The present invention relates to the electrochemical detection of analytes, particularly analytes of biological/medical significance such as cholesterol. Different aspects relate to a method, a sensor device suitable for use in the method, and the manufacture of such devices.
The main cause of death in developed countries is cardiovascular disease and the contribution of elevated blood cholesterol levels to this is well established. There is consequently a need to measure these levels (physiological range 150-250+ mg/dL) in order to diagnose the condition & prescribe appropriate dietary or pharmaceutical treatment. In one group of embodiments, this invention consists of the adaptation of a cholesterol colour test to an electrochemical test.
In a first aspect the invention provides a method of detecting an analyte wherein the analyte is either (a) a substrate which is oxidisable by means of an oxidase with the generation of hydrogen peroxide, the quantity of hydrogen peroxide being dependent on the quantity of analyte, or said analyte is convertible into a said oxidisable substrate, or (b) said oxidase; said method of comprising.
In a second aspect the invention provides a sensor for use in such a method. The sensor may be a disposable, single-use item.
In a third aspect the invention provides a method of producing such a sensor.
A preferred type of embodiment, e.g. for cholesterol measurement, employs a single-use screenprinted electrode, and preferably uses ABTS (2,2′-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid)) as an electrochemical mediator instead of as a chromogen.
This can provide three important advantages in cholesterol testing:
A preferred embodiment is a novel use of an HRP (Horseradish Peroxidase) substrate, ABTS, as a mediator in an electrochemical enzyme-electrode (henceforth, a sensor) in which HRP participates in a linked two-enzyme reaction by utilising hydrogen peroxide produced by an (analyte-oxidising) oxidase (
ABTS is an oxidation substrate for HRP. Its oxidation is concomitant with the reduction of hydrogen peroxide which is produced by the first enzyme (usually called an oxidase). The oxidised form of ABTS is reduced by the electrode and this reduction current provides a quantification of the analyte. In this way, the ABTS mediates between an enzymic reaction and an electrode, delivering & collecting electrons in a stoichiometric fashion.
The principal envisaged application is in the assay of cholesterol in blood although other applications are possible. ABTS enables use of a low electrode potential for detection of analytes by way of the linked two-enzyme reaction (for example 100-150 mV on screenprinted carbon; Ag/AgCl reference). Low electrode potential will preclude or reduce many of the operational interferences to be found in clinical samples such as blood (for example ascorbate, urate, acetaminophen). The linked reaction also enables electrochemical detection of other analytes which are oxidised by way of an oxidase enzyme which may not readily pass electrons directly to a mediator (as is the case with cholesterol oxidase).
A more practical type of embodiment may employ a sensor electrode assembly as follows.
An electrode has an electrode surface. A dry layer across the electrode surface is impregnated with enzymes, ABTS, buffer & electrolyte. This layer will be hydrated and activated by addition of sample containing analyte. The layer may also contain reagents required to facilitate the solubilisation or dissolution of the sample and/or analyte. Alternatively, such reagents may be carried in a separate layer which is close to the enzyme-containing layer and through which the sample passes. Either layer may also contain materials for the selective removal, or partial removal, of interferences (such materials may also be carried in a separate layer). This removal of interferences may be by way of chemical reaction or precipitation such that the interferent species is converted to a non-interferent species or a less-interferent species or else is prevented from interfering by way of precipitation. In this respect, two examples of an interferant species are HDL- and LDL-cholesterol (high density lipoprotein & low density lipoprotein). A two-channel cholesterol sensor can be envisaged in which one channel measures total cholesterol whilst the other channel measures either HDL- or LDL-cholesterol after removal of the other (interferent) species. The HDL:LDL ratio as well as total cholesterol concentration could be calculated from the result given by the two channels when tested with the same blood sample. The layers described could be composed of pre-formed membranes or of solutions, suspensions or slurries which are deposited as layers on the electrode surface. A specific example of such a sensor would be one designed to detect cholesterol in blood as shown in
It is important to note that the format shown, in which each channel is shown as three distinct layers (e, f & g), is intended only to emphasise the different functional components of the sensor. These components may also be mixed into two or even one layer.
Another example is a sensor for blood glucose, for which the enzymes incorporated would be glucose oxidase and HRP.
Sensors were made and tested as described in connection with
As a corollary of this sensor format it might be envisaged that a sensor could be constructed lacking the oxidase enzyme but containing oxidase substrate. Such a sensor could then be used to detect oxidase activity in an applied sample. This could be pertinent to the monitoring of xanthine oxidase levels which can be indicative of liver pathology.
It is stressed that an alternative oxidation substrate for HRP, which is known to be electrochemically active (such as ferrocyanide), could clearly be used instead of ABTS in this application. However, this invention lies in the novel identification of ABTS as a suitable electrochemical mediator in the described sensor format.
Number | Date | Country | Kind |
---|---|---|---|
0115793.2 | Jun 2001 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB02/03004 | 6/28/2002 | WO |