Electrochemical energy store and method for determining the wear to an electrochemical energy store

Information

  • Patent Grant
  • 7218079
  • Patent Number
    7,218,079
  • Date Filed
    Friday, April 4, 2003
    21 years ago
  • Date Issued
    Tuesday, May 15, 2007
    17 years ago
Abstract
A method for determining the wear to an electrochemical energy store and an electrochemical energy store allows for continuously determining the amounts of charge (qL) converted during charging cycles of the energy store and calculating a wear variable (Qv) which characterizes the wear as a function of the determined converted amount of charge (qL).
Description
BACKGROUND

The invention relates to a method for determining the wear to an electrochemical energy store resulting from the loss of storage capacity, and to an energy store, in particular a starter battery for motor vehicles, having measurement means for determining the amounts of charge converted during the charging cycles of the energy store, and having computation means.


Energy stores, for example rechargeable electrochemical storage batteries, are subject to wear, in particular during discharging and charging. In addition to discharging and charging, there are also other operating conditions which speed up the wear to electrochemical energy stores. These include, for example, the total operating life in the case of a lead-acid rechargeable battery, that is to say the total time which has passed since it was brought into use, including the periods in which the rechargeable battery had no electrical load applied to it.


Furthermore, increased temperatures can increase the wear during periods without any electrical load being applied, and the wear caused by cyclic discharging and charging.


For the use of energy stores, it is desirable to determine the wear on the basis of the loss of storage capacity. However, the complexity of the processes that take place in the energy store represent a problem in this case, which can be described only with difficulty by using scientific methods.


By way of example, DE 195 40 827 C2 discloses an empirical method for determining the aging state of a battery, in which a battery-specific family of characteristics is predetermined for battery aging. A battery aging value is determined with the aid of the family of characteristics by recording instantaneous values of battery aging influencing variables for the battery that is being monitored.


DE 39 01 680 C3 discloses a method for monitoring the cold starting capability of a starter battery in which, when the internal combustion engine is running, the charging voltage is observed continuously and is monitored to determine whether it has exceeded or fallen below predetermined limit values. This makes it possible to identify a defect in the generator. Furthermore, the time profile of the voltage drop across the connecting terminals of the electrical starter is observed and evaluated during the starting process. However, in this case, it is not possible to make any statement about the available storage capacity of the energy store.


DE 38 08 559 C2 discloses a method for monitoring the power limit of a starter battery, in which an amount of charge balance is produced by adding up the amounts of charge which have flowed in and flowed out. The state of charge of the starter battery is assessed from this, in conjunction with the monitoring of a limiting terminal voltage and the temperature. It is not possible to make any statement about the remaining maximum storage capacity of the energy store in this case, either.


The object of the invention was thus to provide a method for determining the wear to an electrochemical energy store resulting from the loss of storage capacity, by means of which a wear variable can be calculated reliably and using simple means, as a measure of the loss of storage capacity.


SUMMARY OF THE INVENTION

An exemplary embodiment relates to a method for determining the wear to an electrochemical energy store. The method includes continuously determining the amounts of charge (qL) converted during charging cycles of the energy store. The method also includes calculating a wear variable (Qv) which characterizes the wear as a function of the determined converted amount of charge (qL).


Another exemplary embodiment relates to an energy store, in particular a starter battery for motor vehicles. The energy store includes measurement means for determining the amounts of charge (qL) converted during charging cycles of the energy store. The energy store also includes computation means designed to calculate a wear variable (Qv) which characterizes the loss of storage capacity as a function of the determined amount of charge (qL) converted.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be explained in more detail in the following text using the attached drawing, in which:



FIG. 1 shows an illustration of a model of an electrochemical energy store.





DETAILED DESCRIPTION OF THE PREFERRED AND EXEMPLARY EMBODIMENTS

According to an exemplary embodiment, the present invention provides a method for determining the wear to an electrochemical energy store that utilizes continuous determination of the amounts of charge converted during the charging cycles of the energy store and calculation of a wear variable which characterizes the loss of storage capacity as a function of the determined converted amount of charge.


Surprisingly, it has been found that the wear to an energy store can be determined easily and accurately by considering the amount of charge with which the energy store has been charged. This can be explained by the fact that the charging process governs the structural changes (which cause the wear to the energy store) in the electrochemical active materials and, furthermore, overcharging that affects wear is taken into account. In this case, it was recognized that the loss of storage capacity increases progressively as the amount of charge converted during the charging cycles increases, and that the discharging cycles have no significant influence on this loss.


The amounts of charge converted are preferably determined from the sum of the amounts of charge fed into the energy store, for example by continuous integration of the charging current which flows into the energy store, or by recording changes in the state of charge of the energy store.


It was also recognized that very small charge flows in the charging or discharging direction, which alternate, contribute only a small amount or nothing to the wear to the energy store. The amounts of charge converted, and which are included in the calculation of the wear variable, should thus be greater than a defined minimum amount of charge per charging cycle. Small contributions to the charge flow are thus ignored when determining the wear. The minimum amount of charge is preferably in the range from 0.1 to 1×10−6 times, and particularly preferably in the range from 0.01 to 0.001 times, the initial capacity of an equivalent new energy store.


By way of example, the wear variable may be determined in proportion to a wear function which comprises the sum of at least the terms a0, a1×qk and a2×ql, (f(q)=a0+a1×qk+a2×ql). The parameters a0, a1 and a2 are in this case constant. The variable q denotes the amounts of charge converted, the parameter k has values of less than or equal to unity, and the parameter l has values of greater than unity.


It is particularly advantageous for the wear function to be developed into a power series at a development point q0, which comprises a sum of at least the terms a1×(q−q0)k and a2×(q−q0)l and a constant a0. The parameters a1 and a2 are constant. The variable q once again denotes the amount of charge converted, and the parameter k has values of less than or equal to unity, and the parameter l has values of greater than unity.


The wear function can also be developed into a Taylor series at the development point q0, which comprises a sum of at least the constant value f(q0) of the wear function at the development point q0 and at least the terms f′(q0)×(q−q0) and (f″(q0)/2)×(q−q0)2. The constant f′(q0) is the first derivative of the wear function at the development point q0, and f″(q0) is the second derivative.


The wear variable is preferably determined in 15 proportion to the initial capacity of an equivalent new energy store, for example from the product of the wear function and the initial capacity. However, it may also be proportional to the capacity of an identical energy store at a different operating time.


By way of example, a wear function f(q)=0.0013×qL+4×10−5×qL2 has been found to be suitable for determining the wear for a lead-acid starter rechargeable battery, with the amount of charge qL being measured in units of the rated capacity of the lead-acid starter rechargeable battery.


It is particularly advantageous to determine a characteristic value for the present storage capacity of the energy store from the difference between the initial capacity of an equivalent new energy store and the wear variable. This characteristic value can be indicated for the present storage capacity, can be used for further calculations, or can be used as a control parameter.


In one development of the method according to the invention, the wear variable may also be linked to further state variables which describe the state of the energy store and are determined using conventional methods. State variables such as these may, f or example, be the total operating life of the energy store, the temperature influences, the state of charge, the readiness to produce power, etc.


Another exemplary embodiment relates to an energy store of this generic type by means of computation means which are designed to calculate a wear variable which characterizes the loss of storage capacity as a function of the determined amount of charge converted, using the method described above.


Rechargeable electrochemical energy stores are generally used in two different operating modes.


During pure charging/discharging, charging and discharging phases which are limited in time with respect to one another alternate. The charging phase is in this case generally continued until a defined state, preferably the fully charged state, is reached. This is often followed at a later time by a discharging phase, whose end is defined either by the end of the energy requirement or by exhaustion of the energy store.


When charging and discharging phases alternate, the phase lengths and the amounts of charge converted in the process may differ widely. Normally, the energy store never reaches either the fully charged state or the exhausted state.


Pure charging/discharging is typical, for example, for electrical vehicles such as fork-lift trucks, for flashlights and for portable electronic appliances such as laptops, mobile telephones and camcorders etc. Alternating operation occurs, in contrast, for the vehicle power supply system battery in motor vehicles or generally in so-called island modes, such as those which occur in other vehicles, such as ships, trains, aircraft and space vehicles, or in local power supply networks with battery backup which are supplied, for example, by fuel, solar power or wind power.


During pure charging/discharging, generally relatively large charge flows with respect to the storage capacity of the energy store follow one another alternately in the charging and discharging directions. During alternating operation, on the other hand, very small charge flows often occur in the charging or discharging direction before the mathematical sign of the current flowing through the energy store is reversed once again.



FIG. 1 shows a sketch of an energy store in which an amount of charge qL is fed in the charging cycle, and a discharge amount qE is drawn in a discharging cycle. When in a new state, the energy store has an initial capacity Qn for charge storage. During its life, the available storage capacity Qact decreases owing to wear. The wear variable Qv characterizes the loss of available storage capacity Qact.


It has now been found that the wear in the form of the loss of available storage capacity Qact continues as the amount of charge converted during charging increases, with the wear taking place progressively. The flow of the same amount of charge thus on the one hand leads to greater wear the greater the amount of charge which has already flowed through the energy store in total.


It has also been found that very small charge flows in the charging or discharging direction, which alternate, have scarcely any influence on the wear of the energy store. This is primarily due to the fact that very small charge flows lead only partially, or not at all, to electrochemical reactions in the electrochemical energy store and, instead, are borne at least partially by other processes, such as charge reversal of the Helmholtz double layer between a solid body and the electrolyte. The amount of charge qL, which is converted and is taken into account in order to determine the wear thus includes only those amounts of charge qL which, within a charging cycle, exceed a minimum amount of charge qmin in the range from 0.1 to 1×10−6 times the initial capacity Qn of an equivalent new energy store. The amount of charge qL, converted should preferably exceed a minimum amount of charge qmin in the range from 0.01 to 0.001 times the initial capacity Qn.


The amount of charge converted during one charging cycle is determined, for example, by integration of the measured, calculated or estimated current. Alternatively, the amount of charge qL converted can be determined by measurement, calculation or estimation of a change in the state of charge which, for example, may be derived from a measurement of the no-load voltage, or from some other voltage.


The wear variable Qv is then determined as a function f(qL) of the determined amount of charge qL converted.


The function may consist, for example, of the sum of at least the terms a0, a1×qk and q2×ql:

f(q)=a0+a1×qk+a2×ql.


In this case, a0, a1 and a2 are constant parameters. The parameter k is defined such that it assumes values of less than or equal to unity, and the parameter l is greater than unity.


In one particular refinement of the method, the wear function is defined as:

f(qL)=a1×qL+a2×qL2.


The coefficients a1=0.0013 and a2=4×10−5 have been found to be optimum values for a lead-acid starter rechargeable battery.


The wear function f(q) can also be developed into a power series at the development point q0, and consists at least of the following sum:

f(q)=a0+a1×(q−q0)k+a2×(q−q0)l.


In this case, a0, a1 and a2 are once again constant parameters, and the parameters k are defined for values of less than or equal to unity, and l for values of greater than unity.


The wear function f(q) may also be developed into a Taylor series at the development point q0, which has at least the following sum:

f(q)=f′(q0)×(q−q0)+(f″(q0)/2)×(q−q0)2.


The wear variable Qv is then preferably calculated from the product of the wear function f(qL) and the initial capacity Qn.


The storage capacity Qact available at any given time is calculated from the difference between the initial capacity Qn and the wear variable Qv:

Qact=Qn−Qv=Qn(1−f(qL)).


Priority application DE 102 15 071.0 filed on Apr. 5, 2002, including the specification, drawing, claims, and abstract, is incorporated herein by reference in its entirety.


It is important to note that the construction and arrangement of the elements of the energy store as shown and described in the preferred and other exemplary embodiments is illustrative only. Although only a few embodiments of the present inventions have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible without materially departing from the novel teachings and advantages of the subject matter recited herein. It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability. Other substitutions, modifications, changes and omissions may be made in the design, operating conditions and arrangement of the preferred and other exemplary embodiments without departing from the scope of the present invention.

Claims
  • 1. A method for determining the wear to an electrochemical energy store, comprising: continuously determining the amounts of charge (qL) converted during charging cycles of the energy store; andcalculating a wear variable (Qv) which characterizes the wear as a function of the determined converted amount of charge (qL);wherein the determined converted amount of charge (qL) is greater than a defined minimum amount of charge (qmin) per charging cycle; andwherein the minimum amount of charge (qmin) is in the range from 0.1 to 1×10−6 times an initial capacity (Qn) of an equivalent new energy store.
  • 2. The method of claim 1 wherein determining the converted amount of charge (qL) utilizes a sum of the amounts of charge fed into the energy store.
  • 3. The method of claim 1 wherein determining the amount of charge (qL) converted includes continuously integrating charging current (IL) which flows into the energy store.
  • 4. The method of claim 1 wherein determining the amounts of charge (qL) converted includes detecting state of charge changes in the energy store.
  • 5. The method of claim 1 wherein the amounts of charge (qL) are greater than a defined minimum amount of charge (qmin) per charging cycle.
  • 6. The method of claim 1 wherein the minimum amount of charge (qmin) is in the range from 0.01 to 0.001 times the initial capacity (Qn) of the equivalent new energy store.
  • 7. The method of claim 1 wherein the wear variable (Qv) is proportional to a wear function (f(q)), the wear function (f(q)) comprising the sum of at least the terms a0, a1×qk and a2×q1, where a0, a1 and a2 are constant parameters, q is the amount of charge converted and the parameter k is less than or equal to unity, and the parameter 1 is greater than unity.
  • 8. The method of claim 1 wherein the wear variable (Qv) is proportional to a wear function (f(q)), the wear function (f(q)) being developed as a power series at a development point (q0) and comprising a sum of at least the terms a1×(q−q0)k and a2×(q−q0)1and a constant a0, where a1 and a2 are constant parameters, q is the amount of charge converted, and the parameter k is less than or equal to unity, and the parameter 1 is greater than unity.
  • 9. The method of claim 1 wherein the wear variable (Qv) is developed proportionally to a wear function (f(q)) into a Taylor series at a development point (q0) comprising a sum of a constant value (f(q0)) of the wear function (f(q)) at the development point (q0) and at least the terms f′(q0)×(q−q0) and (f″(q0)/2)×(q−q0) 2, where f′(q0) is the first derivative of the wear function (f(q)) at the development point (q0) and f′(q0) is the second derivative of the wear function (f(q)) at the development point (q0).
  • 10. The method of claim 1 wherein the wear variable (Qv) is proportional to an initial capacity (Qn) of an equivalent new energy store.
  • 11. The method of claim 1 wherein calculating the wear variable (Qv) utilizes the product of a wear function (f(q)) and an initial capacity (Qn) of an equivalent new energy store.
  • 12. The method of claim 1 further comprising determining a characteristic value for a present storage capacity (Qact) of the energy store from the difference between an initial capacity (Qn) of an equivalent new energy store and the wear variable (Qv).
  • 13. The method of claim 1 wherein the wear variable (Qv) is linked to further state variables which describe the state of the energy store.
Priority Claims (1)
Number Date Country Kind
102 15 071 Apr 2002 DE national
US Referenced Citations (109)
Number Name Date Kind
3906329 Bader Sep 1975 A
4153867 Jungfer et al. May 1979 A
4193025 Frailing et al. Mar 1980 A
4207611 Gordon Jun 1980 A
4322685 Frailing et al. Mar 1982 A
4595880 Patil Jun 1986 A
4642600 Gummelt et al. Feb 1987 A
4659977 Kissel et al. Apr 1987 A
4665370 Holland May 1987 A
4719427 Morishita et al. Jan 1988 A
4816736 Dougherty et al. Mar 1989 A
4876513 Brilmyer et al. Oct 1989 A
4888716 Ueno Dec 1989 A
4937528 Palanisamy Jun 1990 A
4943777 Nakamura et al. Jul 1990 A
4952861 Horn Aug 1990 A
5002840 Klebenow et al. Mar 1991 A
5032825 Kuznicki Jul 1991 A
5055656 Farah et al. Oct 1991 A
5079716 Lenhardt et al. Jan 1992 A
5130699 Reher et al. Jul 1992 A
5159272 Rao et al. Oct 1992 A
5162164 Dougherty et al. Nov 1992 A
5204610 Pierson et al. Apr 1993 A
5223351 Wruck Jun 1993 A
5280231 Kato et al. Jan 1994 A
5281919 Palanisamy Jan 1994 A
5316868 Dougherty et al. May 1994 A
5321627 Reher Jun 1994 A
5352968 Reni et al. Oct 1994 A
5381096 Hirzel Jan 1995 A
5404129 Novak et al. Apr 1995 A
5412323 Kato et al. May 1995 A
5416402 Reher et al. May 1995 A
5428560 Leon et al. Jun 1995 A
5439577 Weres et al. Aug 1995 A
5488283 Dougherty et al. Jan 1996 A
5549984 Dougherty Aug 1996 A
5552642 Dougherty et al. Sep 1996 A
5563496 McClure Oct 1996 A
5572136 Champlin Nov 1996 A
5578915 Crouch, Jr. et al. Nov 1996 A
5650712 Kawai et al. Jul 1997 A
5656915 Eaves Aug 1997 A
5680050 Kawai et al. Oct 1997 A
5698965 York Dec 1997 A
5721688 Bramwell Feb 1998 A
5744936 Kawakami Apr 1998 A
5744963 Arai et al. Apr 1998 A
5761072 Bardsley, Jr. et al. Jun 1998 A
5773977 Dougherty Jun 1998 A
5808367 Akagi et al. Sep 1998 A
5808445 Aylor et al. Sep 1998 A
5818116 Nakae et al. Oct 1998 A
5818333 Yaffe et al. Oct 1998 A
5896023 Richter Apr 1999 A
5898292 Takemoto et al. Apr 1999 A
5936383 Ng et al. Aug 1999 A
5965954 Johnson et al. Oct 1999 A
5977654 Johnson et al. Nov 1999 A
5990660 Meissner Nov 1999 A
6016047 Notten et al. Jan 2000 A
6037749 Parsonage Mar 2000 A
6037777 Champlin Mar 2000 A
6057666 Dougherty et al. May 2000 A
6087808 Pritchard Jul 2000 A
6091325 Zur et al. Jul 2000 A
6118252 Richter Sep 2000 A
6118275 Yoon et al. Sep 2000 A
6144185 Dougherty et al. Nov 2000 A
6160382 Yoon et al. Dec 2000 A
6222341 Dougherty et al. Apr 2001 B1
6268712 Laig-Horstebrock et al. Jul 2001 B1
6271642 Dougherty et al. Aug 2001 B1
6296593 Gotou et al. Oct 2001 B1
6300763 Kwok Oct 2001 B1
6304059 Chalasani et al. Oct 2001 B1
6331762 Bertness Dec 2001 B1
6369578 Crouch, Jr. et al. Apr 2002 B1
6388421 Abe May 2002 B2
6388450 Richter et al. May 2002 B2
6392389 Kohler May 2002 B1
6392414 Bertness May 2002 B2
6392415 Laig-Horstebrock et al. May 2002 B2
6417668 Howard et al. Jul 2002 B1
6424157 Gollomp et al. Jul 2002 B1
6441585 Bertness Aug 2002 B1
6445158 Bertness et al. Sep 2002 B1
6452361 Dougherty et al. Sep 2002 B2
6472875 Meyer Oct 2002 B1
6495990 Champlin Dec 2002 B2
6507194 Suzuki Jan 2003 B2
6515452 Choo Feb 2003 B2
6515456 Mixon Feb 2003 B1
6522148 Ochiai et al. Feb 2003 B2
6534992 Meissner et al. Mar 2003 B2
6556019 Bertness Apr 2003 B2
6600237 Meissner Jul 2003 B1
6600293 Kikuchi Jul 2003 B2
6608482 Sakai et al. Aug 2003 B2
6653818 Laig-Horstebrock et al. Nov 2003 B2
20020008495 Dougherty et al. Jan 2002 A1
20020026252 Wruck et al. Feb 2002 A1
20020031700 Wruck et al. Mar 2002 A1
20030047366 Andrews et al. Mar 2003 A1
20030082440 Mrotek et al. May 2003 A1
20030142228 Flach et al. Jul 2003 A1
20030236656 Dougherty Dec 2003 A1
20040021468 Dougherty et al. Feb 2004 A1
Foreign Referenced Citations (32)
Number Date Country
22 42 410 Mar 1973 DE
2 242 510 Apr 1974 DE
25 11 426 Sep 1975 DE
3334128 May 1985 DE
37 12 629 Oct 1987 DE
38 08 559 Sep 1989 DE
39 01 680 Mar 1990 DE
40 07 883 Sep 1991 DE
38 82 374 Oct 1993 DE
44 14 134 Nov 1994 DE
43 39 568 May 1995 DE
689 24 169 Mar 1996 DE
195 40 827 May 1996 DE
195 43 874 May 1996 DE
197 50 309 May 1999 DE
691 31 276 Dec 1999 DE
198 47 648 Apr 2000 DE
694 23 918 Aug 2000 DE
199 52 693 May 2001 DE
199 60 761 May 2001 DE
93 21 638 Aug 2001 DE
100 21 161 Oct 2001 DE
699 00 638 Aug 2002 DE
0 516 336 Feb 1992 EP
1 116 958 Jul 2001 EP
1 120 641 Aug 2001 EP
WO 9715839 May 1997 WO
WO 99 17128 Apr 1999 WO
WO 99 66340 Dec 1999 WO
WO 0004620 Jan 2000 WO
WO 01 15023 Mar 2001 WO
WO 03001224 Jan 2003 WO
Related Publications (1)
Number Date Country
20030215699 A1 Nov 2003 US