The present invention relates to electrochemical processors that use proton conductive electrolyte to process hydrogen, including hydrogen generation, conversion, purification, separation and compression.
Hydrogen can be an important chemical feedstock that is used in the synthesis of methanol, ammonia, urea, hydrochloric acid and other chemical products. It is also used as an intermediate energy carrier for energy conversion from various resources to meet the needs of both stationary and transportation markets. Currently, about 50 million tons/year of H2 is produced worldwide, with 80% produced from natural gas.
Most fuel cell power systems use hydrogen as the fuel source. There are two ways to provide hydrogen to the fuel cell stacks. The first is to use a hydrogen storage device, such as high pressure hydrogen tank. The second is to integrate a fuel processor in the power system to generate hydrogen from hydrocarbon fuels.
Alternatively, some hydrocarbon fuels, such as methanol, formic acid, and ethanol can be directly used as the fuel for fuel cells for mobile applications. However, the performance of these fuel cells is not satisfactory.
Therefore, there is a need for hydrogen processing techniques that can efficiently process hydrogen. There is also a need for a compact fuel cell power system that can use hydrocarbon fuels for power generation.
Syngases containing a mixture of hydrogen (H2), carbon monoxide (CO) and water (H2O) and possibly other compounds are processed through one or more inputs 15 the apparatus 10 to generate substantially pure H2. This involves passing the syngases via the one or more inputs 15 and flowing the syngases through the anode 12 to generate protons H+. The generated protons H+ are then selectively passed through the membrane 11 and subsequently combined with electrons supplied via the cathode 13 in a reduction reaction to obtain substantially pure H2. The obtained substantially pure hydrogen is discharged through one or more outputs 16 of the apparatus 10. In addition, to the pure hydrogen, some water can also be discharged through the one or more outputs 16. As shown in
In parallel with passing hydrogen through the electrolyte, CO in the syngases could be absorbed on the anode 12 and the react with water on the anode 12 to generate protons. The protons will pass through the membrane electrolyte 11 to subsequently combine with electrons supplied via the cathode 13 in a reduction reaction to obtain substantially pure H2. The process of passing syngases through apparatus 10 converts CO to CO2 and generates and purifies hydrogen in one step, i.e., substantially simultaneously. The apparatus 10 can also be configured to also compress hydrogen at the same time with a proper mechanical design to handle high pressure. Alternatively, the obtained hydrogen can be compressed or further compressed using a compressor (not shown) separate from the apparatus 10. The apparatus 10 for the hydrogen generation from syngases or hydrocarbon compounds, or both can be used, for example, as the hydrogen source for an electrical power system. The hydrocarbon compounds can be methanol, ethanol, formic acid or other compounds. The hydrogen generation apparatus 10 can be integrated with electrical power generation devices, such as fuel cells or combustion engines. A portion of the electrical power generated by the electrical power generators can be used to drive the hydrogen generation apparatus and other components in the system. The balance of the electrical power is used as the output power.
The presence of carbon monoxide (CO) in the syngases can be responsible in a sluggish performance of the anode. Indeed, the carbon monoxide can be absorbed by the catalyst or adsorbed on the catalyst (typically platinum Pt and/or platinum Pt alloys) surface of the anode 12 which can cause a degradation of the anode 12 catalytic activities. This is known as “CO poisoning” of the anode catalyst. The carbon monoxide can come from different sources. The carbon monoxide can be a major content in the syngas mixture, an impurity in the syngas mixture, or can also be an intermediate product of the anode reaction with hydrocarbon compounds. The following chemical equations show the processes by which carbon monoxide can be absorbed by or adsorbed on the catalyst electrode (anode 12).
Equation (1) shows a process by which carbon monoxide gas (COgas) is adsorbed into the catalyst electrode (e.g., Pt catalyst) to obtain a catalyst with adsorbed CO (Pt—COads).
Equations (2) shows the carbon monoxide adsorption reaction as an intermediate product of the electrode reaction of hydrocarbon compounds (e.g., methanol CH3OH):
The catalyst can be pure Pt, Pt alloys or other materials. Equation (2) depicts the reaction of methanol with the catalyst, however, the hydrocarbon compounds can be any other alcohol (e.g., ethanol), an organic acid such as formic acid, an alkane such as methane, an alkene such as ethylene or others compounds, or any combination of two or more thereof. Both reactions (1) and (2) depict ways by which the catalyst in the anode 12 becomes poisoned by carbon monoxide which leads to a reduction in the catalytic activity of the catalyst (e.g. platinum).
In one embodiment, a process can be provided in which a relatively high activity of electrode catalyst for electrode reactions can be maintained by regenerating the catalytic activity of the anode by stripping the carbon monoxide or converting the carbon monoxide into carbon dioxide. The relatively high activity can be maintained by applying a relatively high electrical voltage greater than 0.4V/cell, for example greater than 0.6V/cell. For example, the relatively high activity of electrode catalyst can be maintained by applying voltage pulses on proton conductive electrolyte based electrochemical apparatus 10 (cell) to generate the hydrogen via conversion processes, purification processes, separation processes and compression processes. Although the apparatus 10 is described herein having one cell for generating hydrogen, a plurality of cells can be arranged as a stack of cells, in series or in parallel to constitute the hydrogen generation apparatus. The relatively high voltage can be applied either as a consistent continuous voltage during the whole process, or as voltage pulses with relatively high amplitudes, with or without lower base voltages. As will be discussed in further detail below, in embodiments in which voltage pulses are employed, the voltage pulses are preferably periodic with a period such that a voltage pulse is applied before hydrogen production is significantly impaired by CO poisoning subsequent to the previous pulse.
Under the relatively high voltage, oxygen containing species, such as hydroxyl group OH adsorbed on Pt catalyst (Pt—OHads), can be generated on the anode catalyst surface, as shown in the following chemical reaction.
The generated oxygen containing species (e.g., Pt—OHads) can react with the absorbed or adsorbed CO on the catalyst surface to strip the carbon monoxide (CO) off of the catalyst (e.g., Pt catalyst), as shown in the following reaction (4).
The whole CO stripping electrode reaction is a combination of equation (3) and equation (4) and can be expressed by the following equation (5).
The above chemical reactions describe the adsorption of the carbon monoxide on the anode catalyst 12 and the stripping of the carbon monoxide from the anode catalyst 12. The anode catalyst 12 is used to oxidize the hydrogen in the gas mixture to generate protons H+ as shown by the following equation (6). This process of proton formation can occur substantially simultaneously during the CO stripping from the anode 12.
The protons generated, as shown in the reaction (5), are transported through the proton conductive electrolyte membrane 11 and subsequently reduced back to molecular hydrogen (H2) on the cathode 13 which supplies electrons. The reduction reaction of the protons occurs by combining the protons with the electrons supplied via the cathode 13, as shown by following equation (7).
2H++2e−=H2 (7)
The overall reactions for CO and H2 containing gas mixtures can be summarized by the following two equations (8) and (9). Specifically, carbon monoxide (CO) conversion reaction (8) is obtained through the sum (equation (1)+equation (5)+equation (7)):
and hydrogen separation reaction (9) is obtained through the sum (equation (6)+equation (7)).
The overall reaction for hydrocarbon molecules, for example, methanol (CH3OH), can be expressed by equation (10) as (equation (2)+equation (6)+equation (7)):
As stated above, protons can penetrate through the proton conductive electrolyte 11 to reach cathode 13 where they are reduced to hydrogen in the cathode chamber that is separated from the chamber of the anode 12 where CO2 is generated, as shown
Processing hydrocarbon compounds, such as methanol, through apparatus 20 conducts the hydrogen generation and purifies the hydrogen in one step. It can also compress hydrogen in the same step with a proper mechanical design of the apparatus 20 to handle high pressure.
Hydrocarbon fuels including CH3OH are introduced through input 25 on the anode side 22 of the apparatus 20 to be processed by the apparatus 20 to produce hydrogen. The produced hydrogen is discharged through output 26 disposed on the cathode side 23 of the apparatus 20. The overall process taking place in the apparatus 20 can be summarized by the following equation (11).
The electrons are re-circulated from the anode 22 to the cathode 23 and supplied back to the protons H+ which traversed the membrane (PEM) 21 containing the electrolyte to combine with the protons to form the hydrogen molecule H2 in the chamber of the cathode 23. The formed hydrogen is then output through output 26.
Typical industrial hydrogen production is implemented through a multi-step thermal chemical process to reform hydrocarbon fuels to hydrogen. The typical processing routes involve thermal chemical process to convert hydrocarbon compounds to syngases (the mixtures of hydrogen, CO, CO2, H2O, and others) in the reforming step, and then go through several more steps including, water-gas-shift (WGS) step to convert CO to additional hydrogen, purification step to separate pure hydrogen from the gas mixture, and compression step to compress the pure hydrogen to high pressure for storage and transportation. The whole process is complicated and costly.
As described in the above paragraphs, the hydrogen generator which can comprise one or more cells can use a high voltage applied continuously or by pulses to convert CO to hydrogen, purify hydrogen and optionally compress hydrogen to high pressure for hydrogen storage and delivery. In one embodiment the voltage is greater than 0.4V/cell, for example greater than 0.6V/cell.
The hydrogen flux under continuous 0.2 V driving voltage (not shown in this figure) is negligible (approximately 45 mA electrical current) due to the CO poisoning of the Pt catalyst. When a short voltage pulse of 0.8 V amplitude and 30 ms width is superposed on the 0.2 V base voltage (VB), the hydrogen flux increases slightly as evidenced by an electrical current of approximately 0.1 A through the electrodes (the current is proportional to hydrogen production). However, when a short voltage pulse with an amplitude of approximately 1 V to 1.3 V with a 30 ms width superposed on the 0.2 V base voltage is applied, the hydrogen flux increases dramatically as evidenced by an electrical current in the range of about 4 A to about 10 A. The hydrogen flux slowly decays to about 0.5 A in one minute (60 seconds) for a driving voltage pulse of approximately 1 V and decays to 6.3 A in one minute (60 seconds) for a driving voltage pulse of approximately 1.3 V. This decay is due to the slow carbon monoxide adsorption (CO poison) on the catalyst. As shown in
The plot in
As discussed above, the base voltage need not be constant as shown in
As described in the above paragraphs, parameters of the driving voltage including the amplitude (Vp) of the peak voltage, the width (W) of the peak voltage and/or the period (T) of the train of voltage pulses can be selected so as to achieve a certain hydrogen production rate or threshold or other desired output. This can be done either manually by selecting the appropriate value for each parameter (voltage peak amplitude, width, period) to achieve a desired hydrogen output or automatically by using a feedback loop which would use a measured hydrogen output or other parameter and optimize or tune any one or more of these three parameters to obtain or maintain the desired output.
Water electrolysis can be performed to generate and compress hydrogen, with the assistance of hydrocarbon compounds, according to an embodiment of the present invention. The hydrocarbon compound can be, for example, an alcohol such as methanol, ethanol, etc. or any combination thereof. Additionally or alternatively, other hydrocarbon compounds, such as formic acid and biogas can also be used. The use of a hydrocarbon compound in a water electrolyzer, according to an embodiment of the present invention, can save electrical energy consumption by about 70% as compared to a conventional water electrolyzer.
Table 1 shows a comparison between a conventional water electrolyzer and an example of a water electrolyzer according to an embodiment of the present invention.
As shown in Table 1, in a conventional water electrolyzer, the reaction at the anode side is H2O=2H++½/O2+2e−, and the reaction at the cathode side is 2H++2e+=H2 providing an overall reaction equation H2O═H2+½O2. On the other hand, in the example of a water electrolyzer according to an embodiment of the present invention, the reaction at the anode side is CH3CH2OH+3H2O=12 H++2CO2+12e−, and the reaction at the cathode side is 2H++2e+=H2 providing an overall reaction equation CH3CH2OH+3H2O=6H2+2CO2, when ethanol (CH3CH2OH) is used as the hydrocarbon compound for assisting the electrolysis.
Using hydrocarbon compounds, such as ethanol, in the anode reaction can replace oxygen evolution reaction with CO2 generation reaction. In addition, the theoretical reversible potential of the electrolysis reaction (E0) is reduced from 1.23V for conventional water electrolysis to 0.08V for ethanol solution electrolysis. Therefore, the average operation voltage of the electrolyzer can be reduced from about 1.6V/cell or 1.7V/cell for the conventional water electrolyzer to about 0.5V/cell for the water electrolyzer of the present invention, in this example. This may result in a significant electrical energy saving.
The technical barrier for ethanol solution electrolysis is the slow anode oxidization activity of ethanol under normal operation conditions. This invention discloses the method to use the high voltage, or high voltage pulses to maintain the high activity of electrode catalyst for the hydrogen production. In one embodiment, the peak voltage is greater than 0.4V/cell, for example greater than 0.6V/cell.
While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example, and not limitation. It will be apparent to persons skilled in the relevant art(s) that various changes in form and detail can be made therein without departing from the spirit and scope of the present invention. In fact, after reading the above description, it will be apparent to one skilled in the relevant art(s) how to implement the invention in alternative embodiments. Thus, the present invention should not be limited by any of the above-described exemplary embodiments.
Moreover, the method and apparatus of the present invention, like related apparatuses and methods used in the electrochemical arts are complex in nature, are often best practiced by empirically determining the appropriate values of the operating parameters, or by conducting computer simulations to arrive at best design for a given application. Accordingly, all suitable modifications, combinations and equivalents should be considered as falling within the spirit and scope of the invention.
In addition, it should be understood that the figures, are presented for example purposes only. The architecture of the present invention is sufficiently flexible and configurable, such that it may be utilized in ways other than that shown in the accompanying figures.
This application is based on and claims priority to U.S. Provisional Patent Application No. 60/886,508, filed on Jan. 24, 2007, the contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60886508 | Jan 2007 | US |