The present disclosure relates to sensors and, more particularly, to electrochemical sensors.
This section provides background information related to the present disclosure which is not necessarily prior art.
L-ascorbic acid (AA) is a critical nutrient for many organisms and an acidity regulator of antioxidants and preservatives. AA plays a vital role in biological metabolisms, e.g., the digestion of amino acids, as well as the synthesis of adrenalin, certain hormones, and neurotransmitters. AA has also been commonly used for the prevention and treatment of scurvy, cancer, common cold, and AIDS, etc. The design and implementation of cost-effective, high-performance electrochemical sensors for the rapid and accurate quantification of AA concentration in foods or biological fluids are important for many societally pervasive applications such as clinical diagnostics, wearable health monitoring, food safety, and environmental monitoring. However, the direct electro-oxidation of AA on the surface of the bare electrodes is irreversible. Moreover, the subsequent hydrolysis of the reaction will cause electrode fouling with large overpotential, poor selectivity, low sensitivity, and unsatisfactory reproducibility.
Nanostructured catalysts with large specific surfaces and abundant active sites appeal to highly sensitive electrochemical sensing of various chemicals. Various nanomaterials, such as conducting polymers, carbon materials, and metal oxides, have been explored for modifying the electrodes to efficiently detect AA, leveraging the enhanced active sites, improved interfacial charge transfer, and/or intrinsic conductivity in the related nanostructures. For example, Jiang et al. used liquid-phase exfoliated graphene to fabricate an AA sensor, which showed a linear detection range from 9 μM to 2314 μM with a detection limit of 6.45 μM. Recently, Mei et al. demonstrated the sensitive detection of AA with metal oxide nanomembranes and achieved a detection range of 1-30 μM. However, the preparation of these nanoengineered catalysts is complicated, usually involving high temperature or strict gas control. The catalyst yield is usually low, and the catalyst is also prone to be oxidized, reduced, or decomposed. Meanwhile, due to the use of expensive materials such as precious metals, biomaterials, complex instruments, and harsh control conditions, the cost of producing nanostructured AA catalysts is typically high. The design and implementation of cost-effective, high-performance electrochemical sensors for detecting AA remain a significant challenge.
In concordance with the instant disclosure, a cost-effective, high-performance electrochemical sensor system and method for detecting AA, has been surprisingly discovered.
The sensor is configured to detect ascorbic acid using piezo-electrocatalysis. The sensor includes a substrate and a piezoelectric semiconductor. The piezoelectric semiconductor may be coupled to the substrate. The piezoelectric semiconductor may also include a nanostructured semiconducting zinc oxide catalyst. In certain circumstances, the nanostructured semiconducting zinc oxide catalyst may have a noncentrosymmetric wurtzite configuration.
In another embodiment, the present technology includes methods of manufacturing the sensor. For instance, a method of manufacturing the sensor may include providing a substrate. Next, the method may include disposing the substrate in a seed solution. It is also contemplated for the seed solution to be disposed onto the substrate. The seed solution may include zinc. The seed solution may be configured to produce a zinc oxide seed layer on the substrate. Then, the substrate with the zinc oxide seed layer may be disposed into a growth solution. The growth solution may be configured to form a semiconducting nanostructured zinc oxide catalyst on the substrate. Afterwards, a semiconducting nanostructured zinc oxide catalyst may be formed on the substrate.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations and are not intended to limit the scope of the present disclosure.
The following description of technology is merely exemplary in nature of the subject matter, manufacture, and use of one or more inventions, and is not intended to limit the scope, application, or uses of any specific invention claimed in this application or in such other applications as may be filed claiming priority to this application, or patents issuing therefrom. Regarding methods disclosed, the order of the steps presented is exemplary in nature unless otherwise disclosed, and thus, the order of the steps can be different in various embodiments, including where certain steps can be simultaneously performed.
Unless otherwise defined, all technical terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the present disclosure pertains.
As used herein, the terms “a” and “an” indicate “at least one” of the item is present; a plurality of such items may be present, when possible. Except where otherwise expressly indicated, all numerical quantities in this description are to be understood as modified by the word “about” and all geometric and spatial descriptors are to be understood as modified by the word “substantially” in describing the broadest scope of the technology. “About” when applied to numerical values indicates that the calculation or the measurement allows some slight imprecision in the value (with some approach to exactness in the value; approximately or reasonably close to the value; nearly). If, for some reason, the imprecision provided by “about” and/or “substantially” is not otherwise understood in the art with this ordinary meaning, then “about” and/or “substantially” as used herein indicates at least variations that may arise from ordinary methods of measuring or using such parameters. In the present disclosure the terms “about” and “around” may allow for a degree of variability in a value or range, for example, within 10%, within 5%, or within 1% of a stated value or of a stated limit of a range. Likewise, in the present disclosure the term “substantially” can allow for a degree of variability in a value or range, for example, within 90%, within 95%, or within 99% of a stated value or of a stated limit of a range.
Although the open-ended term “comprising,” as a synonym of non-restrictive terms such as including, containing, or having, is used herein to describe and claim embodiments of the present technology, embodiments may alternatively be described using more limiting terms such as “consisting of” or “consisting essentially of.” Thus, for any given embodiment reciting materials, components, or process steps, the present technology also specifically includes embodiments consisting of, or consisting essentially of, such materials, components, or process steps excluding additional materials, components or processes (for consisting of) and excluding additional materials, components or processes affecting the significant properties of the embodiment (for consisting essentially of), even though such additional materials, components or processes are not explicitly recited in this application. For example, recitation of a process reciting elements A, B and C specifically envisions embodiments consisting of, and consisting essentially of, A, B and C, excluding an element D that may be recited in the art, even though element D is not explicitly described as being excluded herein.
As referred to herein, disclosures of ranges are, unless specified otherwise, inclusive of endpoints and include all distinct values and further divided ranges within the entire range. Thus, for example, a range of “from A to B” or “from about A to about B” is inclusive of A and of B. Disclosure of values and ranges of values for specific parameters (such as amounts, weight percentages, etc.) are not exclusive of other values and ranges of values useful herein. It is envisioned that two or more specific exemplified values for a given parameter may define endpoints for a range of values that may be claimed for the parameter. For example, if Parameter X is exemplified herein to have value A and also exemplified to have value Z, it is envisioned that Parameter X may have a range of values from about A to about Z. Similarly, it is envisioned that disclosure of two or more ranges of values for a parameter (whether such ranges are nested, overlapping, or distinct) subsume all possible combination of ranges for the value that might be claimed using endpoints of the disclosed ranges. For example, if Parameter X is exemplified herein to have values in the range of 1-10, or 2-9, or 3-8, it is also envisioned that Parameter X may have other ranges of values including 1-9, 1-8, 1-3, 1-2, 2-10, 2-8, 2-3, 3-10, 3-9, and so on.
When an element or layer is referred to as being “on,” “engaged to,” “connected to,” or “coupled to” another element or layer, it may be directly on, engaged, connected, or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer, or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer, or section discussed below could be termed a second element, component, region, layer, or section without departing from the teachings of the example embodiments.
Spatially relative terms, such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below,” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
Piezocatalysis emerges as an effective mechanism to enhance the efficiency of catalytic processes with the strain-induced piezoelectric field. In this case, the chemical species such as pollutants, dyes, drug, and H2O molecules can thermodynamically undergo reduction or oxidation reactions when being in contact with the piezoelectric materials. The efficiency of a piezocatalysis process can be modulated by engineering the type, size, and morphology of the piezoelectric materials and controlling the mechanical stimuli (e.g., strain, pressure, etc.). Compared to traditional piezoelectric materials that are brittle and insulating, low-dimensional piezoelectric semiconductors such as zinc oxide nanowires and 2D transition-metal-dichalcogenides offer unexplored possibilities for leveraging the coupling of piezoelectricity to various catalytic processes. The superior mechanical properties of these nanostructured piezoelectrics also allow mechanical tunability inaccessible to bulk or thin-film materials, facilitating the efficient piezocatalysis driven by a low mechanical budget. Rationally designed, catalytically active, nanostructured piezoelectric semiconductors hold promise to address the challenges facing the current catalysts for the enhanced sensing of AA through cost-effective electrocatalytic pathways, e.g., with mechanical stimuli.
Advantageously, the electrochemical sensor system may provide a cost-efficient, high-performance piezo-electrocatalytic sensor for detecting AA, with the electrocatalytic efficacy significantly boosted by the piezoelectric polarization charges induced in the nanostructured semiconducting zinc oxide (ZnO) catalyst. Zinc oxide nanorods (ZnO NRs) 104 and nanosheets (NSs 106) 106 were prepared to characterize and compare their efficacy for the piezo-electrocatalysis of AA. The distribution of piezoelectric potential in the nanostructured ZnO catalysts 104, 106 were simulated using the finite element method (FEM). The relationship between the piezoelectric potential and piezocatalytic efficiency was established by elucidating the charge transfer between the strained ZnO nanostructures and AA. In a specific, non-limiting example, the deformed ZnO NRs 104 and NSs 106 possess boosted catalytic efficiency for AA, which increases around 4.72 times and around 0.5 times compared with that of the undeformed ZnO NRs 104 and NSs 106, respectively. With continued reference to the non-limiting example, the fabricated AA sensors exhibited wide actual detection ranges (10 μM-2.9 mM for deformed ZnO NRs 104 and 10 μM-3.4 mM for deformed ZnO NSs 106) and low detection limits (0.48 μM for deformed ZnO NRs 104 and 0.72 μM for deformed ZnO NSs 106, S/N=3), superior to the state-of-the-art AA sensors. It is contemplated the piezo-electrocatalytic process of the present disclosure could utilize the otherwise wasted environmental mechanical energy (e.g., wind energy, wave energy, tidal energy, biomechanical energy, etc.) to boost the electrocatalytic efficiency. The concept of piezo-electrocatalysis can be extended to numerous other catalytic processes of biomedical, pharmaceutical, and agricultural interest. Desirably, the hydrothermal synthesis of ZnO nanostructures also allows the low-cost, scalable production and integration of piezoelectrically-enhanced AA sensors into deformable form factors for wearable sensors capable of real-time and non-invasive monitoring of uric acid, lactate, ascorbic acid, glucose, and caffeine in sweat, where the sensor performance could be boosted by the human-generated mechanical signals.
The sensor 100 is configured to detect ascorbic acid using piezo-electrocatalysis. As shown in
The nanostructured semiconducting ZnO catalyst 104, 106 may be provided in many ways. For instance, the nanostructured semiconducting ZnO catalyst 104, 106 may have a noncentrosymmetric wurtzite configuration. The noncentrosymmetric wurtzite configuration may include a crystal formation with hexagonal symmetry. In a specific example, the nanostructured semiconducting ZnO catalyst 104, 106 may be provided as a ZnO nanorod 104. The ZnO nanorod 104 may have a terminal end 108 connected to the substrate 102. The ZnO nanorod 104 may have a substantially hexagonal cross-section. In another specific, non-limiting example, the nanostructured semiconducting ZnO catalyst 104, 106 may be provided as a ZnO nanosheet 106. A skilled artisan may select other suitable shapes and formations of the ZnO catalyst 104, 106, within the scope of the present disclosure.
In certain circumstances, the substrate 102 may be provided in various ways. For instance, the substrate 102 may be constructed from a conductive material, such as a metal material and/or graphite. In a more specific example, the substrate 102 may include an indium tin oxide substrate. In an even more specific example, the substrate 102 may include an indium tin oxide coated polyethylene terephthalate film. One skilled in the art may select other suitable materials to form the substrate 102, within the scope of the present disclosure.
In certain circumstances, the sensor 100 may be configured with various capabilities and applications. For instance, the sensor 100 may have a limit of detection less than three micromolars. Limit of Detection may be understood as the lowest quantity or concentration of a component that can be reliably detected with a given analytical method. Advantageously, the present disclosure is capable of lower limits of detection compared to known sensors, thereby enhancing the accuracy and fields of application of the sensor 100. As a non-limiting example, the sensor 100 may be provided in a wearable electrocatalytic device. In a specific example, the sensor 100 may also detect uric acid, lactate, glucose, and/or caffeine. In as further non-limiting examples, the sensor 100 may be configured to be utilized in many applications such as biomedical devices, pharmaceutical devices, and agricultural devices.
In certain circumstances, the nanostructured semiconducting ZnO catalyst 104, 106 may be capable of inducing piezoelectric polarization charges while under mechanical deformations. As a non-limiting example, the mechanical deformation may include an applied force that pushes the ZnO catalyst 104, 106 causing a bending curvature between around 0.2% to around 0.6%. In a specific example, the piezoelectric potential in a nanorod 104 may continuously distribute along a polar axis where an axial compression is applied to the ZnO nanorod 104 with its terminal end 108 mechanically fixed to the substrate 102 and electrically grounded. As shown in
In another embodiment, the present technology includes methods of manufacturing the sensor 100. For instance, as shown in
Provided as a specific, non-limiting example, one embodiment of the ZnO NRs 104 and NSs 106 were synthesized via a hydrothermal method. The hydrothermal method may be understood as the process of crystallizing substances from high-temperature aqueous solutions at high vapor pressures. The morphology control was achieved through the surface selective electrostatic interaction. The growth solutions of the two morphologies consist of different zinc-precursors, namely zinc nitrate and zinc chloride. The introduction of Cl− benefits the growth of nanosheets 106. Without being bound to any particular theory, it is believed the selective adsorption of the highly electronegative Cl− ions on a polar ±(0001) plane may hinder the growth of the ZnO nanostructure along a polar axis [0001] direction.
The morphologies of the as-synthesized ZnO NRs 104 and NSs 106 on indium tin oxide (ITO) substrates 102 were examined using scanning electron microscopy (SEM), as shown in
The specific surface area of the obtained ZnO nanomaterials were characterized by N2 adsorption-desorption analysis, as shown in
ZnO with a noncentrosymmetric wurtzite structure can induce piezoelectric polarization charges on the surface under mechanical deformations. A finite element calculation was performed to simulate the distribution of piezoelectric potential produced in the ZnO NRs 104 and NSs 106, as shown in
The working mechanism of the piezo-electrocatalysis was further explored by examining the related band diagram, as shown in
With continued reference to
A series of radical trapping experiments were performed using various radical scavengers to identify the role of the radical species and elucidate the fundamental processes involved in the piezo-electrocatalytic sensing of AA. To this end, benzoquinone (BQ), tert-butyl alcohol (TBA), and disodium ethylene diamine tetraacetate dehydrates (EDTA-2Na) were used to scavenge superoxide radicals (·O2−), hydroxyl (·OH), and holes (h+), respectively. It is believed that these radicals are induced by the piezoelectric effect.
In addition to the catalytic activity, catalytic stability is another critical factor in evaluating reliable electrocatalysts for AA detection. In order to measure the material tolerance and long-term catalytical stability of the ZnO catalysts 104, 106 in the AA detection environment, chronoamperometric measurements were performed for deformed ZnO NRs 104 in 0.01 M NaOH solution at 0.4 V vs. Ag/AgCl for a duration of 10,000 s. The result shows no observable degradation in the piezo-electrocatalytic performance of ZnO NRs 104 after over one and half hours, as shown in
Advantageously, the sensor 100 may provide a cost-efficient, high-performance piezo-electrocatalytic sensor for detecting AA, with the electrocatalytic efficacy significantly boosted by the piezoelectric polarization charges induced in the nanostructured semiconducting zinc oxide (ZnO) catalyst 104, 106.
Example embodiments are provided so that this disclosure will be thorough and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms, and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail. Equivalent changes, modifications and variations of some embodiments, materials, compositions, and methods can be made within the scope of the present technology, with substantially similar results.
This application claims the benefit of U.S. Provisional Application Ser. No. 63/237,814, filed on Aug. 27th, 2021. The entire disclosure of the above application is hereby incorporated herein by reference.
This invention was made with government support under DE-AC07-05ID14517 awarded by the Department of Energy. The government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
63237814 | Aug 2021 | US |