This application relates to surgical instruments incorporating scissors and to surgical scissors, and more particularly to surgical scissors having electrocautery electrodes disposed adjacent tissue-cutting blades for selective cauterization and shearing of tissue.
Endoscopic surgery commonly requires manual manipulation of surgical instruments that are introduced into a surgical site within a patient through elongated cannulas containing one or more interior lumens of slender cross section. Endoscopic surgery to harvest a saphenous vein usually involves an elongated cannula that is advanced along the course of the vein from an initial incision to form an anatomical space about the vein as connective tissue is dissected away from the vein.
Lateral branch vessels of the saphenous vein can be conveniently isolated and ligated within the anatomical space under endoscopic visualization using surgical scissors that can be positioned and manipulated through the elongated cannula. Such surgical procedures are commonly employed in the preparation of the saphenous vein for removal from within the anatomical space for use, for example, as a shunting or graft vessel in coronary bypass surgery.
Surgical scissors that are used to transect vessels within the confines of limited anatomical space formed along the course of the saphenous vein commonly incorporate electrodes on or near the tissue-shearing blades. Scissors of this type are suitable for monopolar or bipolar electrocauterization of tissue prior to transection of, for example, lateral side branches of the saphenous vein to be harvested. However, placement of the electrodes in relation to the tissue-shearing edges of the blades may inhibit proper operation of the blades to shear tissue and may inhibit thorough electrocauterization of a side branch vessel as the blades close during transection of the vessel.
In accordance with some embodiments, surgical scissors include scissor blades mounted at the distal end of a slender body for manual manipulation under control of a lever mounted at the proximal end of the slender body. The scissor blades support electrodes that are positioned to supply electrical energy from external sources to cauterize tissue prior to shearing the cauterized tissue at a remote surgical site in a patient. The electrodes of various configurations are spaced from, and are electrically isolated from, the tissue-cutting blades (or at least from one such blade) in order to optimize both the ability to shear tissue as well as the ability to localize the electrocauterization of the tissue to be sheared within a wide angle of alignment of tissue relative to the blade.
Also, in accordance with some embodiments, a tissue-cutting apparatus includes first and second electrically conductive tissue-cutting blades coupled together about a common pivot for relative movement thereabout between open and closed positions, the first and second tissue-cutting blades, each having an elongated cutting edge with the cutting edges disposed to pass each other in contiguous relationship along the elongated cutting edges as the first and second relatively move from open toward closed positions, an electrode insulated from and attached spaced away from each of the first and second blades on a side thereof remote from the contiguous cutting edges, an electrode extension mounted on and connected to at least one of the electrodes on a side thereof remote from the cutting blade to extend in a direction toward the cutting edge of the associated blade, and conductors connected to the electrodes for supplying electrical signals thereto.
Surgical scissors in accordance with embodiments described herein may be incorporated into and form an integral part of more comprehensive surgical apparatus, for example, as illustrated and described with reference to FIGS. 8 and 9 of pending application Ser. No. 10/054,477, entitled “Vessel Harvesting Apparatus and Method”, filed on Jan. 18, 2002 by M. Stewart et al.
Other and further aspects and features will be evident from reading the following detailed description of the embodiments, which are intended to illustrate, not limit, the invention.
The drawings illustrate the design and utility of embodiments, in which similar elements are referred to by common reference numerals. These drawings are not necessarily drawn to scale. In order to better appreciate how the above-recited and other advantages and objects are obtained, a more particular description of the embodiments will be rendered, which are illustrated in the accompanying drawings. These drawings depict only typical embodiments and are not therefore to be considered limiting of its scope.
a and 8b are plan views of a set of bipolar scissor blades in accordance with some embodiments;
Various embodiments are described hereinafter with reference to the figures. It should be noted that the figures are not drawn to scale and that elements of similar structures or functions are represented by like reference numerals throughout the figures. It should also be noted that the figures are only intended to facilitate the description of the embodiments. They are not intended as an exhaustive description of the invention or as a limitation on the scope of the invention. In addition, an illustrated embodiment needs not have all the aspects or advantages shown. An aspect or an advantage described in conjunction with a particular embodiment is not necessarily limited to that embodiment and can be practiced in any other embodiments even if not so illustrated.
Referring now to
In accordance with one embodiment as illustrated in
Referring now to
Referring now to
Referring now to the sectional view of
This configuration also facilitates formation of current conduction paths through tissue in contact with the structure, for example, from blade support or electrode 13 to the cutting blade 11, or to cutting blade 9 or to blade support 15. Alternatively, the structure of blade support 15 and insulating layer 27 and cutting blade 9 and conductive link 34 can be configured as a single conductive cutting blade.
Referring now to
In another embodiment as illustrated in
Therefore, the bipolar tissue-cauterizing and cutting instruments according to some embodiments described herein provide reliable electrical contact with tissue to be cut over a broad range of angles of presentation of the tissue to the electrodes. This assures controlled electrocauterization prior to shearing or transection of the cauterized tissue. Various configurations of blade supports that serve as electrodes and that support cutting blades in facing, scissor-like engagement along contiguous cutting edges assure reliable electrical contact for electrocauterization of tissue prior to shearing of the cauterized tissue.
Although particular embodiments have been shown and described, it will be understood that they are not intended to limit the present inventions, and it will be obvious to those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the present inventions. The specification and drawings are, accordingly, to be regarded in an illustrative rather than restrictive sense. The present inventions are intended to cover alternatives, modifications, and equivalents, which may be included within the spirit and scope of the present inventions as defined by the claims.
This application is a continuation of application Ser. No. 12/029,222, filed on Feb. 11, 2008, which is a continuation of application Ser. No. 10/851,051, filed on May 21, 2004, which is a continuation of application Ser. No. 10/071,940, filed on Feb. 5, 2002, now issued as U.S. Pat. No. 6,749,609, the disclosures of all of which are expressly incorporated by reference herein. The subject matter of this application relates to the subject matter described in application Ser. No. 09/739,595, filed on Dec. 15, 2000, now issued as U.S. Pat. No. 6,506,207, which subject matter is expressly incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
Parent | 12029222 | Feb 2008 | US |
Child | 12480238 | US | |
Parent | 10851051 | May 2004 | US |
Child | 12029222 | US | |
Parent | 10071940 | Feb 2002 | US |
Child | 10851051 | US |