Electrochemical cell

Information

  • Patent Grant
  • 7608175
  • Patent Number
    7,608,175
  • Date Filed
    Tuesday, July 22, 2003
    21 years ago
  • Date Issued
    Tuesday, October 27, 2009
    15 years ago
Abstract
This invention relates to a biosensor and more particularly to an electrochemical biosensor for determining the concentration of an analyte in a carrier. The invention is particularly useful for determining the concentration of glucose in blood and is described herein with reference to that use but it should be understood that the invention is applicable to other analytic determinations.
Description
FIELD OF THE INVENTION

This invention relates to a biosensor and more particularly to an electrochemical biosensor for determining the concentration of an analyte in a carrier. The invention is particularly useful for determining the concentration of glucose in blood and is described herein with reference to that use but it should be understood that the invention is applicable to other analytic determinations.


BACKGROUND OF THE INVENTION

Electrochemical biosensors generally comprise a cell having a working electrode, a counter electrode and a reference electrode. Sometimes the function of the counter and reference electrodes are combined in a single electrode called a “counter/reference” electrode or “pseudo reference electrode”. As herein used the term “counter electrode” includes a counter/reference electrode where the context so admits.


The sample containing the analyte is brought into contact with a reagent containing an enzyme and a redox mediator in the cell. Either the mediator is reduced (receives at least one electron) while the analyte is oxidised (donates at least one electron) or visa versa. Usually it is the analyte which is oxidised and the mediator which is reduced. The invention will be herein described principally with reference to that system but it is also applicable to systems in which the analyte is reduced and the mediator oxidised.


Electrochemical glucose analysers such as those used by diabetics to monitor blood glucose levels or such as are used in clinics and hospitals are commonly based upon the use of an enzyme such as glucose oxidase dehydrogenase (GOD) and a redox mediator such as a ferricyanide or ferrocyanide. In such prior art system, the sample (e.g. blood) containing the analyte (e.g. glucose) is brought into contact with the reagents in the cell. Glucose is oxidised to gluconic acid and the glucose oxidase is thereby reduced. The mediator then re-oxidizes the glucose oxidase and is reduced in the process. The reduced mediator is then re-oxidized when it transfers electrons to the working electrode. After allowing passage of a predetermined time, sufficient to obtain an accurate estimate of the Faraday current, the concentration of glucose is estimated from the magnitude of the current or voltage signal then measured.


Prior art electrochemical cells consist of two (or three) adjacent electrodes spaced apart on one side of an insulator and adapted for connection to a measuring device. A target area on which the blood sample is placed is defined on or between the electrodes. Co-pending Application PCT/AU95/00207 describes a cell in which electrodes are disposed on opposite sides of a porous membrane, one of the electrodes having a liquid permeable target area.


In the prior art there is a need to separate the working electrode from the counter (or counter/reference) electrode by a sufficient distance to avoid products of electrochemical reaction at one electrode from interfering with those at the other. In practice a separation of the electrodes of more than 500 μm is required to achieve acceptable accuracy.


Each batch of cells is required to have been previously calibrated and leads to inaccuracies during use because of variations within the batch, in sample composition, and in ambient conditions.


It is desired to improve the accuracy and reliability of such biosensors. Achievement of these objectives is made difficult in the case of sensors intended to determine the concentration of analytes in blood because blood contains dissolved gases, ions, colloids, complex micelles, small scale cellular debris, and living cellular components in a predominantly aqueous medium. Any of these may interfere in the determination. Existing sensors are also susceptible to influence from other interfering substances that may be present in the sample and which may be oxidised at the working electrode and mistakenly identified as the analyte of interest. Alternatively, the interfering substances may reduce the oxidised form of the redox mediator. These effects will give artificially elevated estimates of the analyte concentration. Additionally there is always some reduced redox mediator present before the analyte is added and its concentration needs to be known and subtracted from the measured value of reduced mediator to give an accurate concentration of the analyte. Moreover, oxygen in the blood may act as a redox mediator for glucose oxidase dehydrogenase (GOD) in competition with ferrocyanide. Thus high oxygen concentrations can lead to low estimates of glucose concentration. In addition the measurements are sensitive to factors such as changes in humidity, temperature, solution viscosity and haematocrit content.


OBJECT OF THE INVENTION

It is an object of the present invention to provide a method of analysis and apparatus for use in the method which avoid or ameliorate at least some of the disadvantages of the prior art. It is an object of preferred forms of the invention to provide a biosensor of improved accuracy, and/or reliability and/or speed and a method for its use.


DISCLOSURE OF THE INVENTION

According to one aspect the invention consists in a method for determining the concentration of a reduced (or oxidised) form of a redox species in an electrochemical cell of the kind comprising a working electrode and a counter electrode spaced from the working electrode by a predetermined distance, said method comprising the steps of:


(1) applying an electric potential difference between the electrodes,


(2) selecting the potential of the working electrode such that the rate of electro-oxidation of the reduced form (or electro-reduction of the oxidised form) of the species is diffusion controlled,


(3) selecting the spacing between the working electrode and the counter electrode so that reaction products from the counter electrode arrive at the working electrode,


(4) determining current as a function of time after application of the potential and prior to achievement of a steady state,


(5) estimating the magnitude of the steady state current, and


(6) obtaining from the change in current with time and the magnitude of the steady state current, a value indicative of the diffusion coefficient and/or of the concentration of the reduced form (or the oxidised form) of the species.


The concentration measured in this way is substantially independent of variation if any in the diffusion coefficient of the reduced form, and therefore is compensated for variations in temperature and viscosity. The concentration so measured is independent of variations in haematocrit and other substances which affect the diffusion coefficient of the reduced form of the redox species.


It will be appreciated that the method of the invention is equally applicable for determining the concentration of a reduced form of a redox species or an oxidized form of a redox species in the cell. In the case that the concentration of the reduced form is to be determined the potential of the working electrode must be maintained such that the rate of electro oxidation of the reduced form is diffusion controlled in step (2) and it is the concentration of the reduced form that is obtained in step (5). In the case that the concentration of oxidized form is to be determined, the potential of the working electrode must be maintained such that the rate of electro reduction of the oxidized form is diffusion controlled in step (2) and it is the concentration of the oxidized form that is obtained in step (5).


The redox species may be an analyte or may be a redox mediator.


In preferred embodiments of the method a mediator is used and the concentration of the reduced (or oxidized) form of the mediator is in turn indicative of the concentration of an analyte and a measure of the diffusion coefficient of the reduced (or oxidized) form of the mediator is determined as a precursor to the determination of the concentration of the analyte.


For preference the cell comprises a working electrode and counter/reference electrode. If a reference electrode separate from a counter electrode is used, then the reference electrode may be in any convenient location in which it is in contact with the sample in the sensor.


In contrast to prior art, when conducting the method of the invention, the electrodes are sufficiently close that the products of electrochemical reaction at the counter electrode migrate to the working electrode during the period of the test. For example, in an enzyme ferricyanide system, the ferrocyanide produced at the counter electrode diffuses to the working electrode.


This allows a steady state concentration profile to be achieved between the electrodes leading to a steady state current. This in turn allows the diffusion coefficient and concentration of the redox species (mediator) to be measured independently of sample variations and therefore greatly improves accuracy and reliability.


The method also permits the haematocrit concentration of blood to be determined from the diffusion coefficient by use of look-up tables (or by separation of red cells from plasma and measurement of the diffusion coefficient of the red cell fraction) and the plasma fraction, and comparing the two.


According to a second aspect, the invention consists in apparatus for determining the concentration of a redox species in an electrochemical cell comprising:


an electrochemical cell having a working electrode and a counter (or counter/reference) electrode,


means for applying an electric potential difference between said electrodes, means for measuring the change in current with time,


and characterised in that the working electrode is spaced from the counter electrode by less than 500 μm.


In preferred embodiments the cell has an effective volume of 1.5 microliters or less. Apparatus for use in the invention may comprise a porous membrane, a working electrode on one side of the membrane, a counter/reference electrode on the other side, said electrodes together with a zone of the membrane therebetween defining an electrochemical cell, and wherein the membrane extends laterally from the cell to a sample deposition area spaced apart from the cell zone by a distance greater than the thickness of the membrane.


Preferably the porous membrane, the distance of the target area from the cell portion, and the membrane thickness are so selected in combination that when blood (comprising plasma and red cells) is placed on the target area a plasma front diffuses laterally towards the electrochemical cell zone in advance of the red cells.


It is thus possible to fill a thin layer electrochemical cell with plasma substantially free of haematocrit which would cause a variation in the diffusion coefficient of the redox mediator and which would affect the accuracy of the test as hereinafter explained.


In preferred embodiments of the biosensor according to the invention a second electrochemical cell zone of the membrane is defined by a second working electrode and a second counter/reference electrode on the opposite side of the membrane from the second working electrode. The second electrochemical cell zone is situated intermediate the first cell zone and the sample deposition or “target” area, or is situated on the side of the target area remote from the first electrochemical zone. In these embodiments the plasma comes into contact with enzyme in, or on route to, the first electrochemical cell while plasma reaching the second cell does not. The first cell thus in use measures the concentration of reduced mediator in the presence of plasma (including electrochemically interfering substances), and enzyme while the second electrochemical cell measures it in the presence of plasma (including electrochemically interfering substances) and in the absence of enzyme. This allows determination of the concentration of the reduced interfering substances in the second cell and the concentration of reduced interfering substances plus analyte in the first cell. Subtraction of the one value from the other gives the absolute concentration of analyte.


In a highly preferred embodiment of the invention a hollow cell is employed wherein the working and reference (or counter/reference) electrodes are spaced apart by less than 500 μm and preferably by from 20–200 μm.





DESCRIPTION OF THE DRAWINGS

The invention will now be more particularly described by way of example only with reference to the accompanying drawings wherein:



FIG. 1 is a schematic drawing (not to scale) of a first embodiment according to the invention shown in side elevation.



FIG. 2 shows the embodiment of FIG. 1 in plan, viewed from above.



FIG. 3 shows the embodiment of FIG. 1 in plan, viewed from below.



FIG. 4 shows the embodiment of FIG. 1 viewed in end elevation.



FIG. 5 is a schematic drawing (not to scale) of a second embodiment according to the invention in side elevation.



FIG. 6 shows the embodiment of FIG. 5 in plan, viewed from above.



FIG. 7 is a schematic drawing (not to scale) of a third embodiment according to the invention, in side elevation.



FIG. 8 shows the embodiment of FIG. 7 in plan, viewed from above.



FIG. 9 is a schematic drawing (not to scale) according to the invention in plan view, viewed from above.



FIG. 10 shows the embodiment of FIG. 9 in end elevation.



FIG. 11 shows the embodiment of FIG. 9 in side elevation.



FIG. 12 shows a schematic drawing (not to scale) of a hollow cell embodiment according to the invention, viewed in cross section.



FIG. 13 is a graph showing a plot of current (ordinate axis) versus time (co-ordinate axis) during conduct of a method according to the invention.



FIG. 14 is a further graph of use in explaining the method of the invention.





In FIGS. 5 to 12, components corresponding in function to components of the embodiment of FIGS. 1 to 4 are identified by identical numerals or indicia.


DESCRIPTION OF PREFERRED EMBODIMENTS

With reference to FIGS. 1 to 4 there is shown a first embodiment of apparatus of the invention, in this case a biosensor for determining glucose in blood. The embodiment comprises a thin strip membrane 1 having upper and lower surfaces 2, 3 and having a cell zone 4 defined between a working electrode 5 disposed on upper surface 2 and a counter electrode 6 disposed on lower surface 3. The membrane thickness is selected so that the electrodes are separated by a distance “1” which is sufficiently close that the products of electrochemical reaction at the counter electrode migrate to the working electrode during the time of the test and a steady state diffusion profile is substantially achieved. Typically, “1” will be less than 500 μm. A sample deposition or “target” area 7 defined on upper surface 2 of membrane 1 is spaced at a distance greater than the membrane thickness from cell zone 4. Membrane 1 has a diffusion zone 8 extending between target area 7 and cell zone 4. A suitable reagent including a redox mediator “M”, an enzyme “E” and a pH buffer “B” are contained within cell zone 4 of the membrane and/or between cell zone 4 and target area 7. The reagent may also include stabilisers and the like.


In some cases it is preferable to locate the enzyme and mediator and/or the buffer in different zones of the membrane. For example the mediator may be initially located within electrochemical cell zone 4 while the enzyme may be situated below target area 7 or in diffusion zone 8.


Haemoglobin releases oxygen at low pH's, but at higher pH's it binds oxygen very firmly. Oxygen acts as a redox mediator for glucose oxidase dehydrogenase (GOD). In a glucose sensor this competes with the redox mediator leading to low estimates of glucose concentration. Therefore if desired a first pH buffer can be contained in the vicinity of target area 7 to raise the pH to such a level that all the oxygen is bound to haemoglobin. Such a pH would be non-optimal for GOD/glucose kinetics and would consequently be detrimental to the speed and sensitivity of the test. In a preferred embodiment of the invention a second pH buffer is contained as a reagent in the vicinity of the working electrode to restore the pH to kinetically optimal levels. The use of a second buffer does not cause oxygen to be released from the haemoglobin as the haemoglobin is contained within the blood cells which are retained near blood target area 7 or are retarded in diffusion in comparison with the plasma and therefore not influenced by the second buffer. In this manner oxygen interference may be greatly reduced or eliminated.


In use of the sensor a drop of blood containing a concentration of glucose to be determined is placed on target zone 7. The blood components wick towards cell zone 4, the plasma component diffusing more rapidly than red blood cells so that a plasma front reaches cell zone 4 in advance of blood cells.


When the plasma wicks into contact with the reagent, the reagent is dissolved and a reaction occurs that oxidises the analyte and reduces the mediator. After allowing a predetermined time to complete this reaction an electric potential difference is applied between the working electrode and the counter electrode. The potential of the working electrode is kept sufficiently anodic such that the rate of electro oxidation of the reduced form of the mediator at the working electrode is determined by the rate of diffusion of the reduced form of the mediator to the working electrode, and not by the rate of electron transfer across the electrode/solution interface.


In addition the concentration of the oxidised form of the mediator at the counter electrode is maintained at a level sufficient to ensure that when a current flows in the electrochemical cell the potential of the counter electrode, and thus also the potential of the working electrode, is not shifted so far in the cathodic direction that the potential of the working electrode is no longer in the diffusion controlled region. That is to say, the concentration of the oxidized form at the counter electrode must be sufficient to maintain diffusion controlled electro oxidation of the reduced form of the mediator at the working electrode.


The behaviour of a thin layer cell is such that if both oxidised and reduced forms of the redox couple are present, eventually a steady state concentration profile is established across the cell. This results in a steady state current. It has been found that by comparing a measure of the steady state current with the rate at which the current varies in the current transient before the steady state is achieved, the diffusion coefficient of the redox mediator can be measured as well as its concentration. This is in contrast to the Cottrell current that is measured in the prior art. By measuring the Cottrell current at known times after application of a potential to the sensor electrodes it is only possible to determine the product concentration times square root of the diffusion coefficient and therefore it is not possible to determine the concentration of the mediator independent of its diffusion coefficient.


In a cell according to the current invention, by solving the appropriate diffusion equations it can be shown that over a restricted time range a plot of ln(i/i−1) vs time (measured in seconds) is linear and has a slope (denoted by S) which is equal to −4π2D/12 , where “i” is the current at time “t”, “i” is the steady state current, “D” is the diffusion coefficient in cm2/sec, “1” is the distance between the electrodes in cm and “π” is approximately 3.14159. The concentration of reduced mediator present when the potential was applied between the electrodes is given by 2π2i/FAIS, where “F” is Faraday's constant, A is the working electrode area and the other symbols are as given above As this later formula uses S it includes the measured value of the diffusion coefficient.


Since 1 is a constant for a given cell, measurement of i as a function of time and i enable the value of the diffusion coefficient of the redox mediator to be calculated and the concentration of the analyte to be determined.


Moreover the determination of analyte concentration compensates for any variation to the diffusion coefficient of the species which is electro oxidised or electro reduced at the working electrode. Changes in the value of the diffusion coefficient may occur as a result of changes in the temperature and viscosity of the solution or variation of the membrane permeability. Other adjustments to the measured value of the concentration may be necessary to account for other factors such as changes to the cell geometry, changes to the enzyme chemistry or other factors which may effect the measured concentration. If the measurement is made on plasma substantially free of haematocrit (which if present causes variation in the diffusion coefficient of the redox mediator) the accuracy of the method is further improved.


Each of electrodes 5, 6 has a predefined area. In the embodiments of FIGS. 1 to 4 cell zone 4 is defined by edges 9, 10, 11 of the membrane which correspond with edges of electrodes 5, 6 and by leading (with respect to target area 7) edges 12, 13 of the electrodes. In the present example the electrodes are about 600 angstrom thick and are from 1 to 5 mm wide.


Optionally, both sides of the membrane are covered with the exception of the target area 7 by laminating layers 14 (omitted from plan views) which serves to prevent evaporation of water from the sample and to provide mechanical robustness to the apparatus. Evaporation of water is undesirable as it concentrates the sample, allows the electrodes to dry out, and allows the solution to cool, affecting the diffusion coefficient and slowing the enzyme kinetics, although diffusion coefficient can be estimated as above.


A second embodiment according to the invention, shown in FIGS. 5 and 6, differs from the first embodiment by inclusion of a second working electrode 25 and counter/reference electrode 26 defining a second cell zone 24 therebetween. These electrodes are also spaced apart by less than 500 μm in the present example. Second electrodes 25, 26 are situated intermediate cell zone 4 and target area 7. In this embodiment the redox mediator is contained in the membrane below or adjacent to target area 7 or intermediate target area 7 and first cell zone 4. The enzyme is contained in the membrane in the first cell zone 4 and second cell zone 24. The enzyme does not extend into second cell 24. In this case when blood is added to the target area, it dissolves the redox mediator. This wicks along the membrane so that second electrochemical cell 24 contains redox mediator analyte and serum including electrochemically interfering substances. First electrochemical cell receives mediator, analyte, serum containing electrochemically interfering substances, and enzyme. Potential is now applied between both working electrodes and the counter electrode or electrodes but the change in current with time is measured separately for each pair. This allows the determination of the concentration of reduced mediator in the absence of analyte plus the concentration of electrochemically interfering substances in the second electrochemical cell and the concentration of these plus analyte in the first electrochemical cell. Subtraction of the one value from the other gives the absolute concentration of analyte.


The same benefit is achieved by a different geometry in the embodiment of FIGS. 7 and 8 in which the second working electrode and second counter/reference electrode define the second cell 24 on the side of target area 7 remote from first electrochemical cell 4. In this case the enzyme may be contained in the membrane strip between the target area and cell 1. The redox mediator may be in the vicinity of the target area or between the target area and each cell. The diffusion coefficient of mediator is lowered by undissolved enzyme and the arrangement of FIGS. 7 and 8 has the advantage of keeping enzyme out of the thin layer cells and allowing a faster test (as the steady state current is reached more quickly). Furthermore the diffusion constant of redox mediator is then the same in both thin layer cells allowing more accurate subtraction of interference.


Although the embodiments of FIGS. 1 to 8 are unitary sensors, it will be understood that a plurality of sensors may be formed on a single membrane as shown in the embodiment of FIGS. 9 to 11. In this case the electrodes of one sensor are conductively connected to those of an adjacent sensor. Sensors may be used successively and severed from the strip after use.


In the embodiment of FIGS. 9 to 11 electrode dimensions are defined in the diffusion direction (indicated by arrow) by the width of the electrode in that direction. The effective dimension of the electrode in a direction transverse to diffusion direction is defined between compressed volumes 16 of the membrane in a manner more fully described in co-pending Application PCT/AU96/00210, the disclosure of which is incorporated herein by reference in its entirety. For clarity optional laminated layer 14 of FIG. 1 has been omitted from FIGS. 9 to 11.


In the embodiment of FIG. 12 there is shown a hollow cell according to the invention wherein the electrodes 5, 6 are supported by spaced apart polymer walls 30 to define a hollow cell. An opening 31 is provided on one side of the cell whereby a sample can be admitted into cavity 32. In this embodiment a membrane is not used. As in previous embodiments, the electrodes are spaced apart by less than 500 μm, preferably 20–400 μm and more preferably 20–200 μm. Desirably the effective cell volume is 1.5 microliters or less.


It will be understood that the method of the invention may be performed with a cell constructed in accord with co-pending application PCT/AU95/00207 or cells of other known design, provided these are modified to provide a sufficiently small distance between electrode faces.


The method of the invention will now be further exemplified with reference to FIGS. 13 and 14.


EXAMPLE 1

A membrane 130 microns thick was coated on both sides with a layer of Platinum 60 nanometers thick. An area of 12.6 sq. mm was defined by compressing the membrane. 1.5 microliters of a solution containing 0.2 Molar potassium ferricyanide and 1% by weight glucose oxidase dehydrogenase was added to the defined area of the membrane and the water allowed to evaporate.


The platinum layers were then connected to a potentiostat to be used as the working and counter/reference electrodes. 3.0 microliters of an aqueous solution is containing 5 millimolar D-glucose and 0.9 wt % NaCl was dropped on to the defined area of the membrane. After an elapse of 20 seconds a voltage of 300 millivolts was applied between the working and counter/reference electrodes and the current recorded for a further 30 seconds at intervals of 0.1 seconds.



FIG. 13 is a graph of current versus time based on the above measurements. Using a value of the steady state current of 26.9 microamps the function In(i/26.9−1) was computed and plotted versus time. The slope of the graph (FIG. 14) is −0.342 which corresponds to a diffusion coefficient of 1.5×10−6 cm2 per second and a corrected glucose concentration (subtracting background ferrocyanide) of 5.0 millimolar.


The steady state current is one in which no further significant current change occurs during the test. As will be understood by those skilled in the art, a minimum current may be reached after which there may be a drift due to factors such as lateral diffusion, evaporation, interfering electrochemical reactions or the like. However, in practice it is not difficult to estimate the “steady state” current (i). One method for doing so involves approximating an initial value for i. Using the fit of the i versus t data to the theoretical curve a better estimate of i is then obtained. This is repeated reiteratively until the measured value and approximated value converge to within an acceptable difference, thus yielding an estimated i.


In practice, the measurements of current i at time t are made between a minimum time t min and a maximum time t max after the potential is applied. The minimum and maximum time are determined by the applicability of the equations and can readily be determined by experiment of a routine nature. If desired the test may be repeated by switching off the voltage and allowing the concentration profiles of the redox species to return towards their initial states.


It is to be understood that the analysis of the current v. time curve to obtain values of the Diffusion Co-efficient and/or concentration is not limited to the method given above but could also be achieved by other methods.


For instance, the early part of the current v. time curve could be analysed by the Cottrell equation to obtain a value of D1/2×Co (Co=Concentration of analyte) and the steady state current analysed to obtain a value of D×Co. These 2 values can then be compared to obtain D and C separately.


It will be understood that in practice of the invention an electrical signal is issued by the apparatus which is indicative of change in current with time. The signal may be an analogue or digital signal or may be a series of signals issued at predetermined time intervals. These signals may be processed by means of a microprocessor or other conventional circuit to perform the required calculations in accordance with stored algorithms to yield an output signal indicative of the diffusion coefficient, analyte concentration, haematocrit concentration or the like respectively. One or more such output signals may be displayed by means of an analogue or digital display.


It is also possible by suitable cell design to operate the cell as a depletion cell measuring the current required to deplete the mediator. For example in the embodiment of FIG. 5 the method of the invention may be performed using electrodes 5, 6, which are spaced apart by less than 500 μm. An amperometric or voltametric depletion measurement may be made using electrodes 5 and 26 which are spaced apart more than 500 μm and such that there is no interference between the redox species being amperometrically determined at electrodes 5, 26.


The depiction measurement may be made prior to, during or subsequent to, the measurement of diffusion coefficient by the method of the invention. This enables a substantial improvement in accuracy and reproducibility to be obtained.


In the embodiments described the membrane is preferably an asymmetric porous membrane of the kind described in U.S. Pat. No. 4,629,563 and U.S. Pat. No. 4,774,039 both of which are incorporated herein in their entirety by reference. However symmetrical porous membranes may be employed. The membrane may be in the form of a sheet, tube, hollow fibre or other suitable form.


If the membrane is asymmetric the target area is preferably on the more open side of the asymmetric membrane. The uncompressed membrane desirably has a thickness of from 20 to 500 μm. The minimum thickness is selected having regard to speed, sensitivity, accuracy and cost. If desired a gel may be employed to separate haematocrit from GOD. The gel may be present between the electrodes and/or in the space between the sample application area and the electrodes.


The working electrode is of any suitable metal for example gold, silver, platinum, palladium, iridium, lead, a suitable alloy. The working electrode may be preformed or formed in situ by any suitable method for example sputtering, evaporation under partial vacuum, by electrodeless plating, electroplating, or the like. Suitable non-metal conductors may also be used for electrode construction. For example, conducting polymers such as poly(pyrrole), poly(aniline), porphyrin “wires”, poly(isoprene) and poly (cis-butadiene) doped with iodine and “ladder polymers”. Other non-metal electrodes may be graphite or carbon mixed with a binder, or a carbon filled plastic. Inorganic electrodes such as In2 O3 or SnO2 may also be used. The counter/reference electrode may for example be of similar construction to the working electrode. Nickel hydroxide or a silver halide may also be used to form the counter/reference electrode. Silver chloride may be employed but it will be understood that chloridisation may not be necessary and silver may be used if sufficient chloride ions are present in the blood sample. Although in the embodiments described the working electrode is shown on the upper surface of the biosensor and the counter/reference electrode is on the lower surface, these may be reversed.


It is preferable that the working electrode and counter (or counter/reference) electrodes are of substantially the same effective geometric area.


If a separate reference and counter electrode are employed, they may be of similar construction. The reference electrode can be in any suitable location.


It will be understood that the features of one embodiment hereindescribed may be combined with those of another. The invention is not limited to use with any particular combination of enzyme and mediator and combinations such as are described in EP 0351892 or elsewhere may be employed. The system may be used to determine analytes other than glucose (for example, cholesterol) by suitable adaptation of reagents and by appropriate membrane selection. The system may also be adapted for use with media other than blood. For example the method may be employed to determine the concentration of contaminants such as chlorine, iron, lead, cadmium, copper, etc., in water.


Although the cells herein described have generally planar and parallel electrodes it will be understood that other configurations may be employed, for example one electrode could be a rod or needle and the other a concentric sleeve.


It will be apparent to those skilled in the art from the disclosure hereof the invention may be embodied in other forms without departing from the inventive concept herein disclosed.

Claims
  • 1. An apparatus for determining a concentration of glucose in a blood sample, the apparatus comprising: (a) a hollow electrochemical cell, the cell comprising: (1) at least one non-metal working electrode;(2) at least one counter electrode or counter/reference electrode, wherein the working electrode and the counter electrode or counter/reference electrode face each other, are located on different planes, and are separated by a distance of from about 20 microns to about 200 microns;(3) a spacer interposed between the working electrode and the counter electrode or counter/reference electrode, wherein the spacer comprises a non-conductive polymeric material, and wherein walls of the spacer and the electrodes define the hollow cell; and(4) a fluid permeable side-wall on at least one side of the hollow cell permitting entry of the sample into the hollow cell, wherein the hollow cell comprises an effective cell volume of less than 1.5 microliters; and(b) circuitry configured to apply an electric potential difference between the working electrode and the counter electrode or counter/reference electrode, measure a current between the working electrode and the counter electrode or counter/reference electrode, and determine the diffusion coefficient of a redox mediator in the cell, and independently its concentration, from cell current.
  • 2. The apparatus of claim 1, wherein at least one working electrode comprises a non-metal selected from the group consisting of graphite, carbon, and carbon-filled plastic.
  • 3. The apparatus of claim 2, wherein at least one counter electrode or counter/reference electrode comprises a metal or a metal coated substrate.
  • 4. The apparatus claim 3, wherein the metal is selected from the group consisting of gold, silver, platinum, palladium, iridium, lead, and alloys thereof.
  • 5. The apparatus of claim 4, wherein the metal comprises silver and wherein a reduced form or an oxidized form of a redox species is contained within the sample, the sample further comprising chloride ions.
  • 6. The apparatus of claim 5, wherein the fluid permeable side-wall comprises an opening.
  • 7. The apparatus of claim 1, wherein the circuitry comprises a microprocessor.
  • 8. The apparatus of claim 1, wherein the working electrode and the counter electrode or counter/reference electrode are planar electrodes.
  • 9. The apparatus of claim 1, wherein the current between the working electrode and the counter electrode or counter/reference electrode achieves a steady-state current.
  • 10. The apparatus of claim 1, wherein the at least one counter electrode or counter/reference electrode is only a single electrode.
  • 11. The apparatus of claim 1, wherein the electric potential difference between the working electrode and the counter electrode or counter/reference electrode is an approximately fixed potential.
Priority Claims (1)
Number Date Country Kind
PN 3639 Jun 1995 AU national
Parent Case Info

This is a continuation of application Ser. No. 10/035,924, filed Dec. 21, 2001, now U.S. Pat. No. 6,960,289 which is a continuation of application Ser. No. 09/618,515, filed Jul. 18, 2000, now U.S. Pat. No. 6,413,410, which is a continuation of application Ser. No. 08/981,385, filed Apr. 17, 1998, now U.S. Pat. No. 6,284,125, which is the national phase under 35 U.S.C. §371 of PCT International Application No. PCT/AU96/00365, which has an International filing date of Jun. 19, 1996, which designated the United States of America, which was published by the International Bureau in English on Jan. 3, 1997, and which claims priority to Australian Provisional Application No. PN 3639, filed Jun. 19, 1995.

US Referenced Citations (120)
Number Name Date Kind
4053381 Hamblen et al. Oct 1977 A
4076596 Connery et al. Feb 1978 A
4088448 Lilja et al. May 1978 A
4224125 Nakamura et al. Sep 1980 A
4233029 Columbus Nov 1980 A
4254083 Columbus Mar 1981 A
4254546 Ullery, Jr. Mar 1981 A
4259165 Miyake Mar 1981 A
4301412 Hill et al. Nov 1981 A
4301414 Hill et al. Nov 1981 A
4303887 Hill et al. Dec 1981 A
4307188 White Dec 1981 A
4319969 Oda et al. Mar 1982 A
4374013 Enfors Feb 1983 A
4404066 Johnson Sep 1983 A
4431004 Bessman et al. Feb 1984 A
4431507 Nankai et al. Feb 1984 A
4508613 Busta et al. Apr 1985 A
4517287 Scheibe et al. May 1985 A
4517291 Seago May 1985 A
4533440 Kim Aug 1985 A
4545382 Higgins et al. Oct 1985 A
4552840 Riffer Nov 1985 A
4554064 McClintock et al. Nov 1985 A
4591550 Hafeman et al. May 1986 A
4629563 Wrasidlo Dec 1986 A
4654197 Lilja et al. Mar 1987 A
4664119 Bessman et al. May 1987 A
4711245 Higgins et al. Dec 1987 A
4774039 Wrasidlo Sep 1988 A
4782265 Schaper et al. Nov 1988 A
4790925 Miller et al. Dec 1988 A
4897173 Nankai et al. Jan 1990 A
4900424 Birth et al. Feb 1990 A
4911794 Parce et al. Mar 1990 A
4919770 Preidel et al. Apr 1990 A
4963815 Hafeman Oct 1990 A
4988429 Matthiessen et al. Jan 1991 A
4989452 Toon et al. Feb 1991 A
5059908 Mina Oct 1991 A
5064516 Rupich Nov 1991 A
5089112 Skotheim et al. Feb 1992 A
5089320 Straus et al. Feb 1992 A
5108564 Szuminsky et al. Apr 1992 A
5120420 Nankai et al. Jun 1992 A
5122244 Hoenes et al. Jun 1992 A
5126034 Carter et al. Jun 1992 A
5128015 Szuminsky et al. Jul 1992 A
5141868 Shanks et al. Aug 1992 A
5151166 Harral et al. Sep 1992 A
5156972 Issachar et al. Oct 1992 A
5171689 Kawaguri et al. Dec 1992 A
5192415 Yoshioka et al. Mar 1993 A
5229282 Yoshioka et al. Jul 1993 A
5243516 White Sep 1993 A
5243526 Ito et al. Sep 1993 A
5269903 Ikariyama et al. Dec 1993 A
5272087 El Murr et al. Dec 1993 A
5282950 Dietze et al. Feb 1994 A
5312590 Gunasingham May 1994 A
5314605 Matthiessen et al. May 1994 A
5320732 Nankai et al. Jun 1994 A
5366609 White et al. Nov 1994 A
5382346 Uenoyama et al. Jan 1995 A
5384028 Ito Jan 1995 A
5385846 Kuhn et al. Jan 1995 A
5388163 Elko et al. Feb 1995 A
5393399 Van Den Berg et al. Feb 1995 A
5395504 Saurer et al. Mar 1995 A
5399256 Bohs et al. Mar 1995 A
5413690 Kost et al. May 1995 A
5437999 Diebold et al. Aug 1995 A
5443710 Broderick Aug 1995 A
5496453 Uenoyama et al. Mar 1996 A
5508171 Walling et al. Apr 1996 A
5509410 Hill et al. Apr 1996 A
5512159 Yoshioka et al. Apr 1996 A
5517313 Colvin, Jr. May 1996 A
5518590 Fang May 1996 A
5520787 Hanagan et al. May 1996 A
5527446 Kosek et al. Jun 1996 A
5567302 Song et al. Oct 1996 A
5575895 Ikeda et al. Nov 1996 A
5607565 Azarnia et al. Mar 1997 A
5611908 Matthiessen et al. Mar 1997 A
5620579 Genshaw et al. Apr 1997 A
5628890 Carter et al. May 1997 A
5645709 Birch et al. Jul 1997 A
5651869 Yoshioka et al. Jul 1997 A
5682884 Hill et al. Nov 1997 A
5695947 Guo et al. Dec 1997 A
5726565 Uchiyama et al. Mar 1998 A
5727548 Hill et al. Mar 1998 A
5762770 Pritchard et al. Jun 1998 A
5849174 Sanghere et al. Dec 1998 A
5863400 Drummond et al. Jan 1999 A
5909114 Uchiyama et al. Jun 1999 A
5942102 Hodges et al. Aug 1999 A
5997817 Crismore et al. Dec 1999 A
6071391 Gotoh et al. Jun 2000 A
6117289 Yamamoto et al. Sep 2000 A
6153069 Pottgen et al. Nov 2000 A
6174420 Hodges et al. Jan 2001 B1
6179979 Hodges et al. Jan 2001 B1
6193873 Ohara et al. Feb 2001 B1
6214205 Willner et al. Apr 2001 B1
6218134 Yamauchi et al. Apr 2001 B1
6251260 Heller et al. Jun 2001 B1
6270637 Crismore et al. Aug 2001 B1
6284125 Hodges et al. Sep 2001 B1
6325973 Leland et al. Dec 2001 B1
6863801 Hodges et al. Dec 2001 B2
6413395 Bhullar et al. Jul 2002 B1
6413410 Hodges et al. Jul 2002 B1
6461496 Feldman et al. Oct 2002 B1
6503381 Gotoh et al. Jan 2003 B1
6521110 Hodges et al. Feb 2003 B1
6544212 Galley et al. Apr 2003 B2
6780756 Farber et al. Aug 2004 B1
20020012943 Fowlkes et al. Jan 2002 A1
Foreign Referenced Citations (92)
Number Date Country
5487394 Feb 1993 AU
3104293 Jul 1993 AU
1325908 Dec 2001 CN
3103464 Aug 1982 DE
3103464 Aug 1982 DE
3103484 Aug 1982 DE
29709141 Aug 1997 DE
0125 137 Nov 1984 EP
0 251 915 Jan 1988 EP
0 255 291 Feb 1988 EP
0 266 204 Apr 1988 EP
0 278 647 Aug 1988 EP
0290770 Nov 1988 EP
0 299 779 Jan 1989 EP
0 351 516 Jan 1990 EP
0 351 891 Jan 1990 EP
0 351 892 Jan 1990 EP
0 359 831 Mar 1990 EP
0 171 375 May 1990 EP
0 367 432 May 1990 EP
0 367 432 May 1990 EP
0170 375 May 1990 EP
0 400 918 Dec 1990 EP
0400918 Dec 1990 EP
0 418 404 Mar 1991 EP
0 422 708 Apr 1991 EP
0 451 981 Oct 1991 EP
0 127 958 Mar 1992 EP
0 560 336 Sep 1993 EP
0 585 933 Mar 1994 EP
593096 Apr 1994 EP
0 603 954 Jun 1994 EP
0 609 760 Aug 1994 EP
0 735 303 Oct 1996 EP
0 741 186 Nov 1996 EP
0 764 469 Mar 1997 EP
0 406 304 Aug 1997 EP
0 964 059 Dec 1999 EP
2 020 424 Nov 1979 GB
2020424 Nov 1979 GB
2 154 735 Sep 1985 GB
2194112 Feb 1988 GB
2 201 248 Aug 1988 GB
2215846 Sep 1989 GB
2 235 050 Feb 1991 GB
54006595 Jan 1979 JP
60017344 Jan 1985 JP
60244853 Dec 1985 JP
60250246 Dec 1985 JP
61002060 Jan 1986 JP
6222874 Oct 1987 JP
62228274 Oct 1987 JP
01253648 Oct 1989 JP
01294453 Nov 1989 JP
3167464 Jul 1991 JP
466112 Mar 1992 JP
4-343065 Nov 1992 JP
4340453 Nov 1992 JP
04343065 Nov 1992 JP
5-2007 Jan 1993 JP
05002007 Jan 1993 JP
0580018 Mar 1993 JP
05-312761 Nov 1993 JP
5312760 Nov 1993 JP
6222874 Aug 1994 JP
06310746 Nov 1994 JP
08304340 Nov 1996 JP
9222408 Aug 1997 JP
9236570 Sep 1997 JP
9243588 Sep 1997 JP
2007225619 Sep 2007 JP
2 046 361 Oct 1995 RU
1351627 Nov 1987 SU
1806187 Mar 1993 SU
WO8908713 Sep 1989 WO
9005910 May 1990 WO
9109139 Jun 1991 WO
WO9215701 Sep 1992 WO
WO9402842 Feb 1994 WO
WO9429731 Dec 1994 WO
WO9516198 Jun 1995 WO
9521934 Aug 1995 WO
WO-9528634 Oct 1995 WO
WO9700441 Jan 1997 WO
9718464 May 1997 WO
9718465 May 1997 WO
9811426 Mar 1998 WO
9843073 Oct 1998 WO
9843074 Oct 1998 WO
9946585 Sep 1999 WO
0020626 Apr 2000 WO
0208763 Jan 2002 WO
Related Publications (1)
Number Date Country
20050077176 A1 Apr 2005 US
Continuations (3)
Number Date Country
Parent 10035924 Dec 2001 US
Child 10624795 US
Parent 09618515 Jul 2000 US
Child 10035924 US
Parent 08981385 US
Child 09618515 US