase “at least one” is equivalent to “a”. The aspects (examples, alterations, modifications, options, variations, embodiments and any equivalent thereof) are described regarding the drawings. It should be understood that the disclosure is limited to the subject matter provided by the claims, and that the disclosure is not limited to the particular aspects depicted and described. It will be appreciated that the scope of the meaning of a device configured to be coupled to an item (that is, to be connected to, to interact with the item, etc.) is to be interpreted as the device being configured to be coupled to the item, either directly or indirectly. Therefore, “configured to” may include the meaning “either directly or indirectly” unless specifically stated otherwise.



FIG. 1 depicts a schematic view of an embodiment of a signal-interface assembly 901 of an electroanatomical mapping system 900.


Referring to the embodiment as depicted in FIG. 1, an energy-delivery assembly 201 includes a distal energy emitter 208. The energy-delivery assembly 201 is configured to be inserted into, and movable along, a confined space defined by a living body (the patient). Movement of the energy-delivery assembly 201 is to be controlled by a user (by such means as a steering device, etc., not depicted but are known to persons of skill in the art and therefore not described). The energy-delivery assembly 201 is configured to maneuver, and position, the distal energy emitter 208 proximate to the biological feature of the patient. The energy-delivery assembly 201 is configured to maneuver and position the distal energy emitter 208 along a travel path 209. The distal energy emitter 208 is configured to selectively emit energy (once activated for the formation of a puncture through a biological feature of the patient) after the energy-delivery assembly 201 has positioned the distal energy emitter 208 proximate to the biological feature of the patient. The distal energy emitter 208 is configured to form a puncture once activated to emit energy therefrom, such as radio-frequency energy, etc., and any equivalent thereof. The distal energy emitter 208 may include any type of energy-emitting device, etc.


Referring to the embodiment as depicted in FIG. 1, an energy-delivery assembly 201 includes biocompatible material properties suitable for sufficient performance (dielectric strength, thermal performance, insulation and corrosion, water and/or heat resistance, etc.) to comply with industrial and/or regulatory safety standards (or compatible for medical usage in general). Reference is made to the following publication for consideration in the selection of a suitable material: Plastics in Medical Devices: Properties, Requirements, and Applications; 2nd Edition; author: Vinny R. Sastri; hardcover ISBN: 9781455732012; published: 21 Nov. 2013; publisher: Amsterdam [Pays-Bas]: Elsevier/William Andrew, [2014].


Referring to the embodiment as depicted in FIG. 1, the energy-delivery assembly 201 includes (and is not limited to) a synergistic combination of an elongated needle assembly 206, a medical sheath assembly 202, and a medical dilator assembly 204. The elongated needle assembly 206 is configured to be received within, and along, an elongated dilator lumen of (defined by) the medical dilator assembly 204. The medical dilator assembly 204 is configured to be received (at least in part), within and along, the lumen of the medical sheath assembly 202. The elongated needle assembly 206 extends from the distal energy emitter 208. The medical sheath assembly 202 has at least one sheath sensor mounted thereto (such as, spaced-apart sheath sensors 203A, 203B, 203C, 203D, etc.) and positioned along predetermined spaced-apart positions located along an elongated length of the medical sheath assembly 202. The medical dilator assembly 204 has at least one dilator sensor (205) positioned (preferably) at the distal end of the medical dilator assembly 204. A wire 210 is electrically connected to the distal energy emitter 208. The wire 210 extends along a longitudinal length of the elongated needle assembly 206 (from the distal end to the proximal end thereof). A set of sensor wires 216 is electrically connected to respective (one for each of the) sheath sensors (203A, 203B, 203C, 203D) and to the dilator sensor 205.


Referring to the embodiment as depicted in FIG. 1, the wire 210 extends along a length of the energy-delivery assembly 201 (preferably along the interior thereof) between a proximal end and a distal end of the energy-delivery assembly 201. At the distal end of the energy-delivery assembly 201, the wire 210 is electrically connected to the distal energy emitter 208. At the proximal end of the energy-delivery assembly 201, the wire 210 is configured to be electrically connectable to an energy generator 214 (via a connection 212). The energy generator 214 is configured to selectively generate, and output, energy (such as radio-frequency energy) that is conveyed to the distal energy emitter 208 (via the wire 210 and the connection 212, etc.). The energy generator 214 may include a radio frequency-energy generator, etc., and any equivalent thereof.


Referring to the embodiment as depicted in FIG. 1, the energy-delivery assembly 201 and the distal energy emitter 208 may, for instance, include (and are not limited to) a radio frequency puncture device, such as the BAYLIS (TRADEMARK) POWERWIRE (REGISTERED TRADEMARK) radio frequency guidewire manufactured by BAYLIS MEDICAL COMPANY (headquartered in Canada).


Referring to the embodiment as depicted in FIG. 1, the electroanatomical mapping system 900 may include fluoroscopy mapping systems (if so desired, but may not be preferred for some embodiments). The electroanatomical mapping system 900 includes, preferably, a nonfluoroscopy mapping system, such as, and not limited to, (A) the CARTO EP (TRADEMARK) mapping system (manufactured by BIOSENSE WEBSTER based in the USA), (B) the ENSITE PRECISION (TRADEMARK) cardiac mapping system (manufactured by Abbott Laboratories based in the USA), (C) the LOCALISA (TRADEMARK) intracardiac mapping system (manufactured by MEDTRONICS INC., based in the USA), and (D) the RHYTHMIA HDx (TRADEMARK) mapping system (manufactured by Boston Scientific Corp., based in the USA).


Referring to the embodiment as depicted in FIG. 1, the signal-interface assembly 901 is configured to be electrically connectable (via a wire and/or wirelessly, directly or indirectly, etc.) to the electroanatomical mapping system 900. The signal-interface assembly 901 may include, for instance, a pin box, a housing having an array of receivers (sockets) configured to receive plugs (wired plugs), etc., and any equivalent thereof. The signal-interface assembly 901 may be configured for conveying any type of signal, such as an electro-magnetic signal, an electrical signal and/or a magnetic signal, etc., and any equivalent thereof. The signal-interface assembly 901 is configured to receive signals from the sensors (203A, 203B, 203C, 203D, 205) of the energy-delivery assembly 201. In addition, the signal-interface assembly 901 is configured to receive (at least in part) the signal from the energy generator 214 (which may be the same or a similar energy signal provided to the distal energy emitter 208 of the energy-delivery assembly 201). The distal energy emitter 208 is configured to be activated. The sheath sensors (203A, 203B, 203C, 203D) and the dilator sensor 205 (and the activated distal energy emitter 208) are all configured to be detectable by the electroanatomical mapping system 900 (via the signal-interface assembly 901 and/or by other types of sensing devices, not depicted and known to persons skilled in the art, such as magnetic devices and/or electrical impedance devices, etc., and any equivalent thereof).


Referring to the embodiment as depicted in FIG. 1, the display device 902 is configured to be electrically connected to the electroanatomical mapping system 900. The electroanatomical mapping system 900 is configured to output (in use) mapping information (visual representation data) to the display device 902, in which the mapping information may include relative spatial positions of the distal energy emitter 208 (once activated), the sheath sensors (203A, 203B, 203C, 203D) and the dilator sensor 205, during a procedure (in situ). In this arrangement, the user is provided with additional visual information (of medical devices inserted into the patient) so that the user may make improved (or better) procedural decisions during the procedure.


Referring to the embodiment as depicted in FIG. 1, the energy-delivery assembly 201 is configured to be enabled for use with the electroanatomical mapping system 900. The energy-delivery assembly 201 and the electroanatomical mapping system 900 may be utilized for any type of procedure, such as the transseptal puncture procedure portion of a procedure. The technical effect of the energy-delivery assembly 201 and/or the signal-interface assembly 901 is provision of improved (expanded) visualization of the medical devices inserted in the body of the patient (such as the energy-delivery assembly 201) during a procedure. The energy-delivery assembly 201 includes sensors configured to be detected by the electroanatomical mapping system 900; this is done in such a way that the electroanatomical mapping system 900 may provide a visual map (mapping data) to the display device 902 (based on sensor data received by the signal-interface assembly 901). For instance, the energy-delivery assembly 201 may provide a tool for locating the ideal location on a biological feature (such as, the septum and/or the foramen ovale), aligning a puncture angle, and confirming contact with, and/or the tenting of, a biological wall before application of energy to the tissue via the distal energy emitter 208. The physician (user) may be able to see (visualize) the energy-delivery assembly 201 via the display device 902, preferably as in-line, coaxial catheters, much as they might appear to the eye of the user, as depicted in FIG. 2 and FIG. 3.


Referring to the embodiment as depicted in FIG. 1, there is depicted an apparatus for use with the electroanatomical mapping system 900, the elongated needle assembly 206 (having the distal energy emitter 208 configured to be detectable by the electroanatomical mapping system 900), and the energy-delivery assembly 201 (having at least one sensor configured to receive, at least in part, the distal energy emitter 208 of the elongated needle assembly 206; this is done in such a way that the distal energy emitter 208 and the sensor are movable relative to each other). The apparatus includes and is not limited to (comprises) a signal-interface assembly 901. The signal-interface assembly 901 includes a signal-input section 910 configured to be signal connectable to the sensor of the energy-delivery assembly 201. The signal-interface assembly 901 also includes a signal-output section 912 configured to be signal connectable to an input section of the electroanatomical mapping system 900. The electroanatomical mapping system 900 is configured to display, via the display device 902, spatial positions of the sensor of the energy-delivery assembly 201 along with the distal energy emitter 208 of the elongated needle assembly 206; this is done, preferably, after: (A) the signal-input section 910, in use, is signal connected to the sensor of the energy-delivery assembly 201; and (B) the signal-output section 912, in use, is signal connected to the input section of the electroanatomical mapping system 900.


Referring to the embodiment as depicted in FIG. 1, there is depicted an apparatus for use with the electroanatomical mapping system 900 (including the signal-interface assembly 901). The apparatus is also for use with the elongated needle assembly 206 (having the distal energy emitter 208 configured to be detectable by the electroanatomical mapping system 900). The apparatus includes and is not limited to (comprises) the energy-delivery assembly 201 having at least one sensor configured to receive, at least in part, the distal energy emitter 208 of the elongated needle assembly 206 (this is done in such a way that the distal energy emitter 208 and the sensor are movable relative to each other). The sensor is also configured to be interfaced to a signal-input section 910 of the signal-interface assembly 901. The electroanatomical mapping system 900 is configured to display, via a display device, spatial positions of the sensor of the energy-delivery assembly 201 along with the distal energy emitter 208 (of the elongated needle assembly 206); this is done, preferably, after: (A) the signal-interface assembly 901, in use, is signal connected to said at least one sensor of the energy-delivery assembly 201; and (B) the signal-interface assembly 901, in use, is signal connected to the input section of the electroanatomical mapping system 900.


Referring to the embodiment as depicted in FIG. 1, there is depicted an apparatus that includes and is not limited to (comprises) a synergistic combination of the electroanatomical mapping system 900, the elongated needle assembly 206, the energy-delivery assembly 201 and the signal-interface assembly 901.



FIG. 2 and FIG. 3 depict schematic views of embodiments of a display device 902 of the electroanatomical mapping system 900 of FIG. 1.


Referring to the embodiments as depicted in FIG. 2 and FIG. 3, the display device 902 provides (in use) the visualization map (also called mapping information). The visualization map, for instance, indicates: (A) a sheath image 802 of (representing) the medical sheath assembly 202 (as depicted in FIG. 1); (B) a dilator image 804 of (representing) the medical dilator assembly 204 (as depicted in FIG. 1); (C) an elongated needle image 806 of (representing) the elongated needle assembly 206 (of FIG. 1); and (D) a puncture-device image 808 of (representing) the distal energy emitter 208 (of FIG. 1).


Referring to the embodiment as depicted in FIG. 2, the display device 902 depicts the mapping information in which the visual representation (as depicted) implies (infers) that the image representing the distal energy emitter 208 is depicted as being positioned relatively closer to (retracted within) the distal end portion of the image representing the energy-delivery assembly 201.


Referring to the embodiment as depicted in FIG. 3, the display device 902 depicts the mapping information. The visual imaging representation (as depicted) implies (infers) the distal energy emitter 208 is positioned relatively further away from (extended away from) the distal end portion of the energy-delivery assembly 201. The distal energy emitter 208 may be visualized as being movable along the travel path 209 or movement direction (by referring to the movement of the puncture-device image 808).



FIG. 4 depicts a schematic view of an embodiment of the signal-interface assembly 901 of the electroanatomical mapping system 900 of FIG. 1.


Referring to the embodiment as depicted in FIG. 4, there is depicted a handle assembly 500. It will be appreciated that some of the items (or components) of the handle assembly 500 are known to persons skilled in the art (such as, a steering device, etc.), and as such, these items are not described in detail.


Referring to the embodiment as depicted in FIG. 4, the handle assembly 500 includes a sheath steering adjustment knob 502, a handle extension 504, a needle handle 506 and a conductor cable 508. The conductor cable 508 is configured to convey energy to the distal energy emitter 208 (once connected accordingly to the energy generator 214, etc.). The handle assembly 500 also includes an extension cable 510 for the conductor cable 508. The handle assembly 500 also includes a switch box 512. The switch box 512 is configured to connect (split) the signals between the energy generator 214 to (A) the distal energy emitter 208 (via the conductor cable 508, etc.), and (B) the signal-interface assembly 901 (via the mapping cable 514). The mapping cable 514 is configured to convey the energy signal of the energy generator 214 to the signal-interface assembly 901.


Referring to the embodiment as depicted in FIG. 4, the handle assembly 500 also includes a sheath side port tube 516. The handle assembly 500 also includes a sheath conductor cable 518. The sheath conductor cable 518 is configured to convey the signals from the sensors (203A, 203B, 203C, 203D, 205) to the signal-interface assembly 901 (via specific or predetermined conductors, etc.). The sheath conductor cable 518 is configured to electrically connect to a mapping cable 520. A hub 522 extends from an end section of the mapping cable 520. A dedicated conductor 524 extends from the hub 522 of the mapping cable 520. The mapping cable 520 is configured to split into multiple conductors each (respectively) having a dedicated pin (703A, 703B, 703C, 703D, 705) also called plugs, etc. Each of the pins (703A, 703B, 703C, 703D, 705) is configured to be inserted into a respective dedicated socket (portal, receiver) of the signal-interface assembly 901. The pins (703A, 703B, 703C, 703D, 705) are configured to be electrically respectively connectable to a dedicated socket of the signal-interface assembly 901, and are configured (respectively) to convey sensor signals from the sensors (203A, 203B, 203C, 203D, 205) to the signal-interface assembly 901. The pin 708 is connected to the mapping cable 514. The pin 708 is configured to (A) be electrically connectable to a dedicated socket of the signal-interface assembly 901, and (B) (respectively) convey (at least in part) the energy signal from the energy generator 214 to the signal-interface assembly 901 (which is the energy signal also sent to the distal energy emitter 208).


Referring to the embodiment as depicted in FIG. 4, the energy generator 214 is configured to be electrically connectable to the distal energy emitter 208 and to the signal-interface assembly 901 via the connection 212 and the switch box 512, etc. The signal-interface assembly 901 includes an array of sockets 905 configured to be electrically connectable to the pins (703A, 703B, 703C, 703D, 705, 708). The pins (703A, 703B, 703C, 703D, 705, 708) are assigned (preferably) into groupings. The pins (703A, 703B, 703C, 703D) are assigned to a first pin group so that the signal-interface assembly 901 may convey these signals to the electroanatomical mapping system 900 to represent signals associated with a first aspect of the energy-delivery assembly 201 (such as, a length of a portion of the medical sheath assembly 202 of the energy-delivery assembly 201, etc.). The pins (703A, 705) are assigned to a second pin group so that the signal-interface assembly 901 may convey these signals to the electroanatomical mapping system 900 to represent signals associated with a second aspect of the energy-delivery assembly 201 (such as, the relative separation distance between the distal tips of the medical sheath assembly 202 and the medical dilator assembly 204). The pins (705, 708) are assigned to a third pin group so that the signal-interface assembly 901 may convey these signals to the electroanatomical mapping system 900 to represent signals associated with a third aspect of the energy-delivery assembly 201 (such as, the relative separation distance between the distal tip of the medical dilator assembly 204 and the distal energy emitter 208 positioned at the distal end of the elongated needle assembly 206, etc.).


Referring to the embodiment as depicted in FIG. 4, it will be appreciated that a use of the signal-interface assembly 901 may include the mapping visualization of the medical sheath assembly 202, the medical dilator assembly 204 and the elongated needle assembly 206 (to be depicted on the display device 902, during a procedure, such as the transseptal puncture procedure); it will be appreciated that, preferably, the signal-interface assembly 901 is a way to replace and/or supplement the use of the intracardiac echo system and/or the fluoroscopy system, etc., if so desired.


Referring to the embodiment as depicted in FIG. 4, the signal-interface assembly 901 is configured to electrically convey (in use) electrical signals from aspects of the energy-delivery assembly 201 to enable visualization of at least one aspect (geometrical visual aspect) of the energy-delivery assembly 201 via the display device 902 of the electroanatomical mapping system 900. The mapping software of the electroanatomical mapping system 900 is configured to receive and handle these signals in order to generate the visualization map to be displayed on the display device 902 (as depicted, for instance, in FIG. 2 and/or FIG. 3). The mapping software (programming) of the electroanatomical mapping system 900 may be configured to visually map out the alignment of the components of the energy-delivery assembly 201, etc., that may be utilized (by the user) for visually assisting the user during a procedure. Without using the signal-interface assembly 901, for instance, visualization of the alignment of the components of the energy-delivery assembly 201 may be more difficult to achieve (and prone to unwanted errors, etc.). The mapping software of the electroanatomical mapping system 900 may be configured to compute, and then display via the display device 902, the alignment of the components of the energy-delivery assembly 201.



FIG. 5 depicts a schematic view of an embodiment of a configuration of the signal-interface assembly 901 of FIG. 4.


Referring to the embodiment as depicted in FIG. 5, there is depicted an assignment of groupings for the sockets 905 of the signal-interface assembly 901 of FIG. 4. It will be appreciated that other configurations for, or variations of, the pairing or grouping of pins and sockets may be realized, as desired, in order to obtain and display different visual aspects of the energy-delivery assembly 201 (as may be needed for specific procedures).



FIG. 6 depicts a schematic view of an embodiment of the signal-interface assembly 901 of the electroanatomical mapping system 900 of FIG. 1.


Referring to the embodiment as depicted in FIG. 6, there is depicted a handle assembly 600 including a steering adjustment knob 602, a handle extension 604, a needle handle 606, and an energy cable 608 (for conveying energy to the distal energy emitter 208). The handle assembly 600 also includes an extension cable 610 for the energy cable 608, etc.


Referring to the embodiment as depicted in FIG. 6, the handle assembly 600 also includes a switch-box assembly 612. The switch-box assembly 612 includes an energy port 613 configured to convey the energy signal from the connection 212 to the distal energy emitter 208 (via the extension cable 610, the energy cable 608, etc.).


Referring to the embodiment as depicted in FIG. 6, the handle assembly 600 also includes a sheath side port tube 616, and a sheath wire assembly 618. The sheath wire assembly 618 provides dedicated wires each respectively electrically connected to dedicated sensors (203A, 203B, 203C, 203D, 205). A sheath extension cable 619 connects to the sheath wire assembly 618 (for extending the sheath wire assembly 618, etc.).


Referring to the embodiment as depicted in FIG. 6, the switch-box assembly 612 includes a sensor-signal port 614. The sensor-signal port 614 is configured to electrically connect to the sheath wire assembly 618 (via the sheath extension cable 619), to a mapping cable 620, etc. A set of conductors extends from a hub 622 of the mapping cable 620. A conductor 624 extends from the hub 622. The mapping cable 620 splits into pins (703A, 703B, 703C, 703D, 705, 708). The pins (703A, 703B, 703C, 703D, 705, 708) are configured to electrically connect to respective sockets of the signal-interface assembly 901, and are configured to convey sensor signals of respective sensors (203A, 203B, 203C, 203D, 205) and the energy signal (to be applied to the distal energy emitter 208) from the energy generator 214 to the signal-interface assembly 901.


Referring to the embodiment as depicted in FIG. 6, the energy generator 214 is connectable to the distal energy emitter 208 via the connection 212. Advantageously, additional physical aspects of the energy-delivery assembly 201 may be visualized by utilizing the embodiment as depicted in FIG. 6. For instance, the curvature of the energy-delivery assembly 201 (or component thereof) may be better visualized (more accurately).



FIG. 7 depicts a schematic view of an embodiment of an energy-delivery assembly 201 for use with the signal-interface assembly 901 of the electroanatomical mapping system 900 of FIG. 1. The view of FIG. 7 represents a longitudinal cross-sectional view of a portion of a medical dilator assembly 204 and a medical sheath assembly 202 (of the energy-delivery assembly 201).


Referring to the embodiment as depicted in FIG. 7, the medical sheath assembly 202 includes the handle extension 604. The sheath lumen 211 is defined through the handle extension 604 (or the medical sheath assembly 202). The sheath sensor 203A is positioned proximal to (close to) the dilator sensor 205. The medical dilator assembly 204 is received along the sheath lumen 211 of the medical sheath assembly 202. The dilator sensor 205 is mounted to the distal portion of the medical dilator assembly 204. The sheath wire assembly 618 exits from the handle extension 604 of the medical sheath assembly 202. The sheath wire assembly 618 provides a bundle of wires (conductors) to be electrically connected (either directly or indirectly) to the signal-interface assembly 901. The first electrical wire 813A is configured to convey the sensor signal of the sheath sensor 203A of the medical sheath assembly 202. The first electrical wire 813A merges with (or is connected to) a specific conductor of the sheath wire assembly 618. The second electrical wire 815 is configured to convey the sensor signal of the dilator sensor 205 of the medical dilator assembly 204.


Referring to the embodiment as depicted in FIG. 7, an electrical commutator device 836 is configured to convey the sensor signal of the second electrical wire 815 to a specific conductor of the sheath wire assembly 618. The electrical commutator device 836 (such as electrical commutator rings and contacts, etc., and any equivalent thereof) is configured to transfer electrical signals (and/or power) between a stationary element (such as the handle extension 604, etc.) and a movable and/or rotating shaft (such as the medical dilator assembly 204, etc.). The electrical commutator device 836 includes (preferably) a first electrical contact 833 mounted to the handle extension 604. The electrical commutator device 836 is configured for connecting the second electrical wire 815 to a dedicated wire of the sheath wire assembly 618 (via the electrical commutator device 836). The electrical commutator device 836 includes (preferably) a second electrical contact 835 mounted to the medical dilator assembly 204. The second electrical contact 835 is configured for the second electrical wire 815 (via the first electrical contact 833). The first electrical contact 833 and the second electrical contact 835 are configured to electrically contact each other while permitting relative movement between the medical dilator assembly 204 and the medical sheath assembly 202. It will be appreciated that an alternate embodiment (not depicted) provides an arrangement for a separate cable (wire) added for the dilator sensor 205, without the electrical commutator device 836.



FIG. 8 depicts a schematic view of an embodiment of the signal-interface assembly 901 of the electroanatomical mapping system 900 of FIG. 1.


Referring to the embodiment as depicted in FIG. 8, there is provided a first internal jumper 1002 and a second internal jumper 1004. The internal jumpers (connections) are configured to transmit the dilator electrode signal from the dilator sensor 205 to the sheath wire assembly 618 (or to a sheath conductor cable 518, as depicted in FIG. 4). It will be appreciated that an alternate embodiment (not depicted) may be to provide a separate cable for the dilator sensor 205, etc.


Referring to the embodiment as depicted in FIG. 8, another arrangement to couple the sensors of the energy-delivery assembly 201 in the visualization on the mapping system is by using software (deployed on the electroanatomical mapping system 900). Since the mapping system software (of the electroanatomical mapping system 900) is configured to create (generate) the visualization (mapping information), the software may force the visualization map to be displayed to indicate improved coaxial alignment of the elements of the energy-delivery assembly 201, provided the software is programmed to identify the components of the energy-delivery assembly 201 (such as, dilator and sheath, etc.) and are connected in a specific physical manner or arrangement.


Referring to the embodiment as depicted in FIG. 8, it will be appreciated that assignment of the sensors of the energy-delivery assembly 201 (such as the dilator and sheath, etc.) may be accomplished separately in the mapping system software with shared sensors to model separate visualizations with different diameters, colours, etc., and/or a precisely aligned connection, such that the components of the energy-delivery assembly 201 may be displayed coaxially.


Referring to the embodiment as depicted in FIG. 8, it will be appreciated that visualization information of the elongated needle assembly 206, the medical dilator assembly 204 and/or the medical sheath assembly 202 in the visualization map (to be displayed in the display device 902) may be accomplished by way of the signal-interface assembly 901 (an intermediate platform) for combining the electrical connections.


Referring to the embodiment as depicted in FIG. 8, it will be appreciated that many other configurations may be possible for dedicated sensor conductors aligned along the energy-delivery assembly 201.


Referring to the embodiment as depicted in FIG. 8, it will be appreciated that the dilator signal may only be available when the dilator is locked into the hub in order to assure the spacing of inter-catheter electrodes is fixed.


Referring to the embodiment as depicted in FIG. 8, it will be appreciated that using multiple shared sensors (electrodes) between the catheters (the components of the energy-delivery assembly 201) to maintain a minimum of three electrodes for each individual catheter model may capture curvature and better accuracy of the tip vector.



FIG. 9 depicts a schematic view of an embodiment of a configuration of the signal-interface assembly 901 of FIG. 6 and/or FIG. 8.


Referring to the embodiment as depicted in FIG. 9, there is depicted an assignment between the pins and groupings for the sockets 905 of the signal-interface assembly 901 of FIG. 6 or of FIG. 8. It will be appreciated that other configurations for (assignment of) the grouping of pins may be realized, as desired, etc.


The following is offered as further description of the embodiments, in which any one or more of any technical feature (described in the detailed description, the summary and the claims) may be combinable with any other one or more of any technical feature (described in the detailed description, the summary and the claims). It is understood that each claim in the claims section is an open ended claim unless stated otherwise. Unless otherwise specified, relational terms used in these specifications should be construed to include certain tolerances that the person skilled in the art would recognize as providing equivalent functionality. By way of example, the term perpendicular is not necessarily limited to 90.0 degrees, and may include a variation thereof that the person skilled in the art would recognize as providing equivalent functionality for the purposes described for the relevant member or element. Terms such as “about” and “substantially”, in the context of configuration, relate generally to disposition, location, or configuration that are either exact or sufficiently close to the location, disposition, or configuration of the relevant element to preserve operability of the element within the disclosure which does not materially modify the disclosure. Similarly, unless specifically made clear from its context, numerical values should be construed to include certain tolerances that the person skilled in the art would recognize as having negligible importance as they do not materially change the operability of the disclosure. It will be appreciated that the description and/or drawings identify and describe embodiments of the apparatus (either explicitly or inherently). The apparatus may include any suitable combination and/or permutation of the technical features as identified in the detailed description, as may be required and/or desired to suit a particular technical purpose and/or technical function. It will be appreciated that, where possible and suitable, any one or more of the technical features of the apparatus may be combined with any other one or more of the technical features of the apparatus (in any combination and/or permutation). It will be appreciated that persons skilled in the art would know that the technical features of each embodiment may be deployed (where possible) in other embodiments even if not expressly stated as such above. It will be appreciated that persons skilled in the art would know that other options may be possible for the configuration of the components of the apparatus to adjust to manufacturing requirements and still remain within the scope as described in at least one or more of the claims. This written description provides embodiments, including the best mode, and also enables the person skilled in the art to make and use the embodiments. The patentable scope may be defined by the claims. The written description and/or drawings may help to understand the scope of the claims. It is believed that all the crucial aspects of the disclosed subject matter have been provided in this document. It is understood, for this document, that the word “includes” is equivalent to the word “comprising” in that both words are used to signify an open-ended listing of assemblies, components, parts, etc. The term “comprising”, which is synonymous with the terms “including,” “containing,” or “characterized by,” is inclusive or open-ended and does not exclude additional, unrecited elements or method steps. Comprising (comprised of) is an “open” phrase and allows coverage of technologies that employ additional, unrecited elements. When used in a claim, the word “comprising” is the transitory verb (transitional term) that separates the preamble of the claim from the technical features of the disclosure. The foregoing has outlined the non-limiting embodiments (examples). The description is made for particular non-limiting embodiments (examples). It is understood that the non-limiting embodiments are merely illustrative as examples.

Claims
  • 1. An apparatus for use with an electroanatomical mapping system, an elongated needle assembly having a distal energy emitter configured to be detectable by the electroanatomical mapping system, an energy-delivery assembly having at least one sensor configured to receive, at least in part, the distal energy emitter of the elongated needle assembly in such a way that the distal energy emitter and said at least one sensor are movable relative to each other, the apparatus comprising: a signal-interface assembly including: a signal-input section configured to be signal connectable to said at least one sensor of the energy-delivery assembly; anda signal-output section configured to be signal connectable to an input section of the electroanatomical mapping system; andwherein the electroanatomical mapping system is configured to display, via a display device, spatial positions of said at least one sensor of the energy-delivery assembly along with the distal energy emitter of the elongated needle assembly after: the signal-input section, in use, is signal connected to said at least one sensor of the energy-delivery assembly; andthe signal-output section, in use, is signal connected to the input section of the electroanatomical mapping system.
  • 2. The apparatus of claim 1, wherein: the energy-delivery assembly includes: a medical sheath assembly; anda medical dilator assembly configured to interact with the medical sheath assembly.
  • 3. The apparatus of claim 1, wherein: the energy-delivery assembly includes: an elongated needle assembly extending from the distal energy emitter, in which a wire is electrically connected to the distal energy emitter, and the wire extends along a length of the elongated needle assembly.
  • 4. The apparatus of claim 3, wherein: the energy-delivery assembly further includes: a medical sheath assembly configured to receive the elongated needle assembly, and the medical sheath assembly has at least one sheath sensor.
  • 5. The apparatus of claim 4, wherein: the energy-delivery assembly further includes: a medical dilator assembly configured to receive the medical sheath assembly, and the medical dilator assembly has at least one dilator sensor.
  • 6. The apparatus of claim 1, wherein: the signal-interface assembly is configured to receive at least one sensor signal from said at least one sensor of the energy-delivery assembly; andthe signal-interface assembly is also configured to convey, at least in part, said least one sensor signal to the electroanatomical mapping system.
  • 7. The apparatus of claim 6, wherein: the signal-interface assembly is configured to receive an energy signal associated with the energy-delivery assembly, and convey, at least in part, the energy signal to the electroanatomical mapping system.
  • 8. The apparatus of claim 1, wherein: the display device is configured to be electrically connected to the electroanatomical mapping system.
  • 9. The apparatus of claim 8, wherein: the electroanatomical mapping system is configured to output, in use, mapping information to the display device, in which the mapping information includes a spatial position of the distal energy emitter, once activated, and said at least one sensor of the energy-delivery assembly.
  • 10. The apparatus of claim 1, further comprising: a mapping cable configured to split into multiple conductors each having at least one dedicated pin electrically connected to at least one sensor of the energy-delivery assembly; andthe mapping cable also configured to interface with the signal-interface assembly.
  • 11. The apparatus of claim 10, wherein: the mapping cable includes at least one pin assigned into a grouping associated with an aspect of the energy-delivery assembly to be depicted on the display device.
  • 12. The apparatus of claim 1, further comprising: a mapping cable configured to split into multiple conductors each having at least one dedicated pin electrically connected to at least one sensor of the energy-delivery assembly.
  • 13. The apparatus of claim 12, wherein: the mapping cable is also configured to convey at least some of the energy signal from an energy generator to the signal-interface assembly.
  • 14. The apparatus of claim 13, wherein: the mapping cable is also configured to interface with the signal-interface assembly.
  • 15. The apparatus of claim 1, wherein: the signal-interface assembly is configured to electrically convey, in use, electrical signals from an aspect of the energy-delivery assembly.
  • 16. The apparatus of claim 1, wherein: the signal-interface assembly is configured to electrically convey, in use, electrical signals from an aspect of the energy-delivery assembly to enable visualization of aspects of the energy-delivery assembly via the display device of the electroanatomical mapping system.
  • 17. The apparatus of claim 1, wherein: the energy-delivery assembly includes: an electrical commutator device configured to convey a sensor signal of at least one sensor of the energy-delivery assembly.
  • 18. An apparatus for use with an electroanatomical mapping system including a signal-interface assembly, and also for use with an elongated needle assembly having a distal energy emitter configured to be detectable by the electroanatomical mapping system, the apparatus comprising: an energy-delivery assembly having at least one sensor configured to receive, at least in part, the distal energy emitter of the elongated needle assembly in such a way that the distal energy emitter and said at least one sensor are movable relative to each other; andsaid as least one sensor also configured to be interfaced to a signal-input section of the signal-interface assembly; andthe electroanatomical mapping system being configured to display, via a display device, spatial positions of said at least one sensor of the energy-delivery assembly along with the distal energy emitter of the elongated needle assembly after: the signal-interface assembly, in use, is signal connected to said at least one sensor of the energy-delivery assembly; andthe signal-interface assembly, in use, is signal connected to the electroanatomical mapping system.
  • 19. An apparatus, comprising: an electroanatomical mapping system; andan elongated needle assembly having a distal energy emitter configured to be detectable by the electroanatomical mapping system; andan energy-delivery assembly having at least one sensor configured to receive, at least in part, the distal energy emitter of the elongated needle assembly in such a way that the distal energy emitter and said at least one sensor are movable relative to each other; anda signal-interface assembly including: a signal-input section configured to be signal connectable to said at least one sensor of the energy-delivery assembly; anda signal-output section configured to be signal connectable to an input section of the electroanatomical mapping system; andwherein the electroanatomical mapping system is configured to display, via a display device, spatial positions of said at least one sensor of the energy-delivery assembly along with the distal energy emitter of the elongated needle assembly after: the signal-input section, in use, is signal connected to said at least one sensor of the energy-delivery assembly; andthe signal-output section, in use, is signal connected to the input section of the electroanatomical mapping system.
  • 20. A method of operating an electroanatomical mapping system having a signal-interface assembly, an elongated needle assembly having a distal energy emitter configured to be detectable by the electroanatomical mapping system, an energy-delivery assembly having at least one sensor configured to receive, at least in part, the distal energy emitter of the elongated needle assembly in such a way that the distal energy emitter and said at least one sensor are movable relative to each other, the method comprising: displaying, via the display device of the electroanatomical mapping system, spatial positions of said at least one sensor of the energy-delivery assembly along with the distal energy emitter of the elongated needle assembly after: the signal-interface assembly, in use, is signal connected to said at least one sensor of the energy-delivery assembly; andthe signal-interface assembly, in use, is signal connected to the electroanatomical mapping system.
PCT Information
Filing Document Filing Date Country Kind
PCT/IB2021/054590 5/26/2021 WO
Publishing Document Publishing Date Country Kind
WO2021/255556 12/23/2021 WO A
US Referenced Citations (321)
Number Name Date Kind
175254 Oberly Mar 1876 A
827626 Gillet Jul 1906 A
848711 Weaver Apr 1907 A
1072954 Junn Sep 1913 A
1279654 Charlesworth Sep 1918 A
1918094 Geekas Jul 1933 A
1996986 Weinberg Apr 1935 A
2021989 De Master Nov 1935 A
2146636 Lipchow Feb 1939 A
3429574 Williams Feb 1969 A
3448739 Stark et al. Jun 1969 A
3575415 Fulp et al. Apr 1971 A
3595239 Petersen Jul 1971 A
4129129 Amrine Dec 1978 A
4244362 Anderson Jan 1981 A
4401124 Guess et al. Aug 1983 A
4639252 Kelly et al. Jan 1987 A
4641649 Walinsky et al. Feb 1987 A
4669467 Willett et al. Jun 1987 A
4682596 Bales et al. Jul 1987 A
4790311 Ruiz Dec 1988 A
4790809 Kuntz Dec 1988 A
4793350 Mar et al. Dec 1988 A
4807620 Strul et al. Feb 1989 A
4832048 Cohen May 1989 A
4840622 Hardy Jun 1989 A
4863441 Lindsay et al. Sep 1989 A
4884567 Elliott et al. Dec 1989 A
4892104 Ito et al. Jan 1990 A
4896671 Cunningham et al. Jan 1990 A
4928693 Goodin et al. May 1990 A
4936281 Stasz Jun 1990 A
4960410 Pinchuk Oct 1990 A
4977897 Hurwitz Dec 1990 A
4998933 Eggers et al. Mar 1991 A
5006119 Acker et al. Apr 1991 A
5019076 Yamanashi et al. May 1991 A
5047026 Rydell Sep 1991 A
5081997 Bosley et al. Jan 1992 A
5098431 Rydell Mar 1992 A
5112048 Kienle May 1992 A
5154724 Andrews Oct 1992 A
5201756 Horzewski et al. Apr 1993 A
5209741 Spaeth May 1993 A
5211183 Wilson May 1993 A
5221256 Mahurkar Jun 1993 A
5230349 Langberg Jul 1993 A
5281216 Klicek Jan 1994 A
5300068 Rosar et al. Apr 1994 A
5300069 Hunsberger et al. Apr 1994 A
5314418 Takano et al. May 1994 A
5318525 West et al. Jun 1994 A
5327905 Avitall Jul 1994 A
5364393 Auth et al. Nov 1994 A
5372596 Klicek et al. Dec 1994 A
5380304 Parker Jan 1995 A
5397304 Truckai Mar 1995 A
5403338 Milo Apr 1995 A
5423809 Klicek Jun 1995 A
5425382 Golden et al. Jun 1995 A
5490859 Mische et al. Feb 1996 A
5497774 Swartz et al. Mar 1996 A
5507751 Goode et al. Apr 1996 A
5509411 Littmann et al. Apr 1996 A
5540681 Strul et al. Jul 1996 A
5545200 West et al. Aug 1996 A
5555618 Winkler Sep 1996 A
5571088 Lennox et al. Nov 1996 A
5575766 Swartz et al. Nov 1996 A
5575772 Lennox Nov 1996 A
5599347 Hart et al. Feb 1997 A
5605162 Mirzaee et al. Feb 1997 A
5617878 Taheri Apr 1997 A
5622169 Golden et al. Apr 1997 A
5624430 Eton et al. Apr 1997 A
5667488 Lundquist et al. Sep 1997 A
5673695 McGee et al. Oct 1997 A
5674208 Berg et al. Oct 1997 A
5683366 Eggers et al. Nov 1997 A
5720744 Eggleston et al. Feb 1998 A
5741249 Moss et al. Apr 1998 A
5766135 Terwilliger Jun 1998 A
5779688 Imran et al. Jul 1998 A
5810764 Eggers et al. Sep 1998 A
5814028 Swartz et al. Sep 1998 A
5830214 Flom et al. Nov 1998 A
5836875 Webster, Jr. Nov 1998 A
5849011 Jones et al. Dec 1998 A
5851210 Torossian Dec 1998 A
5885227 Finlayson Mar 1999 A
5888201 Stinson et al. Mar 1999 A
5893848 Negus et al. Apr 1999 A
5893885 Webster, Jr. Apr 1999 A
5904679 Clayman May 1999 A
5916210 Winston Jun 1999 A
5921957 Killion et al. Jul 1999 A
5931818 Werp et al. Aug 1999 A
5944023 Johnson et al. Aug 1999 A
5951482 Winston et al. Sep 1999 A
5957842 Littmann et al. Sep 1999 A
5964757 Ponzi Oct 1999 A
5967976 Larsen et al. Oct 1999 A
5989276 Houser et al. Nov 1999 A
6007555 Devine Dec 1999 A
6009877 Edwards Jan 2000 A
6013072 Winston et al. Jan 2000 A
6017340 Cassidy et al. Jan 2000 A
6018676 Davis et al. Jan 2000 A
6030380 Auth et al. Feb 2000 A
6032674 Eggers et al. Mar 2000 A
6048349 Winston et al. Apr 2000 A
6053870 Fulton, III Apr 2000 A
6053904 Scribner et al. Apr 2000 A
6056747 Saadat et al. May 2000 A
6063093 Winston et al. May 2000 A
6093185 Ellis et al. Jul 2000 A
6106515 Winston et al. Aug 2000 A
6106520 Laufer et al. Aug 2000 A
6117131 Taylor Sep 2000 A
6142992 Cheng et al. Nov 2000 A
6146380 Racz et al. Nov 2000 A
6155264 Ressemann et al. Dec 2000 A
6156031 Aita et al. Dec 2000 A
6171305 Sherman Jan 2001 B1
6179824 Eggers et al. Jan 2001 B1
6193676 Winston et al. Feb 2001 B1
6193715 Wrublewski et al. Feb 2001 B1
6210408 Chandrasekaran et al. Apr 2001 B1
6217575 Devore et al. Apr 2001 B1
6221061 Engelson et al. Apr 2001 B1
6228076 Winston et al. May 2001 B1
6245054 Fuimaono et al. Jun 2001 B1
6267758 Daw et al. Jul 2001 B1
6283983 Makower et al. Sep 2001 B1
6292678 Hall et al. Sep 2001 B1
6293945 Parins et al. Sep 2001 B1
6296615 Brockway et al. Oct 2001 B1
6296636 Cheng et al. Oct 2001 B1
6302898 Edwards et al. Oct 2001 B1
6304769 Arenson et al. Oct 2001 B1
6315777 Comben Nov 2001 B1
6328699 Eigler et al. Dec 2001 B1
6360128 Kordis et al. Mar 2002 B2
6364877 Goble et al. Apr 2002 B1
6385472 Hall et al. May 2002 B1
6394976 Winston et al. May 2002 B1
6395002 Ellman et al. May 2002 B1
6419674 Bowser et al. Jul 2002 B1
6428551 Hall et al. Aug 2002 B1
6450989 Dubrul et al. Sep 2002 B2
6475214 Moaddeb Nov 2002 B1
6485485 Winston et al. Nov 2002 B1
6508754 Liprie et al. Jan 2003 B1
6524303 Garibaldi Feb 2003 B1
6530923 Dubrul et al. Mar 2003 B1
6554827 Chandrasekaran et al. Apr 2003 B2
6562031 Chandrasekaran et al. May 2003 B2
6562049 Norlander et al. May 2003 B1
6565562 Shah et al. May 2003 B1
6607529 Jones et al. Aug 2003 B1
6632222 Edwards et al. Oct 2003 B1
6639999 Cookingham et al. Oct 2003 B1
6650923 Lesh et al. Nov 2003 B1
6651672 Roth Nov 2003 B2
6662034 Segner et al. Dec 2003 B2
6663621 Winston et al. Dec 2003 B1
6702811 Stewart et al. Mar 2004 B2
6709444 Makower Mar 2004 B1
6723052 Mills Apr 2004 B2
6733511 Hall et al. May 2004 B2
6740103 Hall et al. May 2004 B2
6752800 Winston et al. Jun 2004 B1
6755816 Ritter et al. Jun 2004 B2
6811544 Schaer Nov 2004 B2
6814733 Schwartz et al. Nov 2004 B2
6820614 Bonutti Nov 2004 B2
6834201 Gillies et al. Dec 2004 B2
6842639 Winston et al. Jan 2005 B1
6852109 Winston et al. Feb 2005 B2
6855143 Davison et al. Feb 2005 B2
6860856 Ward et al. Mar 2005 B2
6869431 Maguire et al. Mar 2005 B2
6911026 Hall et al. Jun 2005 B1
6951554 Johansen et al. Oct 2005 B2
6951555 Suresh et al. Oct 2005 B1
6955675 Jain Oct 2005 B2
6970732 Winston et al. Nov 2005 B2
6980843 Eng et al. Dec 2005 B2
7029470 Francischelli et al. Apr 2006 B2
7056294 Khairkhahan et al. Jun 2006 B2
7083566 Tornes et al. Aug 2006 B2
7112197 Hartley et al. Sep 2006 B2
7335197 Sage et al. Feb 2008 B2
7618430 Scheib Nov 2009 B2
7651492 Wham Jan 2010 B2
7666203 Chanduszko et al. Feb 2010 B2
7678081 Whiting et al. Mar 2010 B2
7682360 Guerra Mar 2010 B2
7828796 Wong et al. Nov 2010 B2
7900928 Held et al. Mar 2011 B2
8192425 Mirza et al. Jun 2012 B2
8257323 Joseph et al. Sep 2012 B2
8388549 Paul et al. Mar 2013 B2
8500697 Kurth et al. Aug 2013 B2
11339579 Stearns May 2022 B1
20010012934 Chandrasekaran et al. Aug 2001 A1
20010021867 Kordis et al. Sep 2001 A1
20020019644 Hastings et al. Feb 2002 A1
20020022781 Mclntire et al. Feb 2002 A1
20020022836 Goble et al. Feb 2002 A1
20020035361 Houser et al. Mar 2002 A1
20020087153 Roschak et al. Jul 2002 A1
20020087156 Maguire et al. Jul 2002 A1
20020111618 Stewart et al. Aug 2002 A1
20020123749 Jain Sep 2002 A1
20020147485 Mamo et al. Oct 2002 A1
20020169377 Khairkhahan et al. Nov 2002 A1
20020188302 Berg et al. Dec 2002 A1
20020198521 MaGuire Dec 2002 A1
20030032929 McGuckin Feb 2003 A1
20030040742 Underwood et al. Feb 2003 A1
20030144658 Schwartz et al. Jul 2003 A1
20030158480 Tornes et al. Aug 2003 A1
20030163153 Scheib Aug 2003 A1
20030225392 McMichael et al. Dec 2003 A1
20040015162 McGaffigan Jan 2004 A1
20040024396 Eggers Feb 2004 A1
20040030328 Eggers et al. Feb 2004 A1
20040044350 Martin et al. Mar 2004 A1
20040073243 Sepetka et al. Apr 2004 A1
20040077948 Molante et al. Apr 2004 A1
20040116851 Johansen et al. Jun 2004 A1
20040127963 Uchida et al. Jul 2004 A1
20040131299 Adoram Jul 2004 A1
20040133113 Krishnan Jul 2004 A1
20040133130 Ferry et al. Jul 2004 A1
20040143256 Bednarek Jul 2004 A1
20040147837 Macaulay et al. Jul 2004 A1
20040147950 Mueller et al. Jul 2004 A1
20040181213 Gondo Sep 2004 A1
20040230188 Cioanta et al. Nov 2004 A1
20050004585 Hall et al. Jan 2005 A1
20050010208 Winston et al. Jan 2005 A1
20050049628 Schweikert et al. Mar 2005 A1
20050059966 McClurken et al. Mar 2005 A1
20050065507 Hartley et al. Mar 2005 A1
20050085806 Auge et al. Apr 2005 A1
20050090818 Pike, Jr. Apr 2005 A1
20050096529 Cooper et al. May 2005 A1
20050101984 Chanduszko et al. May 2005 A1
20050119556 Gillies et al. Jun 2005 A1
20050137527 Kunin Jun 2005 A1
20050149012 Penny et al. Jul 2005 A1
20050203504 Wham et al. Sep 2005 A1
20050203507 Truckai et al. Sep 2005 A1
20050261607 Johansen et al. Nov 2005 A1
20050288631 Lewis et al. Dec 2005 A1
20060041253 Newton et al. Feb 2006 A1
20060074398 Whiting et al. Apr 2006 A1
20060079769 Whiting et al. Apr 2006 A1
20060079787 Whiting et al. Apr 2006 A1
20060079884 Manzo et al. Apr 2006 A1
20060085054 Zikorus et al. Apr 2006 A1
20060089638 Carmel et al. Apr 2006 A1
20060106375 Werneth et al. May 2006 A1
20060135962 Kick et al. Jun 2006 A1
20060142756 Davies et al. Jun 2006 A1
20060189972 Grossman Aug 2006 A1
20060241586 Wilk Oct 2006 A1
20060247672 Vidlund et al. Nov 2006 A1
20060264927 Ryan Nov 2006 A1
20060276710 Krishnan Dec 2006 A1
20070060879 Weitzner et al. Mar 2007 A1
20070066975 Wong et al. Mar 2007 A1
20070118099 Trout, III May 2007 A1
20070123964 Davies et al. May 2007 A1
20070167775 Kochavi et al. Jul 2007 A1
20070208256 Marilla Sep 2007 A1
20070225681 House Sep 2007 A1
20070238985 Smith Oct 2007 A1
20070270791 Wang et al. Nov 2007 A1
20080039865 Shaher et al. Feb 2008 A1
20080042360 Veikley Feb 2008 A1
20080086120 Mirza et al. Apr 2008 A1
20080097213 Carlson et al. Apr 2008 A1
20080108987 Bruszewski et al. May 2008 A1
20080146918 Magnin et al. Jun 2008 A1
20080171934 Greenan et al. Jul 2008 A1
20080208121 Youssef et al. Aug 2008 A1
20080275439 Francischelli et al. Nov 2008 A1
20090076476 Barbagli et al. Mar 2009 A1
20090105742 Kurth et al. Apr 2009 A1
20090138009 Viswanathan et al. May 2009 A1
20090163850 Betts et al. Jun 2009 A1
20090177114 Chin et al. Jul 2009 A1
20090264977 Bruszewski et al. Oct 2009 A1
20100087789 Leeflang et al. Apr 2010 A1
20100125282 Machek et al. May 2010 A1
20100168684 Ryan Jul 2010 A1
20100179632 Bruszewski et al. Jul 2010 A1
20100191142 Paul et al. Jul 2010 A1
20100194047 Sauerwine Aug 2010 A1
20110046619 Ducharme Feb 2011 A1
20110152716 Chudzik et al. Jun 2011 A1
20110160592 Mitchell Jun 2011 A1
20110190763 Urban et al. Aug 2011 A1
20120232546 Mirza et al. Sep 2012 A1
20120265055 Melsheimer et al. Oct 2012 A1
20120330156 Brown et al. Dec 2012 A1
20130184551 Paganelli et al. Jul 2013 A1
20130184735 Fischell et al. Jul 2013 A1
20130267840 Markowitz et al. Oct 2013 A1
20130282084 Mathur et al. Oct 2013 A1
20140206987 Urbanski et al. Jul 2014 A1
20140296769 Hyde et al. Oct 2014 A1
20160220741 Garrison et al. Aug 2016 A1
20180078172 Kusumoto Mar 2018 A1
20190021763 Zhou et al. Jan 2019 A1
20190247035 Gittard et al. Aug 2019 A1
20200155031 Jais et al. May 2020 A1
20210307671 Leung Oct 2021 A1
Foreign Referenced Citations (1)
Number Date Country
10-1549786 Sep 2015 KR
Non-Patent Literature Citations (2)
Entry
Written Opinion of the International Searching Authority, Korean Intellectual Property Office as International Searching Authority, three (3) pages, dated Sep. 1, 2021, Daejeon, Korea.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/IB2021/054590, dated Sep. 1, 2021, 7 pages.
Related Publications (1)
Number Date Country
20230120097 A1 Apr 2023 US
Provisional Applications (1)
Number Date Country
63040052 Jun 2020 US